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The envelope results of Hannan and Huang (1972a)
are generalized to arbitrary bounded risk components
with simplified proofs For equivariant "delete
bootstrap" procedures, the excess compound risk over the
simple envelope is bounded in terms of the L, error of
estimation thus establishing a large class of asymptotic
solutions to the compound decision problem with
restricted risk component. This class includes the
compound procedures which are Bayes versus certain
symmetric priors (cf. Gilliland, Hannan and Huang,
1976) . Asymptotic solutions and Bayes procedures in the
empirical Bayes problem follow from those of the
compound decision problem.

1 A finite state, restricted compound decision problem.

Consider a decision problem with states P € P - {F
Λ
,F ,...,F }, where
U 1 m

the F
i
 are distinct probability measures on (X,B). Let the risk set S of the

decision problem be a bounded subset of [0,°°) and let s - (sQ,Sp .. ,s
m
)

denote a generic point of S.

Consider a compound decision problem involving N independent
vr

 v

repetitions of the above component structure. For _x € X let x denote x_

with the α-th component deleted and for P =» x.P with P £ p , let P denote P

with the α-th factor deleted, α=l,2, ..,N. Consider the class S_ of the compound

rules ŝ  = (s^ ,j^ > >£N)
 w h e r e f o Γ e a c h α

> 1^
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130 GILLILAND AND HANNAN

B
N-1
-measurable mapping into S. Here s .(x ) denotes the conditional on x risk

incurred by s in component α when P - F. The (unconditional) component α risk

— (X X

of s at P with P » F,, is
α i

The compound risk of s at P is defined to be

N

(2) R(£>s_) - Σ R (P,β).

For simplicity Jl is taken as the sum rather than the usual average.

When S is the largest possible risk set for a given component action

space and loss function, the above problem is the usual compound problem with S_

being the largest class of compound decision rules. The above problem provides

a setting in which there is control over the component risk behavior of compound

rules by choice of S This will be discussed more fully in Section 5

The compound problem is invariant under the group of N! permutations

of coordinates. A compound rule _s_€^ is equivariant if and only if s is

constant with respect to α and a symmetric function of its argument x Let

N_ - ( N Q J N ^ ...,N
m
) where N - * *

α
l

p

α

 = F
i*

 a n d l e t N
ii "

 N
i
 i f

 ^ *
 i j

N
ji

 = N
j "

 1 i f
 ^ = i The risk of equivariant s_ at _P_ is a function of ?_

through N_ and by (1) and (2) is given by

m m N

(3) R(N>s) = Σ N /s_<K x F.
J
 ).

i=0 j=0
 J

With £ denoting the class of all equivariant rules in j[, the equivariant

envelope is defined by the infimum

(4) ψ(N) = Λ RCN,sJ.
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A rule _s_€_E is said to be simple if s^ is a constant function; when

s we write j3_ = sN. Specializing (3),

N m

(5) R(N,sW) - Σ N s

i=0
 1 1

which is also the component Bayes risk of s versus the empirical distribution of

states _N. The simple envelope is defined by

(6) Ψ(N) » Λ R(N,s
N
).

s€S

In Theorems 1 and 2 (Section 2) we show that Ψ(ίp - Ψ(ίp = 0(N^ 2
)

uniformly in N_ if either P has no pairwise orthogonality or S satisfies a

certain closure condition. The proofs are based on the Hannan and Huang (1972b)

results on the stability of symmetrizations of product measures and are simpler

than those given in their (1972a) paper for the envelope results and their

compound problem. The results of the (1972a) paper are subsumed by the results

of Section 2.

In Theorems 3 and 4 (Section 3) we develop bounds for jUN.,jO - H(N)

for equivariant "delete bootstrap" rules The bounds are used in Section 3 and

the sequel Gilliland, Hannan and Huang (1976) to establish classes of such rules

as asymptotic solutions to the compound decision problem.

In Remark 1 (Section 4) we observe that asymptotic solutions to our

bounded risk compound decision problem are asymptotic average risk solutions to

the empirical Bayes problem and that when equivariant they are asymptotic

solutions to the empirical Bayes problem. In Remark 2 (Section 4) we show that

the Bayes rules in the empirical Bayes problem are the Bayes rules versus an

induced symmetric prior in the compound problem.

Finally, in Section 5 we show that our restricted compound decision

problem subsumes the usual compound problem and give an example of a choice of S

to control maximum component decision risk.
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In what is to follow all sums Σ will be on i from 0 to m and all

products x will be on j from 0 to m unless otherwise indicated.

2. Envelope results .

n *
For each n and signed measure τ on B let τ denote the symmetrization

of τ with respect to permutation of coordinates and ||τ|| denote the supremum

v{|τ(B)|:B€ B }. Note that if g is a non-negative symmetric function whose

τ-integral exists, then by the symmetry of g, /gdτ = /gdτ , so that, by the

Jordan decomposition,

(7) I/gdτI < I|τ || sup g.

-y)
 3 / 2

.THEOREM 1. Let p
±
. - ||F

±
 - F.||, p - vp

±
. and K(y) - .5012. .y(l-y)

 3 / 2
. With

C
i

(8) Ψ(N) - ?(N) < (2K(p))
1/2
Σ c

±
N

i

i / 2
 for all _N.

Proof . Let J be such that Nj - vN^. By Theorem 3 of Hannan and Huang (1972b)

with τ - xF.^
1
 - χF.^

J
,I|τ*||

2
 < 2K(p.

T
)N7

1
. Hence, for s € E it follows from

(7) and the symmetry of s^. that

(2K(piJ))
1/2c1N^

1/2

which together with (3) and the monotonicity of K on [0,1] implies

(9) l!<N,β) " / Σ N
l f i N 1

 d(x ¥
3

3J
)\ < (2K(p))

1/2
Σ

Since Σ ^ ^ > Ψ(N), (9) implies

(10) f(N) - R(N,s_) < (2K(p))
i/2
Σ
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Because j^ is an arbitrary element of Έ_, (8) is a consequence of (10) and the

definition (4) of ψ. Q.E.D.

The upper bound in (8) is 0(N*'
2
) uniformly in _N provided p < 1.

We now develop a useful bound in the case p = 1 for certain S by following the

approach of Hannan and Huang (1972a, Section 5) to partition X relative to

decision subproblems where Theorem 1 is useful

For the rest of this section, suppose that T is a set of B-measurable

mappings t « (tQ, ,t ) into [O,
00
) and that S is the range of the function

t -• (Jt
Q
dF

0
, .. ,/t dF ) defined on T. For the compound problem, let JC be the

set of ( t ^ J ^ . .tu) where, for each α, t^ - (t^, .. . t^) is a map

into [0,°°) whose x -sections t (x ) belong to T and are such that the

/ t .(x )dF are 3
N
~ - measurable. (As a consequence, given s^ £ S_ there

exists a Ĵ  ζ T_ such that s (x ) - ft .(x )dF for all i,α,x_.)

Let f. » dF./dy, i = 0,...,m for some measure μ dominating ψ and consider the

partition X - Σ Y where for each subset I of {0,l,...,m},

(11) X
τ
 - Π [f. > 0] Π [f. - 0].

i€I i^I

We say that T is support partition closed if tγζ T for all I implies

ΣjXyt-r € T, where Xj serves as its own indicator function.

THEOREM 2. With p as defined in Theorem 1, let p1 = V{p |p < 1}. With K

and the c^ of Theorem 1 and T support partition closed,

(12) V(N) - ?(N) < 2 m
(2K(p

l
))

1 / 2
Σc

i
Ny

2
 for all N.

Proof. Let s € E and let t € Ύ_ be such that s ^ ^ L ) = /%i^%^
d F
i

 f o r a 1 1 i

and Xj,. Partitioning X •
 Σ

τ

x

τ

 w e c a n w r i t e

(13)
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where Σ
f
 denotes the sum over I such that y(χ

τ
) > 0. For each I let tj € T and

consider t = Σ X t
γ
 which belongs to T since T is support partition closed. Let

s = /t dF. and s. = /t dF , i=0,...,m and note that

(14)

From (13) and (14) it follows that

(15)

We can write /X (t - jt^.)dF as the difference of a simple and equivariant

risk by noting that ^ ( t ^ - t^
±
) = t

χ i
 - t^

±
 where t^ - (1 - X

I
)t

χ
 + x ^ has

equivariant image since t
τ
 and t

xτ
 have. With this substitution into (15)

-
1
- —N

N
followed by integration with respect to x F.ji and N^-weighted summation,

obtain

N

(16) Σ K
±
s

±
 - R(N,s_) - ΣN

i
JΣ'/(t

Ii
 - ̂ j i

) d F
i

d ( X F
j ^ *

But Σ N s > Ψ(N), and by definition (11) of X-,-, F
i
(X

];
) > 0 only if i 6 I,

so that an interchange of the order of summation in the right hand side of (16)

yields

(17) Ψ(N) - R(N,£) < Σ'Σ

For each I such that μ(X ) > 0, let V and Y be the equivarient and simple

envelopes respectively for the compound problem with P replaced by

V

P= {F Ii £ I}, which has no orthogonal elements. Also let

N = #{α|p = F }, i ζ I Because the non-I sections of the equivariant s
f
 are

i α i ~

equivariant in the sub-problem, it follows that

(18)
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and, since the s-j are arbitrary elements of S, (17) and (18) imply

(19) Ψ(N) - R O M ) < Σ'{Ψ(N) -

The result (12) comes from applying Theorem 1 to each summand of the right hand

side of (19), noting that for such I, p = {||F
±
 - F.||:i,j £ 1} < p

f
, and using

the monotonicity of K on [0,1] and the equality

I Σ c.N.
1/2
 = 2

m
Σc.N

1 / 2
. Q.E.D.

i i α
 1 i

Theorems 1 and 2 of Hannan and Huang (1972a) are corollaries to our

Theorems 1 and 2 since their assumption (2) implies the boundedness of their

risk set s, and since T induced by the class of all decision rules (cf. Section

5) is support partition closed. The Example of Section 5 shows that the

conclusion of Theorem 2 does not follow from the boundedness of S alone.

3. Delete bootstrap rules.

For each w = (WQ,W^,.. ,w
m
) € [O,00) the component Bayes risk of

s € S versus w is given by

(20) Σ w
iV

In this section we assume that S is closed in R
m
 as well as bounded. Thus,

for each w £ [O,
00
) there exists a (Borel measurable in w) minimizer, say s

w
,

of (20) as s varies across S; and, when S is induced by a set T, we let t
w
 be

such that s. = /t. dF., i = 0,1,. ..,m. (Hodges and Lehmann (1952) have used the

term restricted Bayes to refer to Bayes procedures within classes S restricted

by maximum risk.)

The assumption that S is closed is without essential loss of

generality since, given any ε > 0 and s/ξ S/ where S
!
 is the R

m + 1
 closure of S,

there exist positive ε with Σε < ε and ̂  6 _S_ such that |s
f
. ""1^1 *

 ε f o r

all i, thus ensuring that | RCP,s/) - _R(_P,s_) I <
 ε f

<>
Γ
 all _P Therefore, theorems

concerning the risks of S_* procedures have ε analogs for S_ procedures
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The relation

(21) *(N) - Σ N
±
s~

suggests that a compound rule s_ where for each α, s = s- with lί = ϊί(x ) an

estimator of N_, might have compound risk asymptotically close to Ψ(N) provided

N_ is consistent. Robbins (1951) suggested that playing Bayes versus an estimate

_N = .N(x) in each component might result in such compound risk behavior and used

the term bootstrap to describe the effect The use of x in both ϊί and the

argument of the Bayes rule complicates the study of the risk. However, by

deleting x from the data on which the estimate is based, we obtain a "delete

bootstrap" rule in S_ whose risk behavior is easily studied. (The idea of

deleting the component observation in the estimate of the empirical distribution

of states (or functionals thereof) has been exploited in sequence compound

problems, e.g., see Van Ryzin (1966b), Samuel (1965), Johns (1967), Gilliland

(1968). At the game theoretic level it relates to play against the past

strategies of Hannan (1957).) Formally we say that s_ 6 j5_ is a delete bootstrap

rule based on the estimators N.,...N , each a B -measurable mapping

into [0,°°) , if s = s-α for all α and jc. When N - w, α=l,2,.. ,N, where

w.
 β
 (WQJ JWJJJ) is a symmetric function, the delete bootstrap rule,

w
written ^—, is equivariant The next two theorems place useful bounds on the

w
excess compound risk of j£—, over the simple envelope

THEOREM 3. With p, K and c. as defined in Theorem 1 and J such that N
τ
 = VN, ,

1 U 1

N
w i i i iJ 1/2 1/2

(22) R(N,s-) - ψ(N) < Σ c.J N. - kw. d(x F,
J
 ) + (2K(p)) ' Σ c.N,

1 1 1 j 11

N—1
for all jί and every B -measurable mapping k into [O,

00
).

Proof. By (9)

(23) R(N,s~) < JΣ N sAl(x F j J ) + (2K(p)) 1 / 2 Σ c N 1 / 2 .
i i j ii
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From (21) and the defining properties of _s—, k and c it follows that

(24) Σ N
±
β* - Ψ(N) < Σ (N. - kw^Ms"- - sf) < Σ c

±
 |N

±
 - kw

±
 | ,

which together with (23) implies (22). Q.E.D.

THEOREM 4. With the hypothesis of Theorem 2 and Σ
1
 denoting sum over I

with μ(χ ) > 0 and, for each such I, J such that N- = v(N |i £ I},

N
 f 1/ 1/

(25) R(N,s_-) -Ψ(N) < Σ' Σ c./|N. - kw. |d(x F
 J J

) + 2
m
(2K(p')) '

2
 Σ c.N '\

for all N_ and every B -measurable mapping k into [O,
00
).

Proof. Since £— 6 E, it follows from (3), (13) and the fact that y(χ ) > 0 if

and only if ?
±
(\) > 0 for all i£ I, that

(26) R(N,s-) = Σ / L Σ
T
 N j / χ

τ
t

Γ
 dF,

Let D denote the difference between (26) and what is obtained by changing the

N.. to N " for each I. Since the non-I sections of Jx
τ
tτ dF are symmetric and

each I of the summation Σ
f
 results in Pwith p < p

1
, the technique leading to (9)

shows that

(27) D < (2K(p'))
I/2
Σ

f
 Σ c ^

7 2
 < 2

m
(2K(p' ))

1 / 2
Σ c ^

7 2
.

From the representation,

(28) Ψ(N) - Σ Σ N.J χ
τ
tj dF

i€I

the definition of D and (26), RCN, S"-) - ψ(N) - D is
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(29) Σ J Σ N./X ( t * - φ d F d(x F j J ) .
± α i l 1 i i 3

Since T is support partition closed, it follows that for each w 6 [0,°°) ,

(30) Σ w sY - Σ w Jt* dF = Σ Σ w fχ t * dF = Σ' Λ{ Σ w Jx t dF 11 € T}
ii i l l i ^ ] [ i i i i l ζ I l i l l

so that for each I,

(31) k Σ w
i
/x

i
(tj - tj) d¥

i
 > 0.

N
1J

Adding the Σ
f
 summation of the integral of (31) with respect to *F.

J
 to (29) we

obtain

(32) Σ'J Σ (N - kw.)/χ τ (ty - φ d F d(x F . j J ) .
jCj 1 1 1 1 1 1 j

Since |/X (tr - tτ)dF | < c , we see that (25) is a consequence of the bound

(32) and the inequality (27). Q.E.D.

The Example of Section 5 shows that the conclusion of Theorem 4 does

not follow from the compactness of S alone.

Theorems 1 and 2 show that if S is bounded, and, in addition, T is

support partition closed if $ has pairwise orthogonality, then

~ 1/2
Ψ(N) - Ψ(N) = 0(N ' ) uniformly in N_. Theorems 3 and 4 show that if S is

compact, and, in addition, T is support partition closed if P has pairwise

orthogonality, then R(N,£—) - Ϊ(N) is bounded in (22) and (25) by estimation

1 /2
errors of kw_ for _N and terms which are 0(N ' ) uniformly in _N. Since

|N.
τ
 - N.|, |N * - N.I < 1 for all i and I, the estimation errors are seen to be

1 J 1 1«J 1
1/2

0(N ' ) uniform in JN provided kw is h^ consistent for the empirical distribution

of states governing the distribution of its argument x at a rate 0(N ' )
—N

uniform in N_. Two important classes of symmetric estimators kw_ which achieve

this rate of consistency are given below. For purposes of investigating
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consistency it is a notational convenience in the first example to let k and w_

be defined on χ
N
 rather than χ

N - 1
.

Kernel-type estimators. For linearly independent F. and y - Σ F.,

dual bases in L ? ^ furnish bounded B-measurable mappings h = (hQ, ..,h
m
) such

that for all i,j, Jh^F = 1 if i = j and 0 otherwise (cf. Robbins, 1964,
3
 N

Section 7 and Van Ryzin, 1966a, Section 3). For such h, h_(x) = Σ h(x )

N. α-1
 α

satisfies ίh.d(x F.
J
) = N. for all i and N. If w is the retraction of h to

—1 J 1 — — —

[0,~)
m + 1
 and k = 1, then for each i,

/|N
±
 - kwJdC* F.

j
) < (Var t ^ )

1
^

2
 - 0(N

1 / 2
) uniformly inN.

Estimators induced by priors, A second class of delete bootstrap

rules consists of rules that are Bayes with respect to symmetric priors . To

develop this important class of rules we need some additional notation. For

each JC * (
K
Q

> K
1 » * '

 9
\^ with nonnegative integers K , Σ K = N, let

[K] = {P|N = K} and let (£) denote the multinomial coefficient N!/(KQ! .. .K
m
!).

A prior distribution β_ on the (m+1) states _P of the compound problem is

symmetric if it distributes its mass uniformly within each orbit [K] Thus, a

symmetric prior 3 can be identified with a distribution 3
V
 on the (

N + m
)

K m

different _K By definition the Bayes component risk of s_ € S_ versus a

symmetric β is

(33) R (3,β) Ξ Σ 0 (£) "
X
 Σ R (P,β),

α
 K - - P€[K] α

 ~

By (1) the inner summation is equal to

(34) Σ Σ /s

where [K] » {J? € [K]|P
α
 = Ϋ }. Let ί

±
 - (K

Q i >
 ... ,K ) and note that, with

x F
 ji interpreted as 0 if K± = 0, the inner sum of (34) is

(35)
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K
ii *

where, as introduced in Section 2, * denotes symmetrization. Letting (x f ,
J
 )

K

denote the symmetrization of d(x F.^
i
)/dy

N
~

1
, (33) - (35) combine to give

(36) NR
α
(£,s) - Σ 3

K
 Σ K

±
/ s ^ x f

 j

ji
)*dμ

N
""

1
 = /

 1
*

1

where

(37) Wĵ  = Σβ
κ
K

κ
ϋ *

f
J 1
)

Thus (36) is minimized by taking s^ » s^ and therefore the equivariant delete

w
bootstrap rule ŝ - is Bayes versus 8.

For normalized estimators (37) induced by sufficiently diffuse

symmetric priors in the two state problem, Gilliland, Hannan and Huang (1976)

establish rates of L^ consistency.

4. Empirical Bayes problem.

Results in compound decision theory have corollaries in the empirical

Bayes theory of Robbins (1949) (also in the experience theory of Fabian and

Spacek (1956)). If P
1
,P

2
,. . are i .i .d. according to a probability distribution

ω = (ω_,...,ω ) on p = {F^. . jF }, then component and compound risks are ω
U m U m

averages of (1) and (2), i.e. Bayes risks versus the symmetric prior with

β
v
 = (

tΛ
)ω

Γk
 ... ω

 m
. With this prior and f = Σ ω. f. , the induced estimator

K. K. U m ω i i

(37) is w. = Nω f and (36) is seen to be minimized by s^ - s . Thus, for

each s € S and α

(38) R
α
(ω

N
,sJ > ψ(ω) for all ω.

Remark 1. If s_ is a compound rule which satisfies

(39) RθP>.s) - Ϋ(N) - o(N) for all P,
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then

(40) N V α Λ s J -> Ψ(ω) for a l l ω,

and if s is equivariant,

(41) R(ω ,s) + Ψ(ω) for all ω.

Proof. By (38) and (39) it follows that

(42) ψ(ω) < N""
1
R(ω

N
,s^) - / [N"

1
Ψ(N) + o(l)] dω

N
.

By Jensen's inequality and the bounded convergence theorem, RHS (42) is no

greater than 'Ψ(ω) + o(l). If s_ is equivariant, then R (ω ,s_) is constant with

respect to α in which case (40) and (41) are equivalent. Q.E D.

Hannan (Appendix, 1957) establishes (40) with rate for certain play

against the past sequence strategies while Gilliland ((1.7), 1968) shows that

(39) implies (40) rather generally in the sequence compound problem.

K K

Remark 2. With 3
U
(Λ) = / C)ω

n
...ω

 m
dΛ, it follows from

——————— £ K u m

interchanging integration with respect to Λ and Σ in (33)

that /R (ω ,sOdΛ = R (jKΛ),s). Thus, Bayes rules versus Λ in the empirical

Bayes problem are Bayes rules versus the symmetric prior jKΛ) in the compound

problem.

5. Summary and final remarks .

The compound problem introduced in Section 1 and investigated in

Sections 2, 3 and 4 subsumes the (finite state) compound decision problem of

Hannan and Huang (1972a). There A is an action space L is a loss function on

Xx P x A to [O,
00
), V is the set of all (decision) functions d on X to A such

that the map x + ̂ ^ίdCx)) is B-measurable for all i, and V__ is the set of all



142 GILLILAND AND HANNAN

functions d_ = (d
χ
 ,d

2
, ... ,d

N
) on X

N
 to A

N
 such that the map x +

 χ
 L^dgOO) is

α

B
N
-measurable for all i and α. With t

i
 = L^ o d, a class of decision rules

C c p determines a class T = T(C) of β-measurable mappings t = (t^,.. >t
m
). Let

S = S(T) be the set of risk points determined by s = (/t
Q
dF

0
, .. ,/t dF ) for

t £ T The the class S_ defined in Section 1 consists of the conditional

component risks corresponding to the class of compound rules

jC
 β
 {d_ £ V\ every x -section of d belongs to C, α=l,2, .. .,N}.

If C = V then C_ = V_ and the compound rules are not restricted.

The original motivation for the compound decision problem of this

paper was the generality it provides for the envelope results (Section 2) and

the fact that it is the natural setting in which to study delete bootstrap

procedures (Section 3). Moreover, it allows for choice of S to control

component risk behavior and the construction of asymptotically best equivariant

procedures in ̂ .

As an example of a restricted class of some interest suppose c is some

specified constant and consider S = {s £ S(T(P))|s < c, i = 0,.. ,m} Compound

rules ̂ _ in J5_ have, for each α and P , conditional on x component risk no

greater than c. In addition, since S is convex, R CP,jO < c for all _P

Efron and Morris (1972) have proposed an interesting way to control

component risks R (_̂ >d_) for the compound problem with component squared error

2 2 2

loss estimation of θ ζ (-
00
,
00
) in N(θ,σ )• For the known σ case, wlog σ = 1,

they propose a compromise between the simple rule (d ) where d (x) = x, the

component minimax estimator, and the James-Stein estimator _d_ , which is

equivariant and possesses good compound risk behavior (Jl(j3.,d_ ) < N for all £ if

N > 3). For N > 3 they study a class of equivariant "limited translation"

estimators d
P
 where

(x) = (l-p)d°(x
α
) + p d^(x), α



ADAPTIVE STATISTICAL PROCEDURES 143

2
 N
 2

and p is a function of x /Σ x to [0,1] . For various choices p and N > 3 they

compute maximum component risk v{R (^,d_
P
) |_θ_} and compare R

:
(^.,d_

P
) with RXj*.,^ ) .

We conclude with a simple example which illustrates that the

conclusions of Theorems 2 and 4 do not follow from the compactness of S alone

Example. Let the component decision problem be 0-1 loss

classification with F^ degenerate at i, i=0,l with χ = {0,1}. Here there are

but four non-randomized decision rules giving rise to risk points on the corners

of a unit square. Consider the sub-class C = {d~,d.} where d^ decides F^

regardless of the observed value x Then T * T ( O = {t,t
f
} where t(x) = (0,1) =

s and t
f
(x) Ξ (1,0) = s

1
 and S = S(T) = {s,s

f
}. The set T is not support

partition closed since, for example, Xr
o
\t

 +
 X/iit

1
 does not belong to T. Since

the class of equivariant rules ^includes the rules s_ , k=0,l,. .,N where

m
 N-l

^ 0 % ) - s if Σ x
α
 - k and s

1
 otherwise

α=l

(ϊθ
and since JlOLίJL ) = 0, we see that the equivariant envelope ψ(N) = 0.

However, the simple envelope is Ψ(N) = N~ Λ N. so that the conclusion of Theorem

2 fails to hold. Now let ^ ( x ^ = Σ^~
1
χ

α
, WQ - N - 1 - w. . The delete

w
bootstrap rule sj- with

1
s if w- (x^r) < y(N-l) and s

!
 otherwise

has ϋ(N.,£-) = N a t N such that N
Q
 = N

χ
. At such N_, ,Ψ(N_) = | N and the left hand

1 ^i J

side of (25) is equal to -rN. Here c
Q
 = c^ = 1, p

!
= 0 and v^ = ^ j a .s. x F.

for all J and N so that with k = 1, the right hand side of (25) is equal to 2

for all N.

Addendum. The thesis of Inglis [(1973). Admissible decision rules

for the compound decision problem. TR 37, Dept. of Statist., Stanford] came to

the authors
1
 attention after the results of this paper were obtained. As

detailed in Gilliland and Hannan (1974), the parts treating reduction to a

consistency of the posterior mean seem to us to lack proof. (Our Theorems 3 and
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4 and the last example of Section 3 do establish the reduction for a more

general finite state component; their proofs do not extend to infinite state

components.) For comment on the parts treating consistency of the posterior

mean, see the Addendum to Gilliland, Hannan and Huang (1976).

REFERENCES

Efron, B. and Morris, C. (1972). Limiting the risk of Bayes and empirical

Bayes estimators - Part II: The empirical Bayes case J. Amer. Statist*

Assoc. 67 130-139.

Fabian, V. and Spacek, A. (1956). Experience in statistical decision

problems. Czechoslovak Math. Journal 6 190-194, 434.

Gilliland, D.C. (1968). Sequential compound estimation. Ann. Math. Statist.

39 1890-1904.

Gilliland, D.C. and Hannan, J. (1974). The finite state compound decision

problem, equivariance and restricted risk components. RM-317, Dept. of

Statist, and Prob , M.S U.

Gilliland, D.C, Hannan, J. and Huang, J.S. (1976). Asymptotic solutions to

the two state component compound decision problem, Bayes versus diffuse

priors on proportions. Ann. Statist. 4 1101-1112.

Hannan, J F. (1957). Approximation to Bayes risk in repeated play.

Contributions to the Theory of Games 3 97-139.

Hannan, J. and Huang, J.S. (1972a). Equivariant procedures in the compound

decision problem with finite state component problem. Ann. Math. Statist.

43 102-112.

Hannan, J. and Huang, J.S. (1972b). A stability of symmetrizations of product

measures with few distinct factors. Ann. Math. Statist. 43 308-319.

Hodges, J.L. and Lehmann, E.L. (1952). The use of previous experience in

reaching statistical decisions. Ann. Math. Statist. 23 396-407.

Johns, M.V., Jr. (1967). Two-action compound decision problems. Proc. Fifth

Berkeley Symp. Math. Statist. Prob. 1, Univ. of California Press, 463-478.



ADAPTIVE STATISTICAL PROCEDURES 145

Robbins, H. (1949). Unpublished lecture notes. Dept. of Statist., Univ. of

North Carolina, Chapel Hill.

Robbins, H. (1951). Asymptotically sub-minimax solutions of compound decision

problems. Proc. Second Berkeley Symp. Math. Statist. Prob., Univ. of

California Press, 131-148.

Robbins, H. (1964). The empirical Bayes approach to statistical decision

problems. Ann. Math. Statist. 35 1-20.

Samuel, E. (1965). Sequential compound estimators. Ann. Math. Statist. 36

879-889.

Van Ryzin, J.R. (1966a). The compound decision problem with m x n finite loss

matrix. Ann. Math. Statist. 37 412-424.

Van Ryzin, J.R. (1966b). The sequential compound decision problem with m x n

finite loss matrix. Ann. Math. Statist. 37 954-975.




