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The problem of estimating optimally a linear
combination of means from populations with different and
unknown variances is considered. An asymptotically
pointwise optimal solution of sequential allocation of
the observations is provided.

1. Introduction.

The problem of interest is that of estimating a linear combination of

means from several populations. The estimator is the linear combination of the

sample means and the question addressed is how to allocate a fixed number of

allowed observations between the different populations.

The particular context which motivated this work was Monte Carlo

quadrature, where efficiency can be increased by partitioning the integration

region and then sampling with different densities in different regions. The

cost of each evaluation of the integrand leads to a constraint on the total
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number of samples. However, the discussion is of more general relevance.

To determine the allocation we will adopt minimum variance as a

criterion. When the variances of the populations are known this problem has a

well-known solution. When the variances are not known the problem becomes

somewhat more complicated. In our framework we allow sequential allocation.

The solution to the problem is an extension of work by Robbins, Simons and Starr

(1967). In Section 2 we give an allocation rule that yields the optimal rule

when the variances are known and is asymptotically pointwise optimal if the

variances are not known and we use consistent estimators of the variances for

each population.

In Section 3 we construct the linear empirical Bayes estimators for

estimating the variances simultaneously given by Robbins (1982). These

estimators are consistent and yield somewhat better results for moderate number

of observations per population, especially for populations where the fourth

moment is very large or does not exist. In Section 4 we describe three Monte

Carlo experiments which demonstrate the operating characteristic of our

procedure, we compare our procedure with the same procedure using the classical

estimators for the variances, and with one for known variances.

The problem of sequential allocation was addressed in a technical

report by Halton and Zeidman (1971) from the point of view of achieving a given

required accuracy at a certain confidence level In their procedure the number

of observations required is a random variable

In our paper the number of observations are predetermined and the

problem is to minimize the mean square error of the estimator. Here the

accuracy achieved is a random variable

2. The allocation rule.

We start by defining our problem in mathematical terms .

Let X.J., i=l,2,' #, m j =1,2, ' * \ n± be independent random variables,

where X.., j-l,#", n^, are identically distributed with unknown distribution
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F
i
. We assume that F

i
 is non-degenerate and strictly increasing on its support,

that E(X..) are finite and that

-2
 Π i

 4
n. Σ X. . -• 0 as n -• « for i=l,2,*'

#
,ra almost surely.

Let E[X
i
.] = M

±
 and V(X

±
.) = σ^ .

m

We are interested in estimating μ = Σ c y where c^, c
2
,

# # #
,

c
m
 are known constants. Without loss of generality we take the c^

f
s to be non

negative. (If c^ is negative then in all formulas relating to variances and

standard derivations we use /c. = |c.| ) Let NQ denote the number of

observations we are permitted to use. That is,

m

(2.1) Σ n, < N
n
 .

If we use as our estimator:

i
(2.2) y - Σ c X , where X - — Σ X

i=l
 X 1 1 n

i j-1
 1 J

then we have

2 2
m σ c

(2.3) E [y] = y, and Var (y) = Σ — —

Minimising Var (y) with respect to the r^ subject to (2.1), we obtain

(2.4) Var(y) >ψ— (Σ σ. c . )
2
.

m
Defining

 Θ = σ c
/ (

Σ σ
. c . ) ,

 t h e
 condition for the equality in (2.4) to be

satisfied is n. = Θ.N . This cannot be satisfied for integer n^ in general, but

we can approximate this most efficient allocation when N » m as in Lemma 2.1.
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LEMMA 2.1. Let N = N
n
 - m and define n

4
 = min{n,. : n̂ . > Θ_,N}

Then

m
 *

(2.5) N < Σ n < N

and for this allocation

m m

Σ σ O ( Σ σ c . )
Z

4 = 1
 Λ

 -1=14=1 1=

(2.6) - ^ < var(y) < ~-

Proof: By definition

n* > 0
±
N and n -1 <

Hence

Σ n > N Σ Θ = N and Σ n - m < N Σ Θ . = N ,

i=l i=l i=l i=l
 X

which yields (2.5).

To prove (2.6) we note that

m
 2

2 2 2 2 ( Σ σ.c.)
m σ c m σ c i i

y

Var(μ) = Σ

n*

The other inequality in (2.6) is simply the bound (2.4).

For m = N
Q
 - N « N

Q
, (2.6) shows that the allocation

n
 approaches the optimal allocation. It is not easily achieved, however, since

2
it requires prior knowledge of all the variances σ. , whereas in most problems

the variances are not known initially. To overcome this difficulty we propose a

sequential allocation rule which requires only consistent estimators of the
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variances at each stage and which approaches the same result Let k be a

positive integer such that km « N The allocation rule is then:

"At the first stage take k observations from each population,

estimate σ. by σ at each subsequent stage w take one observation from each

population for which

n
v w y

 < θ min { Σ n.(W), N}

i-1
 X

where θ = σ c /( Σ c σ.):

j = l
 J J

m (w)
continue as long as

 Σ
i_i

n
4 < N + m. If the constraint on the number of

observations does not permit taking all the observations required by the above

rule, then take as many as possible according to the order 1=1,2,*
##
,m."

THEOREM 2.1: Assume σ to be consistent and positive estimators of

σ
±
. Let V* - I ( ^ i V i.)

2 a n d l e t V
N
 = E

N
[ (
^ "

 μ ) 2 ] w h e r e

is obtained by the above rule. Then,

(2.7) lim - S - - 1

V

Convergence and limits are taken to be almost sure unless otherwise stated.

Proof: We will proceed by proving 4 lemmas

is

LEMMA 2.2. Let T. denote the resulting number of observations allocated to

population i by the allocation rule. Then

(2.8) Ί
±
 > Nθ

±
,

and
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Λ
2 2

m σ c
 Λ

(2.9) Σ
 1

 / < ± (Σ σ.c.Γ
i-1 T* N i i

Proof It is sufficient to show (2.8) since (2.9) follows directly. Suppose

(2.8) is not correct for some i: without loss of generality we assume

(2.10) T > Nθ
i
 i = 1,2, ...s

(2.11) T
±
 < N6

±
 i = s+1, ...m

Let w.̂  be the stage at which the final allocation was made to

population i: the allocation rule implying

* -
 m

(2.12) T - 1 < θ . min { Σ n.(w ), N} < θ . N
j = l

 J

Using (2.11) for i=l,2,.. s, and (2.10) for i=s+l,...m and summing, we obtain

m
 *

(2.13) Σ T - s < N
i l

and hence

m
 *
Σ T < N+s < N

1 U

Thus, since the allowed number of observations is not exhausted, the stopping

rule implies that

* -
 r

 m
 *

(2.14) T > θ min { Σ T. , N} i=l,2,...m.
1 1 J

I f
 N < Σ T* then this contradicts (2.11), otherwise,

j i
 i f

* -
 n

 *
(2.15) T > θ. Σ T.

X
 j-1

 J
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and summing over i we again get a contradiction. Thus the assumption that (2 8)

is false always leads to a contradiction, which proves the lemma.

LEMMA 2.3. Let X., j=l,2,... be an infinite sequence of i .i .d random variables

2 2

with E[X.] < °°, E[X.] = μ and V(X. ) = σ . For each stopping time T we define

S - Σ X X = S / T
T
 i-1

 X L L

It follows that

E[S
T
] - μE[T], E[(S

χ
- Tμ)

2
] = σ

2
E[T]

Let Tj, T2> , be a sequence of stopping times such that

T
n
 T

n
— < d, — —• c as n->-°°. Then,
n n '

(2.16) lim
n
 T

n
E[(X

τ
 - μ)

2
] = a

2
.

Proof of lemma 2.3: We have

- u)
2
]

we note that

but,

T E[T ]
n n

(nc)
2
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hence (2.16) holds.

LEMMA 2.4. If σ
i n
 > 0 and lim

n
 σ

i n
 - σ , for i=l,2,***, n, then for T

± N

defined by our rule T -> « as N + » and σ —• σ .

Σ c σ

i=l
Proof of Lemma 2.4: As N -• °°, —• 0 . So for any fixed n.

N l

m

there is N large enough so that — >
 J

 . This will force us to take at

least one more observation from population i. Hence

T
iN * °°

 w h i c h
 y

i e l d s σ

i τ
 ~*

 σ

±

LEMMA 2.5. For the T^ as defined by the above rule and for σ

consistent sequences of positive estimators of σ , we have

linu, - ~ - - - ^ = — for i-1,2, ••*, m.

i " N m

Proof of lemma 2.5. By lemma 2.2 we have at the last stage of sampling, for

large enough N,

and

T.

Σ σ
iτ

 c
i

T
±
 -1

hence

σ
iτ

 c
i T

 σ
iτ

 c
i

i _^i_ ± 1

r
m
 Λ

 N m
 Λ

 N
Σ
j=l

 σ
j°i Σ σ c

i=i
 J J

as N •>•«', we get the desired result.
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Now we proceed with the proof of the theorem. We have:

Λ
 E[(Σ c.X.

τ
 - Σ c.μ.)

2
] Σ CJE[(X - μ )

2
]

E[(μ-μ)Ί
 =
 i-1

 1 l T
i i=l

 X 1

 =
 i-1

1 l T
j

 1

V
ί (^c

Λ
)

2
/ N (^CΛ)

2

Σ c* T
±
E[(X

1T
 - M

±
Γ] -f-

(Σ c σ . )
2

and taking limits using lemmas 2.3, 2.4, and 2.5 we get (2.16).

3. Estimating many variances simultaneously. We use the notation and set up

of Section 2. The classical estimators of the variances are

Σ (X - X )
2

(3.1) sf =-
±z1
-,

in
 " Γ

1

These estimators are unbiased and consistent and under the assumption that F.

2
are strictly increasing on their support the S

 f
s are strictly positive for all

n.̂  with probability one.

One can therefore use these estimators in the rule of Section 2

However, when we deal with a problem where the fourth moment is large or

infinite the S. tend to be somewhat erratic for moderate sample sizes. From M-C

experiments we learn that the linear empirical Bayes (l.e.B.) estimators behave

somewhat better and we suggest their usage.

We follow Robbins (1982).

Let

{F} be a collection of distribution functions,

{F
±
: 1-1,2,... m} be i .i .d . from {F},

ίX :j-l,2,...n } be i .i .d. from F. ,
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4
and assume E[X ] < ».

Define

(3.3)

It follows that

EtxjFj - M
±
 , E[sJ|F

±
] = σj

(3.4)

and hence that

(3.5)

2
f"

 E [ D
i

] +
 n (I n

n i n (n -1;

Consider the linear regression (best in terms of squared error) of

2 2
σ^ on S^:

Cov(sJ,σJ)
(3.6) t(sf) - 5—^- (Sf - E[S.

Z
]) + E[σ.

Z
] .

i
 V ( S

2
}
 i i i

We note that {σ : 1 = l,2,...m} and {D.: i=l,2,...m} are sequences of i i d.

2
random variables, whereas {s : i=l,2,...m}

 a r e n o t
 i i d , since they depend on

n
i #
 Using (3.4), (3.5) and the fact that
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we can remove any e x p l i c i t averaging involv ing S. and then we can drop the

subscript i to write

V ( σ 2 ) , E[D i ] = E[D], E[σ*] - E [ σ * ] , E[σ 2 ] = E [ σ 2 ] ,

2

(3.7) t(S2) ^ = ϊi2J τ - ( S ? - E ( σ 2 ) ] + E [ σ 2 ] .
1 ^ ^ ^ E l σ ]

The parameters in equation (3.7) are not known but we may estimate them in a

consistent manner as m •> °°. This will enable us to use equations (3.7) for

2
linear empirical Bayes (l.e B.) estimation of the σ. .

For this estimation we deal with the moments

| F i ]

In particular,

2
 n

l
( M
12 "

 H
i

V ^ ^ 1 2 1 ; 3 n 1 + 3)
( ' (^-1) - 2) ( n ^ 3)

D
i

+ (n
2
 +

(n
±
 - 2) (

ni
-3

Λ
 2

 Λ
4
 Λ

Estimates σ̂^ , σ , D are obtained by estimating the M. in (3.8) as

the sample moments

1
 n

i
M, - — Σ .

 J

ip n
±
 j =

2 4
Then E[σ ], E[σ ], E[D] are estimated as

2 l ? l ? —?
E[σ

Z
] = - Σ σ

Z
(= - Σ S = S

l
)

m
 i = s l

 i m
i = 1

 i
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E[σ
4
] ml Σ σ

h

m
 1=1

 i

. m
 A

(3.9) E[D] = - Σ D,
m
 1=1

 1

O = E[σ ]

A series of Monte Carlo calculations was carried out to investigate

the effectiveness of the proposed allocation scheme. For each calculation a set

of m populations was chosen and an estimation procedure specified. Then r

independent estimation runs were made each involving NQ samples in all drawn

from the combined populations according to the particular estimation scheme

2
The mean μ and variance σ were computed theoretically and the r estimates

μ, σ were recorded In order to compare the different cases we work with the

normalized parameters

2
 Λ

2 2
x = (μ - μ)/σ; y * (μ - μ)/σ; z = σ /σ

For each case the following quantities were computed:

x - (Σx)/r

Ί
1
 - (Σz

2
)/r

I
2
 - Σ(x-7)

2
/(r-l)

x
+
 = Max|x|

y
+
 = Max|y|

where the sums and maxima are taken over the r independent runs,

Three population sets were used:
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(a) Normal: m = 10, F± - N ( i , 4 i 2 ) ; μ = 55, σ2 = 24.2

(b) Polynomial: m = 10, F± - G( i ) ; μ - 82.5, σ 2 - 4.54

(c) Mixed: m - 20, F±

N(i ,4 i ) , 1 < i < 5

G(i ) , 6 < i < 10

V2N(i,|) +l/2

GΦ> 20

μ - 150.5

σ2 - 32.09

where G(a) is the distribution with density

P(x)

3a
3
/χ

4
 x > a

0 x < a

For each population set five different estimation procedures were tried

(1) Uniform: (N/m points drawn from each population)

(2a) Sequential: n
Q
 = 5, m^ = 1; classical variance estimates

(2b) Sequential: n
Q
 = 5, m^ - 10; classical variance estimates

(3a) Sequential: n
Q
 « 5, m^ • 1 l.e.B. variance estimates

(3b) Sequential: n
Q
 = 5, m^ » 10 l.e.B. variance estimates

For uniform allocation the results did not depend on the method of

variance estimations .

For all cases we took r = 250, N
Q
 =• 500. The value of 3C should be 0

with a standard deviation of r"~ '2 , in this case .07 The robustness of the

estimate is indicated by x
+
 and y

+
, the latter being appropriate in

circumstances where good error estimates are as important as a good estimate of

the mean.
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TABLE I

Results of Monte Carlo Studies

217

X

Δ

Normal z

x
+

y+

X

Δ

Polynomial z

x
+

y+

X

Δ

Mixed z

x
+

Uniform

Allocation

.041

1.07

1.12

2.8

1.47

.07

1.32

1.40

12.4

2.95

.49

1.14

1.15

4.

1.79

Sequential Allocation:

Classical '

variances

.085

.93

.99

2.50

1.49

-.96

.88

.87

5.07

4.95

-.11

1.47

.96

4.2

3.4

( . 081)

*

*

(2.52)

(1.48)

(-.78)

( .91)

( .78)

(3.6)

(5. )

( .002)

(1.54)

(1.01)

*

(3.9)

n-1 (

l.e

ii-lO)

.B.

variances

.073

.97

1.03

3.5

2.27

-.38

.89

1.01

2.9

3.5

.13

1.11

1.07

3.5

1.92

(.01)

(1.08)

(1.02)

(2.99)

(1.49)

(-.22)

( .95)

( .99)

(2.7)

(3.7 )

( .25)

(1.10)

(1.08)

(3.35)

(2.2)

*n
ι
 = 10 identical to n

1
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The sequential allocation method using l.e.B. variance estimates is

seen to be the most successful strategy. For the normal case there is no strong

distinction between the different methods. For the polynomial case, in which no

fourth moment exists (making conventional Monte Carlo error estimates suspect),

the uniform allocation gives an unbiased result for x, but with undesirably

large variances and large fluctuations. The sequential scheme with classical

variance estimates introduces a severe bias in x, unreasonably low variances,

and extremely poor error estimates as indicated by the large value of y+. The

l.e.B. procedures show significantly less bias, much better variances and

estimates and quite acceptable values of x+ and y+.

For the mixed case the uniform allocation gives a biased result and

the classical variance estimates again lead to misleading small error estimates,

and large fluctuations.

In executing the algorithm, using n^ = 1, (i.e. recomputing variances

at each step), seemed to have no particular advantage over using n^ = 10.
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