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Let X . < . . . < X be the order statistics of a
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random sample X ,..., X from a distribution function F.

If {v } is a sequence of integer-valued random variables

p
such that 1 < v < n and v /n —• p , for some

p £ (0,1) , the sequence {X } is referred to as a
n'Vn

sequence of random central order statistics (of limiting
rank p) corresponding to the random central rank
sequence {v } .In this paper, we establish the weak as
well as strong consistency of X in estimating the

* n
p-th quantile of F. We derive several central limit
theorems for X for regular as well as non-regular

n'Vn
cases, and for each case, we provide remainder term
estimates of the Berry-Esse"en type.

*Research supported by the Office of Naval Research,
Contract N00014-85-K-0648.

AMS 1980 subject classifications. Primary 60F05,60F15, 62G30.
Key words and phrases. Random central order statistics, weak consistency,

strong consistency, central limit theorem, Bahadur representation,
Berry-Esse"en bounds.

447



448 PURI AND RALESCU

1. Introduction. Let X., i ) 1 be a sequence of i.i.d. r.v.'s (independent and

identically distributed random variables) with a cdf (cumulative distribution

function) F, and let X , < X o < ... < X be the order statistics
n,l n,2 n,n

of X ,...,X In classical theory, one defines the central order statistics as

sequences {X , } where k € {l,...,n} (deterministic integers) and kn/n has a
' n

limit p€(0,l) as n -»• °° . (The ratio kn/n is generally called the rank

of X and p is called the limiting rank). A typical example of central order
n> n

statistics having a limiting rank p € (0,1) is provided by the sequence of the

sample p-th quantile {ξ }, where ξ = X if np is an integer,

and ξ = X* r , if np is not an integer ([ ] denotes the integer part).

Central order statistics serve to provide consistent estimators, tolerance

limits and distribution free confidence intervals for "central" parameters,

e.g., quantiles. They have, in general, an asymptotically normal distribution,

and they converge strongly to appropriate limits (see Smirnov (1952) for a

characterization, under suitable conditions, of the class of all possible limit

distributions and the corresponding domains of attraction) . An important

feature of central order statistics is that they can be expressed asymptotically

as sums of indpendent random variables, via the Bahadur (1966) representation.

In many problems dealing with central parameters of the underlying

distribution function, there are in general several candidates based on

sequences of central order statistics that can be used in deriving optimal

statistical procedures. A relative efficiency comparison based on these

procedures may still leave us with the difficult task of having to select the

"best" central rank sequence {k } Thus, it would be of interest to introduce a

n

new class of statistics for which one allows random flexibility on the sequence

of ranks and to study their asymptotic properties

Our objective in this paper is to generalize the classical asymptotic

theory for the so called random central order statistics. Specifically, given a

sequence of i.i.d.r.v.
f
s {X } with a common cdf F, let X . denote the j-th

order statistic from X , ...,X and let {v } be a sequence of integer-valued

random variables such that 1 < v < n for each n. Then, if for

n
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some p € (0,1), v /n — • p , {X } is called a sequence of random central
n'Vn

order statistics, and {v } a random central rank sequence. In section 2, we

establish, under quite general conditions, the weak and strong consistency of a

sequence of random central order statistics {X } of the limiting rank p in
n

estimating the (unknown) p-th quantile ξ = inf{x: F(x) > p}. Further,

confining attention to the so called regular cases (those for

which F'(ξ ) exists and is positive), if v /n -̂ —> p sufficiently fast, we

obtain, in section 3, a central limit theorem which shows that the random

flexibility of the ranks (v /n) does not disturb the form of the limiting

distribution of the normalized sequence {X }, a feature which adds greatly to

the usefulness of the theory. We conclude this section with the derivation of a

weak Bahadur representation for random central order statistics, a result which

generalizes Ghosh (1971). In section 4, a Berry-Esse*en type theorem is

established for the distribution of random central order statistics in regular

cases. Our results generalize as well as extend those of Reiss (1974) and

Serfling (1980), Theorem C, p. 81) who derived the bound 0(n~ '
2
 ) for the

departure from normality of the distribution function of the sample quantile.

In section 5, we study the limit law of X in non-regular cases. In this
n > V

n

context, we present a central limit theorem for a suitably normalized

X which generalizes a result of Chanda (1975). We also give a remainder
n
'

V
n

term estimate of the Berry-Essέen type for the corresponding normal distribution

approximation.

2. Consistency of X . Let {X } be a sequence of i.i.d.r.v.'s with a common
n,v

n

cdf F(x) = P[X. < x] and let {v } be a random central rank sequence such
1 n

p

that v /n — • p € (0,1). We begin with the simplest result of interest.

THEOREM 2.1. (Weak Consistency). If ξ is the unique solution y

of F(y-) < p < F(y) , then

(2.1)
 X

n , v - ^ V
 a s n

" ° °
n
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Proof. Let F
R
(x) be the empirical distribution function corresponding to the

sample X^ ...,X
n
, i.e. nF

n
(x) = number of X. < x, 1 < i < n For each α > 0, we

have (by the uniqueness condition of the theorem),

(2-2) F(ξ - α) < p < F(ξ
p
 + α)

Note that

(2.3)

= P{[ F
n
(ξ

p
 + o) - F(ξ

p
 + α)] + [F(ξ

p
 + α) - p ] < -^ - p}

v

and, since F (ξ + α) -̂ -> F(ξ + α) and — -̂ -+ p , we obtain on account of (2.2)
n p p n

and (2.3) that P{X > ξ + α} -• 0 as n -• ~ .
n,v

n
 p

A similar argument shows that P { X < ξ - a - a } * 0 a s n - » - « .

n, v Ό

The proof follows.

To achieve strong consistency of X for the estimation of ξ , we
n > V

n
 p

assume the following:

(2.4) I P{| — - p| > ε} < oo for every ε > 0.

n=l
 n

THEOREM 2.2. (Strong Consistency) If ξ is the unique solution y

of F(y-) < p < F(y) and, in addition, (2.4) holds, then, with probability one,

(2.5) X + ξ , as n •> ».

n,v
n
 p

Proof: For each α > 0, observe that
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P { X n , v n > S + a } " P { V ξ p + α > < Ί Γ
(2.6)

ε, F
n
(

ξ p
 + β ) < - ^ } + P{|-^-p| > e}

say, where ε > 0 is chosen such that 2ε < F(ξ + α) - p. Then, by Markov's

inequality, we get

(2.7) a
n
 < P { F

n
U

p
 + α) - F(ξ

p
 + α) < -ε} < - | E {F

n
(ξ

p
 + α) - F(ξ + ct)}

4

and, since E {F
n
(ξ + α) - F(ξ + α)}

4
 < 3/n

2
 , from (2.4), (2.6) and (2.7), we

obtain

Σ H
n
,

υ p
 | ^

n=l n
 r

 ε n=l n n=l

Similarly, we have

(2.9) I P{X < ξ - α} <

n=l ' n
 v

Theorem 2.2 follows by combining (2.8) and (2.9).

Remark 2.1. Note that if {k } is the numerical sequence defined by k
n
 = np if

np is an integer and k
R
 = [nρ]+ 1 if np is not an integer, then,

ifv = k , n > 1 , X reduces to the usual sample p-th quantile ξ . In this

' n

case, condition (2.4) is easily checked and Theorem 2.2 yields the well-known

strong consistency of the sample quantile for estimation of ξ (see Serfling

(1980), Theorem 2.3.1).

3 The Asymptotic Distribution of X in Regular Cases. A well-known result
n V

on the sample quantile ξ asserts that if F(ξ ) • p , F is differentiable

at ξ and F
f
(ξ ) > 0 (i.e. the regular cases), then

P P
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- ξ
n
)F'(ξ ) p
E E- -±—+ N(O,1) .

tp(l-p)] '
2

In the present context, it would be of interest to know whether or not

in regular cases the limiting distribution of X is the same as that

of ξ .In seeking a solution to this problem we would like to impose minimal
np

assumptions on the parent distribution and allow dependence between {v } and the

original variates {X } (an independence assumption will rarely be fulfilled in

interesting cases). Here the main obstacle is to overcome the random factor

introduced by v and we have to develop new methods of proof

The main result of this section is contained in the following theorem.

THEOREM 3.1. (Central Limit Theorem) If

(i) F(ξ ) - p , F is differentiable at ξ and F
f
(ξ ) > 0 ,

P P P

and

(ii) n
 2
 (—̂  - p) • c , for some constant c,

then

(3.D
 nV2(x

n,v
n
 - y

F
'

(
y

a
P

X
 "^

N ( c
v

where α* = p(l-p) , p€(0,l).

Remark 3.1. (3.1) shows that the constant c in (ii) above has a direct

influence on the asymptotic mean of the (normalized) X For nonrandom
' n

central order statistics, this fact was noticed by Serfling (1980, p. 94) who

emphasized its importance in the treatment of confidence intervals for

quantiles
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Proof of Theorem 3.1. Our approach to proving that (3.1) holds is to show that

the asymptotic distribution of n
 2
(X - ξ ) coincides with the asymptotic

n

1 _ 1/
 n
 1/

 v

ξ )] {n '
2
 \ W + n

 2
 (—

P
distribution of [F

f
(ξ )] {n '

2
 \ W + n

 2
 (— - p)} , where

p , , l n

W.}.^.^ are i.i.d.r.v.
f
s with mean 0 and variance σ

l Kivn p

To this end, set

G (x) = P{n
7
2 (X

 t
 - ξ ) < x} , x € ΈL

n n,v p

and, notice that

(3.2)

where

G (x) = P{F (ξ + xn '2 ) > —
n n p n

- Pίn
1
^ [p - F

n
(ξ

p
)] - p

n
(x) < F'(ξ

p
)x

P
n
(x) = n

/

We now show that for each x € ΊR,

(3.3) P
n
(x) — * 0 .

Let u(t) • 1 if t > 0 and = 0 if t < 0 .In proving (3.3), we may

assume x * 0. Write

(3.A)

where Z
 4
 - u(ξ + xn~ '

2
 - X.) - u(ξ - X . ) , 1 < i < n , n > 1 are row-wise

ni p i p i

independent random variables with
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p = E(Z .) = F(ξ + xn
 2

) - p and
n ni p

Then, since p •* 0 as n •* °°, we obtain by Chebyshev
f
s inequality, that

n

for any ε > 0,

i
A
 |

P
 |<i-|p

n
l>

P {| I [Z . - E(Z ) ] I > εt/2} < - ^ — 5 Ξ— - 0 , as n + -
i=l ε

entailing

(3.5) n" V2 I Z . - nV2 [F(ξn + xn" V2 ) - p] > 0 .
i=l p

On the other hand,

n 2 [ F ( ξ + x n " '2 ) - p ] •• F f ( ξ ) x a s n

which together with (3.5) implies (3.3).

n

Now, write p - F
n
(ξ ) = - I VL , where W

±
 - p - u(ξ - X ^ ,

l < i < n , n > l This is an average of i.i.d.r v.'s to which according to the

classical central limit theorem,

- 1/
 n
 V 7

(3.6) n '
2
 I W

4
 • N(O,σ ) .

^ Λ i P

Using (3.2), (3.3) and (3.6) we deduce

(3.7) G
n
(x) •> P{Z < F'(ξ

p
)xσ~

1
} = Φ ((F

f
(ξ )x - c)σ"

X
)

where Z is N(cσ , 1) r.v , and Φ is the standard normal cdf. (3.1) follows from

(3.7).

Another relevant question for the asymptotic theory of random central

order statistics is a Bahadur-type representation. It will be interesting (but

seems difficult) to investigate whether a Bahadur representation with a strong
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remainder term holds for the case of X treated here. We will nevertheless
n
'

v
n

prove

THEOREM 3 2. (Weak Representation Theorem) Under the assumptions (i) and (ii)

of Theorem 3.1 we have

(3 8)

where

(3 9) R = o (n '
2

n p

Proof: Defining

0 = n
2
 [— - F (ξ ) - (X - ξ )F

f
(ξ )], w<

ii n n p n.v p p
r >

 n
 r r

to show that

(3.10) (̂  -^—• 0 .

To achieve this, take an arbitrary ε > 0 Then, using Theorem 3.1,

choose K > 0 sufficiently large such that

(3.11) PίiΛ |χ - ξ I > K} < ε/2, for n > n .
n,v^ p

1
 o

Now, partition the interval [-K,K] into m - 1

intervals -K - Δ. < Δ
o
 < ... < Δ - K such that

1 Z ύl

(3.12) Δ
±
 - Δ

± - 1
 < ε

o
[2F

f
(ξ

p
)]"

1
, for i = 2,3,..., m and Z

Q
 > 0

Now, set

Π . = {Δ. . * n
1 / 2

(X - ξ ) ^ Δ }, i = 2,...,m; n :> 1
n,i X-l n,v p i
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and use (3.11) to get

m

(3.13) PίC^ > ε
Q
} < I Pίl^ > ε

Q
]
 n
 Π

R ±
} + ε/2 .

Since X < ξ + n
 2

 Δ. entails v /n < F (ξ + n
 2

 Δ.) , by using the
n , v p i n

 n
P 1

monotonicity of F
n
 and (3.12), we have for i = 2,...,m

Π
n,i

} C {
«'

2 [ F
n

( ξ
p
 + n
" ̂ V

which, together with (3.13), entails

(3.14)

P { Q
n
 > ε

o
} <
 Σ

 Pίn/2 [ F
n

( ξ
p
 + n
" ̂ V "

 F
n

( ξ
p

) ]
 "

 F
'

(
V
 Δ
i
 > £

o
/ 2 > + ε/2#

Now, by (3.3) with x = Δ for i = 2,...,m, the sum in the right-hand

side of (3.14) is < ε/2 for sufficiently large n, proving that

P{Q > ε } < ε V n > n . Similarly PίQ^ < -ε } < ε ¥ n > n .The proof

follows.

Remark 3.2. Note that if c - 0 in the condition (ii) of Theorem 3.1 (in which

case the limiting law of the normalized X is standard normal), then (3.8)
Π > V

n
and (3.9) reduce to

showing that asymptotically, X may be represented as an average of
' n

i i d r v. 's In this form (3.15) represents a generalization of a result due

to Ghosh (1971) (see also Serfling (1980), p. 92) and David (1981), pp. 254-

256)).

4. The Berry-Essέen Bound for X in Regular Cases. Recently interest has
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been focused on the convergence to normality for sample quantiles ξ in regular

np

cases. For such situations, under the assumption that F has a bounded second

derivative onlR, Reiss (1974) and Serfling (1980, Theorem C, p. 81) derived

independently the Berry-Esse'en bound 0(n 2 ) . j
n
 this section we study this

problem in the case of normalized random central order statistic X under
n
'

V
n

assumptions somewhat weaker than those of Reiss and Serfling (cit. op ) Our

results not only include the results of these authors as a special case but also

extend their results to cover general random rank sequences {v } . To be

n

precise, we seek bounds on the quantity

Δ = sup |P {n^
2
 (X - ξ ) F

f
(ξ ) < xσ } - Φ(x) I

n
 χ

 n,v
n
 P p p

for the case when the limit law in (3.1) is standard normal (i.e., when

c = 0 ) . To solve this problem we would need to impose a relatively stronger

version of the condition (ii) of Theorem 3.1 (with c = 0), namely

1/
 v

P{n 2 I pi > ε } < δ , for some numerical sequences {ε } and {δ }
1
 n ' n n n n

converging to zero. The "exact" order of approximation for Δ will then be

obtained when ε = 0(n
 2

 ) =* δ

In what follows C.,C
2
,C^,. . will denote positive constants,

THEOREM 4.1. (Rates of Convergence in the CLT) Let ε and δ be positive

n n

constants such that ε < 1 and
n

(4.1) P{n
7
2 I ̂ - p I > ε^} < δ

n
 , n > 1

where {v } is a random central rank sequence and p € (0,1). Assume that
n

F"exists and is bounded in the interval J - [ξ - K , ξ + K] (for

P P

some K > 0 ) . Let M =sup |F"(x)| and K
Q
 = min{F

f
(ξ )M

- 1
 , K} . Then

x€ J

(4.2) Δ < C n~ '2+ c n""
1
 + C ε + δ

n 1 2 3 n n



( 2 π e ) σ K

458 PURI AND RALESCU

where

C, = 4σ 2 + [1.19625 + 8 ( 2 π ) ~ l/2 e"
l]σ l + 4σ M(2π)~ l/2 e " 1 [ F ' ( ξ )

1 p P P P

24σ~2 + ( 2 π e ) " l 7 2 σ 2 K ~ 2 [ F ' ( ξ p ) Γ 2

and

Co - 1 .5(2π)
3

Remark 4.1. (Example) Let {X } be a given sequence of i.i.d r.v.'s with cdf F.

Let {6 } be a sequence of positive constants such that δ •>• 0 as
n n

n •* °° * Consider the "quantile" sequence {k } defined in Remark 2.1

Define v :Ω + {l,...,n} by v (ω) = k if ω € Ω , where {Ω } is a sequence of

events chosen such that P{Ω } « 1 - δ (the definition of v on Ω may be made

n n n n
 J

arbitrarily provided v € {l,...,n} and is measurable),
n

kn
Then, since |— - p| < — , it follows that

which guarantees that

V Vn ~l/2
P{n 2 I — - pi > n } < P(ΩC

) = δ .1
 n ' n n

Thus, condition (4.1) is fulfilled with ε » n~ 2 . We remark that
n

according to our Theorem 4.1, if δ = 0(n
 2

 )
 a s n

 + oo
 >
 the (exact) Berry-

Essέen approximation order for Δ is Q(
n
~ /2 \ In particular, if

δ^ = 0 , n > 1 , the theorem of Reiss and Serfling will follow as a special

case.

To prove Theorem 4.1 we need a sequence of lemmas.
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LEMMA 4.1. If

(4.3) |F(x) - p| < σ^/

then

(4.4) l
σ
p

σ
F(x) " *'

 < σ
p

2
!

F ( x )
 " Pl»

 w h e r e σ
F(x)

 = F ( x ) ( 1
 "

 F ( x ) )
 *

Proof: Let d(x) = |σ σ" . - l| . Note that under (4.3), 0 < F(x) < 1 , so

that d(x) is well defined. By setting λ = σ (F(x) - p) , d(x) simplifies,

after some calculation, to

|λσ
2
 - (l-2p)|

(4.5) λ . =*•
[l+(l-2p)λ-σ

2
 λ

2
] + [l+(l-2p)λ-σ

2
λ

2
]

/
2 "

Now, since |λ| <
 ι
/
2

 a n d
 P ^ (0,1) , it is easily seen that

|λσ
2
 - (1 - 2p)I < 1 , while

(l-2p)λ - σ
2
λ

2
 > i - |χ| - λ

2
/4 > 7/16.

Thus, according to (4.5), we have

d(x)

and (4.4) obtains.

The following well-known lemma (cf. Petrov (1975), p. 16) is also

needed

LEMMA 4.2. Let {V } and {W } be two sequences of random variables. If {a } is
n n n

a sequence of positive constants, then
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sup|P{V + W ^ x} - Φ(x)I ^ sup|P{V ^ x} - Φ(x)|

(4.6) w ?
+ P{ W |> a } -»- (2π) a .1

 n
i — n n

The next result gives an approximation of the true distribution of

random central order statistics.

LEMMA 4.3. Assume that (4.1) holds. Then V
 n
 > 1 ,

(4.7)

D = sup|P{X < x} - Φ(n
 2
(F(x) - p)σ

X
 )| < C,n k + C^ή

1
 + C

o
ε + δ

n ' n,v p ' 4 5 j n n
x ' n

 v

-2 -1/2 -1 -1
where Co is defined in Theorem 4.1, C. - 4σ + [1.19625 + 8(2π) ' e ]σ

J 4 p p

and C
5
 - 24σ"

2
 .

Remark 4.2. As a consequence of the fact that in Lemma 4.3 absolutely no

conditions are imposed on the distribution function F, the estimate (4.7) will

also play a key role in the study of the asymptotic law of X in nonregular
n > V

n
cases; (see Section 5).

Remark 4.3. The following example shows that for a given sequence {ε } such

that ε = 0(n
 2

) , the rate of convergence in (4.7) cannot be sharpened even

if the assumption (4.1) is maximally sharpened to

(4.1)* P { n V 2 ή - p| > ε n } = 0 .

Let {X } be a sequence of i .i .d. symmetric Bernoulli r.v.'s

with P{X. = 1} = P{X = -1} = V2 By setting v = [γl , it is easily seen that

(4.1) is satisfied with p
 β
 V2

 anc
* ε = n~" 2 Now, if n is even, we have

p{xn < 0} = P{F (o) > — } = P{ I u(-x ) > | }
' n i=l
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n
 V

and since Σ u(-X ) ~ B(n,V
2
 ) (binomial), with D

n
 as defined in

(4 7), we have

D > V
2
 P{B(n, V

2n
 z Δ

[<f)!Γ
d , say.

Then, using Stirling's formula, it is easily seen that

d ~ l/(2πn)
 2
as n ^ ~ . This shows that the assumption (4.1) in Lemma 4.3

n

with ε = 0(n 2 ) = <$ i
s
 the most reasonable assumption to obtain the

n n

"correct" Berry-Essέen type bound 0(n ~~ '2 ) .

Proof of Lemma 4.3. We estimate D
n
 by splitting it into two parts, namely

for x € I and for x € 1° , where I - {x: |F(X) - p| < σ2
/2} .

(i) Let x € I . Set

- F(x)]

Then,

PCX < X}
n

(4.8)

P{Sn(x) - n^(-J - n V2 (p -

In view of Lemma 4.2 and (4.8), we have

(4.9)

Dn,l ( x ) = lP{Xn,vn <
 x} "

sup |P{S (x) < t} - Φ(t)| a σ
 } +

 a
 /(2w)

1/
2
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for any sequence of positive constants {a }. Now, since x € I , using Lemma 4.1,

we get

(4 io) V F O O *ι
-

5

and by setting a = 1 5ε σ , we deduce from (4.1) and (4.9), that

(4.11) D ,(x) < sup |P{S (x) < t} - Φ(t)| + 1.5ε (2π)~ '
2
 σ"

1
 + δ

Applying the Berry-Esseen theorem (with the sharpest constant 0.7975

given by van Beeck (1972)) the first term in the right-hand side of (4.11) is

bounded by (0.7975)σ~
3
 E|U(X - X

χ
) - F(x)|

3
n~ ^

 a n d

since E|u(x - X
χ
) - F(x)|

3
 < σ L , , (4.11) implies

(4.12) D ,(x) < (0.7975)σ"}
 N
n~ ^ + i .5

ε
 (2π)" ̂

 σ
~

l
 + «$ .

n,l Fvx) n p n

Consequently, using (4.10) once again, we get from (4.12) that

(4.13) D Ax) < (1.19625)σ~
1
 n ^2 + 1.5ε (2π) ^ σ "

1
 + δ .

n, 1 p n p n

Consider now

D (x) = |Φ(n
l7
2(F(x) - p)σ J .) - Φ(n ̂  (F(x) -

The mean value theorem yields

(4.14) D
n > 2

(x) =n
V
2|F(x) - p| σ"

1
1

for some 0 < θ < 1 .
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Now Lemma 4.1 implies that

+ θ (
VF(x) - !>l > ! " I V

which together with (4.14) and another application of Lemma 4.1 gives

(4.15) D (x) < n
l7
2(F(x) - p)

2
(2π) ^ σ "

3
 exp {- ± n(F(x) - p)

2
σ

 2
} ,

n,^ p o p

Therefore, since

(4.16) sup t exp(-ta) = (ae) , a > 0

t>0

we obtain, from (4.15) that

(4.17) D
n 2

(x) < 8(2π)

Combining (4.17) and (4.13), we conclude that

(4.18) sup |P{X < x } - Φ(n ^ (
F
(

x
) _

 p
)

σ
 *

x€l n > Vn P

< {1.19625 + 8(2π)" f
2
e
~
l
}
σ
~
l
τΓ

 f
2 + i/5(2π)~

 f
2

σ
~

ι

ε
 + δ .

p p n n

(ii) Let x € I C. In order to estimate Φ(n 2(F(x) - p)σ" ) for x in I
c
 , we

shall use the well-known inequality:

(4.19) 1 - Φ(t) < (2π) ^t
 λ
 exp(-t

2
/ 2) < (2πe)~ ^

 t
"

2
 , t > 0.

_ 2

Set λ = σ (F(x) - p) (as in the proof of Lemma 4.1) and assume

that λ < - V2 Then, according to (4.19), we have

(4.20) Φ(n ^ (F(x)-p)σ~
1
) < 4(2πe)~ '

2
 σ^n"

1
.

P P
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On the other hand, note that

P{F
n
(x) > ^

f
 n

(4.21)
 +

P{F
n
(x) > - t ,

n
M l | ^ . p I >

β n
,

< P{F (x) > p - ε n ^ } + δ
n n n

where the last inequality follows from (4.1).

Observe that, in proving (4 7), we may without loss of generality

assume that

(4.22) n ^ σ
2
 > 4 ,
P

since if (4.22) does not hold, then the bound in (4.7) applies trivially. Now,

by Chebyshev's inequality, we have

(4.23) P{F
n
(x) > p - ε

n
n
 l/

2 } < σj
( χ )

(p - F(x) - ε
n
n

 l/
2 ) ~

2

n

To estimate the right-hand side of (4.23), we see that,

since λ < - V2 >

(4.24)
 σ

F(x)
σ 2

and

(4.25) σ
2
 + ε λ

 l
n ^2 >

 σ

2
 - 2ε n" ̂ 2 >

 σ

2
/

2p n p n p

where the last inequality of (4.25) follows from (4.22),



ADAPTIVE STATISTICAL PROCEDURES 465

Thus, using (4 .23)-(4 .25), we derive

(4.26) P{F (x) > p - ε n" ̂ 2 } < 24σ~
2
n~

1
 .

n n p

Since, for α,8 > 0 , |α - β| < max(α,$) , by combining (4.20), (4.21)

and (4.26), we find that for λ < - V
2
 ,

(4.27) |P{X < x} - Φ(n
:/
2(F(x) - p)σ"

1
)| < 24σ~"

2
n~

1
 + δ .1

 n,v P p n

Repeating the argument in (4.20) and (4.26) for λ > V
2
 > we see that

(4.27) continues to hold in this case also. (4.7) now follows by combining

(4.27) and (4.18). The proof follows.

Proof of Theorem 4.1. Our main result (4.2) follows readily from the estimate

(4.7) and the following two lemmas.

LEMMA 4.4. If |αx| < V
2
 , then

(4.28) |φ(x + αx
2
) - Φ(x)| < 8|α|(2π)" ^ e"

1

LEMMA. 4.5. Under the assumptions of Theorem 4.1, we have

( 4 . 2 9 )

E = s u p I Φ(n 2 ( F ( X ) - p ) σ ) - Φ(n 2 ( x - ξ ) F f ( ξ ) σ
n x€R p P P P

where

4Mσ ( 2 π ) ^ 2 e ~ 1 [ F f ( ξ ) ] 2 and C, = σ 2 ( 2 π e ) •2 K 2 [ F f ( ξ ) ] 2 .
P P 7 p o p

2
Proof of Lemma 4.4. By the mean value theorem, we have with y = x + αx ,

Φ(y) " Φ(x) - (2π)"
1 /
2

α
χ

2
 exp[-V

2
x

2
[l + θαx]

2
} , 0 < θ
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and, since |l+θαx| > 1 - |αx| > V
2
 > we obtain

|Φ(y) - Φ(x)| < (2π)~ '
2
 |α|x

2
 exp(- | χ

2
)

which, together with (4.16) yields (4.28).

Proof of Lemma 4.5. If |x - ξ | < K , then by using a second order Taylor

expansion, we may express

E
n
(x) = |Φ(n

l7
2(F(x) - p)σ

p

1
) - Φ(

n

X/
2 (x -

as

(4.30) E
n
(x) = |Φ(n

1/
2(χ-ξ

p
)F

ϊ
(ξ

p
)σ

p

1
 + V

2
 n ̂ 2 (χ-ξ

p
)

2
F"(ξ

p
+θ(x-ξ

p
))σ

p

1
)

- Φ(n
1 /
2(χ-ξ

p
)F

I
(ξ

p
)σ

p

1
)| , 0 < θ < 1 ,

and, by using Lemma 4.4, we obtain

(4.31) sup E
n
(x) < 4Mσ (2π)

 l/
2

e
"

l
[^^ )]

 2
 n

 l/
2 .

Assume on the other hand that |x - ξ I > K . If x < ξ - K , then,

p o p o

according to (4.19) we have

(4.32) Φ(n
1/
2(χ-ξ

p
)F'(ξ

p
)σ

p

1
) < σ

2
(2ττe)" ̂  K^

2
 [F

f
 (ξ

p
) ]~

2
τΓ

l
 .

Now, since x < ξ - K , by using (4.31) (with x = ξ - K ) together
p o p o

with (4.32) we deduce that

(4.33)

Φ(n /2(F(x)-p)σ""1) < 4Mσ (2ττ)~ ^ e ^ l F ' ί ξ )]" 2 n" 1 / 2+ σ2(2πe)" l/2 K~2[Ff(ξ )]"2np p p p o p

Thus, from (4.32) and (4.33), we obtain for x < ξ - K , that
P o
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(4.34) E
n
(x) < C

6
iΓ

1 /
2+ c

7
n

- 1

where C^ and Cy are defined in Lemma 4.5.

Finally, since a similar statement holds for x > ξ + K we deduce
P o

that

(4.35) sup E (x) < C.n~1/2+ C7n
 l .

I*ΛK
 n

Lemma 4.5 now follows immediately from (4.31) and (4.35).

Remark 4.4. Apropos the regularity conditions on F in Theorem 4.1, the

requirements concerning F" may be dropped. In many situations, F is not

sufficiently smooth at ξ and expansion (4.30) is inappropriate. Yet an

estimate like (4.29) may still be valid under modified assumptions.

Specifically, assume that F is differentiable at ξ , (F(ξ ) = p)

with F'(ξ ) > 0, and
P

(4.36) |F(ξ + h) - p - hF
f
(ξ )| = 0(h

2
) as h -• 0 .

Then, with E defined by (4.29), we may show that

(4.37) E < C
Q
n" ̂  + c

o
n

n c5 y

for some positive constants Cg and C^ to be specified below. To establish

(4.37), we write

α(x) = F(x) - p - (x - ξ )F'(ξ ) ,

and use (4.36) to infer that lim α(x) (x-ξ ) - 0
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Now pick δ > 0 such that if |x - ξ | < δ ,

|α(x)(x - ξ
p
) ^F'ίξp)]

 l
\ <V

2

and let K > 0 be such that if |x - ξ | < δ , then

Then, by putting together the estimates found by the method of Lemma

4.5 we note that (4.37) holds with

8K
χ
σ

p
(2π)

and

σ
2
 (2πe)

 X
δ
 2
[F'(ξ

p
)]

 2
 .

The details are omitted. We may also note that if F"(ξ ) exists, then

by using Young's form of Taylor's theorem (cf. Hardy (1952)) we have

h
2
 2

F(ξ + h) = p + hF'(ξ ) + 2ηr F"(ξ ) + o(h ) as h •• 0 ,
P P

 2
 P

and consequently (4.36) obtains. In any case, (4.36) implies (4.37) which

together with Lemma 4.3 guarantees that

_l/_
Δ < 0(n

 2
 ) + 0(ε ) + δ , as n * »

n n n

5. Limit Law and Berry-Essέen Rates for X in Nonregular Cases,
^

In studying the asymptotic law of X , of considerable interest are

n
those distributions for which F'(ξ ) = 0 and are not covered by Theorem 3.1.

P



ADAPTIVE STATISTICAL PROCEDURES 469

Our next results are tailored to just these cases. In theorem 5.1 we shall

assume that F(ξ ) = p and that
P

(5.1) lim [F(ξ +h) - F(ξ )]h
 P
 = M > 0 , for some odd integer p > 1 .

h+0
 P P

Condition (5.1) is considerably less restrictive than its formulation

makes it appear. The generality it confers is discussed by Chanda (1975) who

considered nonrandom central order statistics X , and showed that under (5.1),

- v
 n> n

if k /n = p + o(n
 2
 ) as n •> », then

n

(5.2) Mn
1 /
2(X

n k
 - ξ )

p
 J U N(O,σJ) .

»
 n
 P P

In this section we generalize (5.2) for X and then study the
n
'

V
n

accuracy of the corresponding normal approximation. To the best of our

knowledge the Berry-Essέen type problem has been investigated even for the non-

random case.

THEOREM 5.1. (Central Limit Theorem) If

1/ v p

(5.3) n'2(-£ - p) —• 0 ,

and (5.1) is satisfied, then

(5.4) Mn
1 /
2(X

n > v
 - ξ

p
)

p
 -£->

 N
(O,σJ) .

Proof: Define

(5.5) Γn(x) - Φ(n72(F(x) - p)σp

1) - ΦOftft ( x - ξ p ) P σ p

1 )

and

(5.6) α(x) = (F(x) - p)(x -
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Then, since α(x) •> M > 0 as x ^ ξ , given 0 < ε < V
2
 ,

there exists η > 0 , such that if |x - ξ | < η ,

(5.7) |α(x)M

First we estimate sup |Γ (x)| , and to this end, we distinguish the

x € H n

following cases.

Case (i): |x - ξ | < η Using the mean value theorem, we obtain

"
1 /
2

σ
"

1
n

1 /
2(χ - ξ )

P
(α(x)-M)exp{- V

2
 M

2
σ~

2
n(x-ξ )

2 p
 [ l+θ(α(x)M"

1
- I ]

2
Γ

n
(x) = (2π)"

1 /
2

σ
"

1
n

1 /
2(χ - ξ )

P
(α(x)-M)exp{- V

2
 M

2
σ~

2
n(x-ξ )

2 p
 [ l+θ(α(x)M"

1
- I]

2
}

for some 0 < θ < 1 , and proceeding as in the derivation of (4.31), we obtain

2 -Vo
with the help of the inequality t exρ(-t ) < (2e)

 2
 , t > 0 that,

for |x - ξ I < η ,

(5.8) |Γ
n
(

Case (ii); |x - ξ | > η . Assume that x < ξ - η . Then, by using (4.19), we

deduce

(5.9)

σ
2
(2πeΓ

On the other hand, defining x = ξ - η , we have

Φ(n ^ (F(x)-p)σ
 X
) < Φ(n ̂  (F(X ) - p)σ *

|Γ
n
(x

1
)|

which together with (5.8) (for x = x.) and (5.9) implies
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(5.10) | Γ n ( x ) | < 2 V 2 ( π e ) " 1 / 2 ε + σ 2 (2πeΓ V2 M~2τf2 V 1 .

Thus, putting together the estimates obtained so far, we have

(5.11) sup |Γ (x) | < 2 /2(πe)~ 1 /2ε + σ2 ( 2 π e ) " 1 / 2 M " V 2 p n " 1

x€lR n p

Now, condition (5.3) implies that

P{n ^ I ~n " P I > ε} < ε , Vn > n (ε).

Therefore, with D
n
 and C

±
 (i = 1,2,3) as defined in Lemma 4.3, the

technique leading to (4.7) may be used to prove that for n > n (ε) ,

o

(5.12) D n < C 4 n - V 2 + c 5 n - l + ( ^ + 1 ) ε

Now, combining (5.11) and (5.12) we obtain (via the

inversion y = Mn 2 (
x
 - ξ ) σ which is in order since p is an odd

P P

integer > 1) that

(5.13) sup |P{Mn >2 (\ v -ξ ) P < yσ } - Φ(y) | < C4n" ^ + c ^ n " 1 + C n ε
y€ 1R * n

where

C
1 Λ
 - C

c
 + σ

2
 (2πe) ^2 M~

2
η

 2 p
 and C,, - C

Q
 + 1 + 2 ̂ 2 (πe) ^2 .

iυ J p 11 j

(5.13) guarantees (5.4) and the theorem is proved.

Remark 5.1. Note that if (5.1) holds with p = 1 , then M = F
f
(ξ ) and in thisp

case, by the preceding proof, one gets an alternative proof of (3.1) when c = 0.

To study the speed of convergence apropos to the preceding theorem we

shall need somewhat stronger assumptions than those imposed in Theorem 5.1.

Precisely, we assume (4.1) and
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(5.14) F(ξ + h) - F(ξ ) - Mh
P
 + 0(h

2 p
) as h -• 0

for some M > 0 and odd integer p > 1

Then, we have

THEOREM 5.2. (Rates of Convergence in the CLT) Under (4.1) and (5.14)

( 5 . 1 5 )

sup|p{Mn
1/
2(X

n
 - ξ )

p
 < xσ } - Φ(x) | < C n" ̂  +

x ' n
 y F

where

C 1 0 = C, + 8σ K (2ττ) f2 e V 2 and C 1 O = C. + σ 2 ( 2 π e ) 72 η " 2 p M 2

1Z 4 p O U D p

Proof: (outline) Let

3(x) = F(x) - F(ξ
p
) - M(x - ξ

p
)

p
.

In view of (5.14), select η > 0 and K > 0 such that

(5.16) |B(x)| < K
2
(x - ξ

p
)

2 p
 .

Then, choose 0 < η < η sufficiently small, so that

(5.17) η
P
 < M(2K

2
)"*

1
 .

To estimate sup |Γ (x)| (with Γ (x) defined by (5.5)), we proceed as

x

in the proof of the preceding theorem and break ]R into two parts for which we

have different arguments.
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For |x - ξ I < η , by the mean value theorem, we get

Γ
n
(x) = Φ C M n ^ U - ξ p A p

1
* n

/
2e(x)σp

1
) - ΦίMn^ (x - ξ

p
)

p
 σ"

1
)

= n
l/
2 6(x) (2π)"

1/
2σp

1
 exp {- V

2
 M

2
n(x-ξ

p
)

2 p
 σ~

2
 [l+θβ(x)M"

1
(x-ξ )"

p
]

2

for some 0 < θ < 1 .

Now, from (5.16) and (5.17), we obtain

θβ(x)M"
1
(x-ξ

p
)-

p
| > 1 - M-

1
|β(x)(x-ξ

p
)-

p
| > 1 - K ^ l x - ξ p l P

1 - K.M η > V? ,

which together with (5.18) entails (via (4.16))

(5.19) |Γ (x)| < 8K
o
σ (2π)"

1 /
2

e
 \

 2
n

1
 n ' I p

On the other hand, if |x - ξ | > η , proceeding as in the derivation

of (5.10), we obtain

(5.20) |Γ (x)| < 8K
o
σ (2π)"

 X/
2 e" W ^2 + σ

2
 (2πe)1

 n ' 2. p p

The proof of the theorem follows by combining the estimates (5.19) and

(5.20) with Lemma 4.3 (again via the inversion y = Mn
 2
 (x-ξ )

p
σ~* ) .

Remark 5.2. Regarding the variation of F at ξ in nonregular cases, we may

consider a condition more general than (5.1), namely

(5.1)* lim |F(ξ + h) - F(ξ )||h|"
P
 = M > 0

h>0
 P P

for some p > 0 (not necessarily an integer) .
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Then, using arguments similar to those in the proof of Theorem 5.1, it

can be shown (details omitted) that under (5.1 ) and (5.3),

(5.21) Mn
V
2|X

n
 -ξ i V

1
 X |N(O,1)| .

' n
 F

This result again is a generalization of a result of Chanda (1975).

Finally, we note that under stronger assumptions, an error bound of

the approximation (5.21) can also be obtained. To avoid repetition, we only

state an analog of Theorem 5.2. Assume that (4.1) holds and

(5.14)* |F(ξ + h) - F(ξ )||h|~
p
 - M + 0(|h|

p
) as h + 0

for some M > 0 and p > 0. Then

(5.22) suplPίMn
1
^ |χ - ξ |

p
 < xσ } - Φ*(x)| - 0(i

p
 < xσ } Φ*(x)| - 0(iΓ ^χ

x
 n > V

n

where Φ denotes the distribution function of a |N(O,1)| random variable.
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