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A Monte Carlo optimization technique called
"simulated annealing" is a descent algorithm modified by
random ascent moves in order to escape local minima
which are not global minima. The level of randomization
is determined by a control parameter T, called temper-
ature, which tends to zero according to a deterministic
"cooling schedule" We give a simple necessary and
sufficient condition on the cooling schedule for the
algorithm state to converge in probability to the set of
globally minimum cost states In the special case that
the cooling schedule has parametric form T^ » c/log(l+k),
the condition for convergence is that c be greater than
or equal to the depth, suitably defined, of the deepest
local minimum which is not a global minimum state.

"Annealing" in the physics literature refers to the process of slowly

cooling a substance in order to reach globally minimum energy states. Cerny

(1982) and Kirkpatrick, Gelatt and Vecchi (1983) suggested simulating such a

process in order to solve large-scale minimization problems on a computer

Randomization is introduced using the classical method of Metropolis et al.

(1953) for generating sample realizations of random fields. See Geman and Geman

(1984), Kirkpatrick et al. (1983) and the references therein for more background

information.
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Suppose that a function V defined on some finite set S^ is to be

minimized. We assume that for each state s in S_ that there is a set N(s), with

N(s) c ĵ , which we call the set of neighbors of s. Typically the sets N(s) are

small subsets of S^. In addition, we suppose that there is a transition

probability matrix R over S_ such that R(s,s
τ
) > 0 if and only if s

1
 is in N(s).

Let T,,T2> be a sequence (called a temperature schedule) of

strictly positive numbers such that

(1)

and

(2) lim T,

Consider the following sequential algorithm for constructing a

sequence of states XQJXJ,... . An initial state XQ is chosen. Given that

X
k
 • s, a potential next state Y is chosen from N(s) with probability

distribution

P[Y=s
f
|x-β] = R(s,s

ι
).

Then we set

X
k*

Y with probability

\
otherwise

where

This specifies how the sequence X j ^ , . . . is chosen. Let S? denote the set of

states in S at which V attains its minimum value. We are interested in
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determining whether or not

lim PtXĵ . € S*] - 1.

We say that i is reachable at height E from state j if there is a

sequence of states J-IQ,!^, . ..,i »i such that

R(ik,ik+1) > 0 for 0 < k < p

and

V(i, ) < E for 0 < k < p.

We will assume that (j^,V,R) has the following two properties:

Property SI (strong lrreducibility): Given any two states i and j is

reachable (at some height) from j .

Property WR (weak reversibility): For any real number E and any two states

i and j, i is reachable at height E from j if and only if j is reachable at

height E from i.

State s is said to be a local minimum if no state s1 with V(s') < V(s)

is reachable from s at height V(s). We define the depth of a local minimum s to

be plus infinity if s is a global minimum. Otherwise, the depth of s is the

smallest number E, E > 0, such that some state sf with V(sf) < V(s) can be

reached from s at height V(s) + E. These definitions are illustrated in Fig 1.
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Fig. 1. The graph pictured arises from a triplet (j^,V,R) . Nodes correspond to

elements in j^. V(s) for s in S_ is indicated by the scale at left. Arcs in the

graph represent ordered pairs of states (s,s
f
) such that R(s,s

f
) > 0.

Properties SI and WR are satisfied for the example shown.

States Sj, S2 and s^ are global minimum. States s^, s^ and Sη are

local minima of depths 5.0, 6.0 and 2.0 respectively. State s^ is not a local

minima. State S£ is reachable at height 1.0 from s^ and state s^ is reachable

at height 12.0 from s-.
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We define a cup for (j[,V,R) to be a set C of states such that for some

number E, the following is true: For every s in C,

C - {sf: sf can be reached at height E from s}

Given a cup C, define

V(C) = min{V(s): s 6 C}

and

V(C) - min{V(s): s £ C and R(sf,s) > 0 for some s1 in C} .

We call the subset B of C defined by

B - {s € C: V(s) = V(C)}

the bottom of the cup, and we call the number d(C) defined by

d(C) - V(C) - V(C)

the depth of the cup. These definitions are illustrated in Fig. 2. Note that a

local minimum of depth d is an element of the bottom of some cup of depth d.

Our main result is the following theorem.
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Fig. 2. A cup C is enclosed with dashed lines. _V(C) - 5, V(C) - 12, and

d(C) = 7 and the bottom B of C contains two states.

THEOREM 1. Assume that SI, WR, (1) and (2) hold,

(a) For any state that is not a local minimum,

lim P[X, - s] - 0.

(b) Suppose that the set of states B is the bottom of a cup of depth d and

that the states in B are local minima of depth d. Then
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(3) M m P ^ € B] = 0

if and only if

00

(4) Σ exp(-d*/T
k
) = +oo .

Remarks. If T^ assumes the parametric form

( 5 )
 \

ϋhen condition (4), and hence also condition (3), is true if and only if c > d*.

This result is consistent with the work of Geman and Geman (1984). They

considered a model which is nearly a special case of the model used here, and

they proved that condition (3) holds if (T^) satisfies equation (5) for a

sufficiently large constant c. They gave a value of c which is sufficient for

convergence. Their value is substantially larger, although somewhat related, to

d*.

Gidas (1984) also addressed the convergence properties of the

annealing algorithm. The Markov chains that he considered are more general than

those that we consider. He required little more than the condition that the

one-step transition probability matrices P^ converge as k tends to infinity. In

the special case of annealing processes, he gave a value of c (actually, c here

corresponds to 1/CQ in Gidas
1
 notation) which he conjectured is the smallest

such that Eq. (5) leads to Eq. (3). His constant is different from the constant

d* defined here. Gidas also considered interesting convergence questions for

functionals of the Markov chains.

Geman and Hwang (1984) showed that in the analogous case of non-

stationary diffusion processes that a schedule of the form (5) is sufficient for

convergence to the global minima if c is no smaller than the diference between

the maximum and minimum value of V. We conjecture that the smallest constant is

given by the obvious analogue of the constant d* that we defined here
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Sketch of the proof: It is best to consider an example to get an idea

of what is involved. Consider (j>,V,R) giving rise to Fig. 3. Note that d* « 3.

(b)

FP-8650

Fig. 3. Diagram (a) arises from a triple (j^,V,R) and diagram (b) is obtained by

"filling-in" the cup {s,}

Now suppose that (T
k
) satisfies (1), (2),

(6)

and

(7)

Σ exp(-2/T

k=l *

Σ exp(-3/T
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Since s^ is reachable at height Vίs^+2 and since (6) is assumed, one might

(correctly) guess that if the process starts at Sj then it will eventually reach

s^ with probability one. By similar reasoning, one might then (incorrectly)

guess that the process must eventually reach Sy However, by Theorem 1 and (7),

lim P[3L - s ] * 1.

What happens is that if k is large so that T^ is small and if the process is in

state s^ at time k, then it is much more likely that the process hits state Sj

before it hits (if ever) state s^. We think of the cup consisting of state s^

alone as being "filled-in" (see Fig. 3), so that to get from s± to s
6
, the

process has to climb up three levels. Roughly speaking, the small depression in

V at S/ does not allow the process to always make it up three levels by going up

two at a time and "resting" in between. This would not be true if condition SR

was violated by, for example, setting the probability of jumping from s^ to s^

to zero.

A cornerstone of our proof of Theorem 1 given in Hajek (1985) is the

lemma stated beow, which allows us to "fill-in" cups in a precise sense. Let

EQ,E^, •• ,E^ denote the possible values of V(s) as s varies over j^, ordered so

that E Q < E, < ... < Ej£. By an embedding argument, we can suppose without loss

of generality that (j^,V,R) has the following property:

Continuous Increase Property: Given any two states s and s
1
, if V(s) = E^

and V(s
f
) = E. and j > i+2, then R(s,s

f
) = 0.

The (j^,V,R) giving rise to Fig. 1 does not have the continuous increase

property, while the one giving rise to Fig. 2 does.

Suppose that C is a cup, let F denote the set of states in the

complement of C which can be reached in one jump from states in C, and let d

denote the depth of C

LEMMA (How cups runneth over): There exists an ε > 0, depending only on (j^,V,R)

and C, so that for any time t > 0, any i
Q
 in C, any j

Q
 in F, and any T
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satisfying (1), the following conditions hold:

(a) (Exponential expulsion rate)

v
r

P[not exit C during [t
n
,t +r]|x = i ] < - exp(-e Σ exp(-d/T.))
0 0 t

Q
 0

 j = t
^ j

for all r > 0.

(b) (Quasi-uniform exit distribution)

(3.1) P[never exit C or hit j
Q
 upon first jump out of C|X

t
 = i ] > e.

Remark. It is useful to interpret the integral in the exponent on the

right hand side of the inequality in part (a) to be the time escaped, as

measured on the "d-th time scale", between actual times tQ and tp+r Then part

(a) means that the time required to exit from a cup of depth d is exponentially

bounded on the d-th time scale.

The lemma can be proved essentially by induction on the depth of the

cup C
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