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DISCUSSION

Sadanori Konishi

Kyushu University

I would like to begin by congratulating Drs. Rao and Wu for very concise review and

clear exposition of model selection. The paper will stimulate future research in statistical

model selection and evaluation problems.

Needless to say, model selection and evaluation are essential and of great impor-

tance in modelling process in various fields of natural and social sciences. Akaike (1973)

introduced an information criterion as an estimator of the Kullback-Leibler measure

of discriminatory information between two probability distributions, and a number of

successful applications of AIC in statistical data analysis have been reported. Schwarz

(1978) proposed a model selection criterion called BIC (Bayesian information criterion)

from a Bayesian viewpoint. AIC and BIC are the most widely used model selection

criteria in practical applications.

Now by taking advantage of fast computers, we may construct complicated nonlin-

ear models for analyzing data with complex structure. Nonlinear models are generally

characterized by a large number of parameters. We know that the maximum likeli-

hood methods yield unstable parameter estimates and lead to overfitting. In such cases

the adopted model is estimated by the maximum penalized likelihood method, Bayes

approach, etc.

It might be noticed that the criteria AIC and BIC, theoretically, cover only models

estimated by the maximum likelihood methods. The problem is: "Can AIC and BIC be

applied to a wider class of statistical models?" Konishi and Kitagawa (1996) proposed

an information-theoretic criterion GIC which enables us to evaluate various types of

statistical models. By extending Schwarz's basic ideas, I will introduce a criterion to

evaluate models estimated by the maximum penalized likelihood method.

Suppose we are interested in selecting a model from a set of candidate models M\,

• , Mr for a given observation vector y of dimension n. It is assumed that each model

is characterized by the probability density fk{y\θk)-> where θ^ E Θ^ C Rk. Let

λ) be the prior distribution for parameter vector θ^ under model M^, where λ is

a hyperparameter. Then the posterior probability of the model M^ for a particular data
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set y is given by

Pr(Λ4) / h{y\θk)πk{θk\\)dθk

α) ί fa(y\θa)πa(θa\
Q = l J

where Pi(Mk) is the prior probability for model Mk.

The Bayes approach for selecting a model is to choose the model with the largest

posterior probability among a set of candidate models for a given value of λ, which is

equivalent to choose the model that maximizes

Pr{Mk) J fk(y\θk)πk(θk\\)dθk=Pv(Mk) J exp{\ogfk(y\θk) + \ogπk(θk\λ)}dθk.

We now specify the prior distribution πk(θk\λ) on the parameters of each model to

be

nk(θk\λ) = (2π)-(fc-<>/2(nλ)(fc-<)/2|Z?|f exp {~γ

where D is a k x k known matrix of rank k — q and \D\+ is the product of nonzero

eigenvalues of D. Then, using Laplace's methods for integrals in the Bayesian framework

developed by Tierney and Kadane (1986) and Kass, Tierney and Kadane (1990), we have,

under equal prior probabilities Pr (Mk), an asymptotic approximation

GBIC(λ) - -2\og{J fk(y\θk)πk(θk\λ)dθk}

= -2logfk(y\θk)

+ log\Jχ(Θk)\ - log\D\+ - <7log2τr - (k - q)logλ,

where Jχ{θk) = -n~ι d2 {logfk(y\θk)}/dθkdθ'k +\D and the estimate θk is given by

maximizing the penalized log-likelihood function

θ'

Optimal value of λ is obtained as the minimizer of GBIC(λ) for each model, and then

we choose a statistical model for which the value of the criterion GBIC is minimized

over a set of competing models. The GBIC may be applied for evaluating various types

of nonparametric regression models estimated by the maximum penalized likelihood

method.
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I begin by congratulating the authors, Professors Rao and Wu, on this very illumi-
nating and scholarly piece of work which will inspire future researchers in this area. They
have done an enormous job of which we are the beneficiaries.

Considerable attention has been given in this paper on the important problem of
selecting an appropriate sub-model starting from the linear model (2.1). I, therefore,
find it relevant to briefly discuss some related issues in design of experiments. The
discussion will be focussed primarily on discrete designs. Incidentally, experimental
design problems under model uncertainty have been of substantial interest in recent
years (Dey and Mukerjee, 1999; Wu and Hamada, 2000).

To motivate the ideas, consider the setup of a 2n factorial experiment, a situation
where there are n factors each at two levels. Suppose interest lies in identifying the active
factors, i.e., the ones with nonzero main effects, under the absence of all interactions.
A factor screening experiment is one which can achieve this. Interpreting the factors as
regressors, the problem here is the same as that initiated by (2.1) and (2.2). The model
(2.1) now consists of the general mean and the main effects of the two-level factors,
each main effect being represented by a single parameter. Clearly, then at least n + 1
observations are needed to examine (2.1) and all possible sub-models thereof.
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