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IV. BOUNDEDNESS AND CONTINUITY

1. Majorising Measures.

As usual, T is the parameter space of a centered Gaussian process X,
equipped with and totally bounded in the canonical metric d. Let m be a
probability measure on the Borel subsets of T, and, since we shall need it
very often in the following, let g: (0,1] —> 9ΐ+ be the function defined by

(4.1)

Let JB(ί,e) be an 6-ball in the d-metric about the point t 6 T.

DEFINITION. A probability measure m is called a majorising measure (for
(T,d))if

(4.2) sup Π g(m{B{t,e)))de
tβT Jo

< 00.

Majorising measures were formally introduced by Fernique (1974) (un-
der the name "mesures majorantes"), although in essence they date back to a
real variable lemma of Garsia, Rodemich and Rumsey (1970) and a paper of
Preston (1972). Fernique proved (4.3) below, thus establishing that the exis-
tence of a majorising measure implied the boundedness of ||X|| = sup f 6 T Xt.
He continued his study of majorising measures in a number of papers, ex-
tending the ideas and coming very close to proving that they were the right
tool to provide both necessary and sufficient conditions for continuity. For
example, in Fernique (1978), he obtained both parts of Theorem 4.1 below
under additional structural requirements on the space (Γ, d). In a pathbreak-
ing paper, Talagrand (1987) completed Fernique's program by proving the
second part of the following result in the most general case.

In this result, as with all others in this chapter, we shall assume with-
out further comment that T has strictly positive diameter D. (Otherwise
m(J9(ί,e)) = 1 for all e, so that g(m(B(t,e))) = 0, and the following result
is trivial.)

4.1 THEOREM, if m is any probability measure on (Γ, d), then

(4.3) JE?||X|| < Ksnp Γ g(m{B{t,e))) de,
t Jo

for some universal constant i ί e ( l , oo). Furthermore, K can be chosen such
that if X is bounded with probability one, then there exists a probability
measure m on (Γ, d) satisfying

(4.4) K-1 sup Π g(m{B{t,e))de < E\\X\\.
t Jo
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That is, X is a.s. bounded on T if, and only if, (T, d) admits a majorising
measure.

The proof is deferred to the following two sections. Note that, as was
the case for the entropy integrals which we met in the Introduction, the
upper limit of the integrals in (4.3) and (4.4) is really the d-diameter of T.
Also note that while this result centers on the a.s. boundedness of X, we
have already seen in the previous chapter that this is also the key to the
continuity problem (c.f. Theorem 4.5).

The results of Theorem 4.1 are not intuitively immediate, nor are ma-
jorising measures easily understood. One thing is clear. For the integrals
in (4.3) and (4.4) to be finite, it is necessary that m puts as much mass as
possible on regions where the rf-balls are small. Since small d-balls imply
high incremental variance, these are the regions where the process has the
most irregularities in its sample path, and so these are the regions where one
would expect the supremum to be achieved. In other words, it is natural to
expect that majorising measures are somehow related to the position of the
supremum of X. However, this argument has not yet been made rigorous in
general. (An obvious problem, of course, is there is no guarantee that in the
general case the position of the supremum is uniquely defined.)

To see an example in which there is a strong relationship between ma-
jorising measures and the position of the supremum, take T finite and sep-
arated by d. Then there is, with probability one, a unique point τ(ω) G T
such that Xτ (ω) = sup t e Γ Xt(ω). Let μτ denote the law of r. The following
is true:

4.2 THEOREM. With T,μτ,D as above, there exists a universal K such
that

(4.5) K^E\\X\\ < D + ί μτ(dt) Γ g(μr(B(t,e)))de < KE\\X\\.
JT JO

Although we shall not prove this result, (the left-hand inequality can be
deduced from results in Fernique (1976), the right-hand is due to Talagrand
(1987), but neither are far removed from results that we shall prove)) it is
worthwhile to try to understand it.

Note firstly that the finiteness of the double integral in (4.5) does not
imply that μτ is a majorising measure. This would be true, however, if a
priori we had removed from the finite space T all points of μτ -measure zero;
i.e. points at which the supremum cannot be achieved. The proof of this is
immediate once one thinks of the double integral as a finite double sum.

Another way of saying almost the same thing, after a fashion that at first
looks as if it would generalise easily to countable parameter spaces and then
perhaps to the most general separable ones, (but does not), is the following:
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Choose a > 0 and set

f = f(α) = {ίGΓ: 1°° g{μτ(B(t,e)))de < aKE\\X\\}.

By (4.5)

l-μτ(f) = μτ(T\f)

= ί ^
Jτ\τfτ\τ

<

< α " 1 .

Thus μτ (T) > (l — a~1), and on T the measure μτ behaves like a majorising
measure, with the unimportant restriction that it is not supported on T.
We don't know very much about T, but, by taking a large, we see that T
contains most of the information about ||X||, since

— 1P{supXt =supX t } = μτ(T) > 1 - α

Thus, from a heuristic viewpoint, Theorem 4.2 means that μτ is a majorising
measure on a subset of T large enough to control sup t 6 T Xt. •

It would be interesting to extend Theorem 4.2 to the general case. David
Pollard (1990) has recently shown that the supremum of a continuous Gaus-
sian process is attained at a unique point in Γ. In terms of the results to
follow, which will closely relate continuity to the integrals in (4.3) and (4.4),
this seems to suggest that a result like Theorem 4.2 should hold in a setting
more general than that of finite T. Nevertheless, this does not seem to be
an easy extension to establish. •

Although Theorem 4.2 covers only the case of finite Γ, it does have a
partial extension to general parameter spaces. Take T general, and {Tn} a
sequence of finite subsets of T increasing to a countable dense subset. By
separability and monotonicity

E\\X\\T = lim E\\X\\TΛ.
n—*oo

But by Theorem 4.2 we have that, for each n,

. <D+ sup I μ{dt) ί g(μ{B{t,e))) de,
μ€P (T) JT JO
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where P(T) denotes the collection of all probability measures on T. The fact
that the supremum is taken over all P(T) rather than P{Tn) only has the
effect of making the upper bound larger.

By absorbing the factor of D into the integral - changing the constant
if necessary and checking the argument around (4.30) if this bothers you -
we have proven the upper bound in

4.3 THEOREM. There exists a universal constant K G (l,oo) such that for
any centered Gaussian process X on (Γ, d)

1 sup / μ{dt) Γ g(μ{B{t,ή)) de
»€P(τ) JT JOμ€P(T) JT

< E\\X\\

<K sup ί μ{dt) ί g(μ{B{t,e)))de.
ueP(τ) JT JOμ€P{T) JT

The proof of the lower bound, which is the more interesting, is deferred
until the following section.

There is one case in which the majorising measure for the lower bound
(4.4) can be easily identified, so that Theorem 4.1 provides a useful necessary
and sufficient condition for sample path boundedness. This is the case in
which the process is stationary: i.e. T is an abelian group with an operation
which shall denote as + such that for all θ,ί,r G T

EX(s)X{t) = EX(s + τ)X(t + τ).

4.4 THEOREM. If X is stationary and T compact, then (4.3) and (4.4)
hold with m taken to be normalised Haar measure on T. If T is a compact
subset of an infinite group T', then (4.3) and (4.4) hold for the normalised
restriction of Haar measure on V to T.

PROOF: The inequality (4.3) is true for any measure, and so for the Haar
measures of the theorem. Thus we need only prove (4.4). For simplicity, we
shall start with the case in which the full group T is compact.

Suppose there exists a majorising measure, ra, satisfying (4.4) and define

Dm - sup {η:m(B{t,η)) < \, for all t e T}.

Clearly

fDm g(m(B(t,ή)de < KE\\X\\,
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for all t G Γ. Let μ denote normalised Haar measure on T, and let τ be a
random variable with distribution μ\ i.e. r is uniform on Γ. For each e > 0,
set Z(e) = m(B(r,e)). Then, for any toeT

EZ{e) = [ m(B{t,e))μ{dt)
JT

= ί m(t + B{to,e))μ{dt)
JT

+ B{to,e))m{dt)

where the second equality comes from the stationarity of X and the third
and fourth from the properties of Haar measures.

Now note that g(x) is convex over x G (0, ^-), so that it is possible to
define a function g that agrees with g on (0, j ) , is bounded on (|,oo), and
convex on all of 8ϊ+ . By Jensen's inequality,

g{EZ{e)) < Eg(Z(e)).

That is,

g(μ{B(to,ή)) < ί g{m(B(t,e))μ(dt).
JT

With Dμ defined for μ as Dm was for m, set A = min(Dm,Dμ). Then

Γ g{μ{B{to,e)) de < Γ de ί g{m(B(t,e)) μ(dt)
Jo Jo JT

= ί Γ μ(dt)g(m(B(t,e))de
JT JO

< KE\\X\\.

This is the crux of (4.4). The final stage of the proof, for this case, is left to
you.

The case of T a compact subset of an infinite group T" is handled simi-
larly. Let μτ be the restriction of Haar measure on V to Γ. For convenience,
assume that μτ (T) = 1, so that we need not worry about the normalisation.
Then argue as before, but replacing (4.6) by

(4.6) EZ(e) = f m(B{t,e))μτ(dt)
JT

< ί m(t + B{to,e))μ{dt)
JT1

= ί μ(t + B(to,e))m{dt)
JT'

= μ(B(to,e)).
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Now continue through the rest of the proof as for the compact case, making
certain that the inequalities always go the right way. (Remember that g, and
so g, are decreasing functions.) •

The time has come to look at some applications of the above results. To
start, we shall combine Theorem 4.1 with Theorem 3.3 to obtain a simple,
applicable, condition for continuity.

For a probability measure m on (Γ, d) write

,{η) = sup ί g(m(B{t9e)))de.
ter Jo

4.5 THEOREM. An centered Gaussian process on T is a.s. bounded and
uniformly continuous if, and only if, there exists a probability measure m on
(T, d) such that

(4.7) \ιmΊrn{η) - 0.
O

REMARK: Of course you remember that implicit in this result, as through-
out these notes, is the assumption that T is totally bounded. There is,
in fact, a somewhat stronger version of Theorem 4.5, which states that X
will be a.s. bounded and uniformly continuous on an arbitrary metric space
(Γ, d) if, and only t/, T is totally bounded in d and (4.7) holds. (Talagrand
(1987), Theorem 4.5.) It is this extended result that permitted the claim, at
the beginning of Chapter 1, that we lost no interesting cases by restricting
ourselves to totally bounded parameter spaces from the start.

HALF PROOF: We shall prove only the sufficiency of (4.7). The necessity
is somewhat harder.

As a first step we need to show that (4.7) implies that X is a.s. bounded.
Take a r j > 0 such that η(η) < oo. Then, by Theorem 4.1, X is a.s. bounded
on each ball of radius η. Since T is totally bounded, it can be covered by
finitely many such balls. Thus X is bounded on all of T.

To handle continuity, by Theorem 3.3 we need only show l i m ^ o Φdiv)
= 0, where

(4.8) φd(η) = E sup (X9 - Xt).
d{s,t)<η

The idea of the proof is to bound φd{η) via an integral involving a majorising
measure, and to then derive convergence to zero from (4.7).

Let U = {(s,ί) £ T X Γ: d(s,t) <η}. Provide Γ x Γ and its subspace
U with the distance d' given by

, * ) , ( * ' , « ' ) ) = (E[(Xs - X t ) - [X9, - X t , ) Ϋ
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Note that X, — Xt is a centered Gaussian process o n Γ x Γ with canonical
metric d'. Theorem 4.1 should apply to this two-parameter process.

We start with some observations on the difference process. Firstly, note
that for (s, t) G Γ X T we have

(4.9) B({s,t),e) D B{s,e/2) x B(ί,c/2),

where the first ball is a d'-ball and the last two d-balls.
Next, for x = (s,t) G T X Γ, let φ(x) G U satisfy

d'(x,φ{x)) = d'(x,U) = inf d'(x,y).

(U is closed, so the infimum is achieved.) Note that if x G U then we can,
and shall, take φ(x) = x. Furthermore, if y G U and x € T x T then

d'(y,Φ{x)) < d'(y,x) +d'(x,φ{x))

= d'(y,x) +d'(x,U)

< 2d'(x,y).

Consequently, for all y G U,

(4.10) Φ(Bd,{y,e)) C U n Bd, (y,2e).

Now define a probability measure μ on U by setting μ(A) = (m ® m) o
^>~1 (A). In view of (4.9) and (4.10) we have, for all (s,t) G U,

m(B(s,1-e))m(B{t,1-e)) = (m ® m) (β( S , |e) x B(t, ι-e))

< {m<S>m)(Bd,{{s,t),e))

< (m®m){φ-1(Un{Bd,{{s,t),2e)))

= μ(Un{Bd.{{s,t),2e)).

It thus follows from Theorem 4.1 that for any measure m o n Γ and any η > 0

Φd{η) < K sup / * g(μ(Bd,({s,t),e)))de

(s,t)eu Jo

g(m(Bd< (s, e/4)) m(Bd, (ί, e/4))) de

< 8Xsup /
t€T Jo

= 8KΊm(η/2).

This proves the theorem. •
For necessity, and some further details related to this result, see Tala-

grand (1987).
As one might expect, majorising measures also feature in providing mod-

uli of continuity, and the following result is the improvement on Corollary
3.4 promised in the previous chapter.
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4.6 THEOREM. Let X be a.s. bounded on T and τ be a metric on T such
that the canonical metric d is τ-uniformly continuous. Let φT(η) be as at
(4.8) and denote the T-modulus of (uniform) continuity of X by

Wτ(η) = sup \X9-Xt\.
τ(s,t)<η

If limf/_o ΦT (*?) — 0 then there exists an a.s. Άnite random variable δ = 6(ω)
such that, for almost all ω,

Wτ(η) < φτ(η)

for all η < 6(ω). That is, φτ{') is a uniform sample modulus for X in the
metric r.

This is, of course, Corollary 3.4 without the e. An immediate corollary,
in terms of the canonical metric d, is

4.7 COROLLARY. Let m be a majorising measure for X, a.s. bounded on
T. Then there exists a universal constant K < oo and an a.s. finite random
variable δ(ω) such that, for almost all ω,

sup \Xt-X9\ <KΊm{η).
β,t : d(s,t)<η

for all η < δ(ω).

PROOF OF THEOREM 4.6: Note firstly that if T is finite (in the sense
that the number of pairs s,ί 6 T for which d(s,t) φ 0 is finite) the result is
trivially true, by taking δ(ω) = (1 — e) min{r(s, t): d(s, t) > 0} for any e > 0.
Thus assume that T is infinite.

As noted after the statement of Corollary 3.4, all we need to show is
that

(4.11) lim ψp\ = oo,
* - o d { η )

where dτ(η) = s u p , , , ^ ^ d{s,t).
By (4.4) and the argument applied in the proof of Theorem 4.5 there

exists a probability measure on T such that a lower bound to the ratio in
(4.11) is given by

Ksnpt€Tfo
dΛη)g{m(B(t,ή))de

> K supg(m(B{t,dτ{η)))
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Since d is r-continuous, dτ (η) —> 0 as η —> 0, and so to complete the
proof it suffices to show that there exists a t G T for which

(4.12) m{B(t,η))-+0 as η -+ 0.

Suppose that this is not true. That is, there exists a δ > 0 such that for all
t β T l im^o m{B(t,η)) > δ. It then follows that m({t}) > δ for all t <E Γ.
Since m is a probability measure this can only happen if T has at most δ~ *
points. But T was assumed infinite. Thus (4.12) does hold, and the proof is
complete. •

We now turn to the proof of Theorem 4.1. This is given in two parts,
the upper bound (4.3) first, and then the lower bound (4.4). The upper
bound proof is (comparatively) easy, the lower bound proof not so. I heartily
recommend skipping both if this is your first reading of this chapter, and
coming back to them only after you have read Section 4.4. It is only my
childhood training as a mathematician and consequent feelings of guilt at
skipping proofs that forces me to include them now and not later.

2. Upper Bound Proof.

The proof of (4.3) that we shall give is closely modelled on Fernique
(1978), with some further input from Anderson et. al. (1988).

We start with an elementary observation, that we shall use routinely in
what follows. The proof is left to you.

4.8 OBSERVATION. If f(t) is a positive decreasing function then

(4.13) i > — 1 / ( 2 - ) < I f(ήde < f V " f(2~n)
J n = l

We shall assume throughout this and the following section that diam(Vr)
< 1 so as to simplify some of the notational aspects of the proofs. To see that
no loss of generality is involved through this assumption, let D = diam(V)
and set Y(t) = X(t)/D. Note that balls in the canonical metrics of X and
Y are then related by the fact that

= BY{t,e/D).
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Suppose we succeed in proving (4.3) for the process Y. Then,

ψ
/•oo

< ϋfsup / g(m(Bγ(t,e)))de
t Jo

= Ksup ί g(m(Bx{t,De)))de
t Jθ

K f°°
= T; S U P / 9(m(Bx (ί,e))) de.

V t Jo

Thus (4.3) holds also for ||X||, with the same constant K.
We start with an arbitrary probability measure μ and some geometry.

Take n > 1 and let {tni}
r

i!L1 C T be a finite set of distinct points of T such
that

supinfd(ί,ίn j < 2 " Λ " 3 .
ter *

By reordering, if necessary, we can assume that

(4.14). μ(B(ίn, , 2 — 2 ) ) > μ(B{tn{i+1),2-n-η), for all i > 1.

Define subsets {Cni }t

r^ χ inductively as

(4.15) Cnl =

i- 1

n .(4.16) c, = j - >f^,r-)nUσ.

β (ίn, , 2" n " 2 ) , otherwise.

Next, define a mapping

(4.17) τrn : Γ —» {ίnt/i l i

as follows:
Set πn(ί) to be the first tni for which d(ί,ίn t ) < 2 " n " 3 and Cni ψ 0. If

there is no such i such that the second of these conditions is satisfied, then
choose the first tni such that d(t,tni) < 2~n~3, and note that since Cni = 0
there exists a maximal j < i such that Cnj ΠB(tn i, 2" n " 2) φ 0. Define πn (ί)
to be the corresponding ίn». We denote the n-th such collection of \tni) by
Ίn, and set 7 = UΛ 7n.
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The first basic property of this construction that we shall use is that:

(4.18) d(t,πn{t)) < d{t,tni) + d{tni,tnj)

< 2 " n " 3 + 2 2~ n " 2

< 2" n .

Now note that since for each t G T and n > 1 there is a unique Cni :=
Cn(ί), such that τrn(ί) = tni G Cn(t) we can write, with some abuse of
notation,

μn{t) = μ(Cn{t)).

This leads us to the second property of the construction: If tni is such that
d{t,tni) < 2 - n " 3 and Cni φ 0, then

μn(t) = μ(B(tni,2~n-η) (by (4.15)-(4.

On the other hand, if tni is such that d(t,tni) < 2 " n " 3 and Cni = 0,
then there is a j < i such that Cnj Π S( ί n i ,2~ n " 2 ) =̂  05 and in this case

< μ(B(* n y > 2-"- a )) (by (4.14))

= μn{t).

The above two inequalities yield that in all cases

(4.19) μn(t) >

This is all the geometry that we shall require for the moment. We now
build ourselves a new, somewhat simpler process than the original. We start
with {ζt}ter 5 a collection of i.i.d. standard Gaussian variables on T. (If a
ί £ T appears in more than one Tn choose a different £t for each n, and
change the following proof, where necessary, to account for this irritating
phenomenon. We shall assume, however, that this never happens.) Define a
new Gaussian process Y on T by

(4.20) Y(t) =
n = l

Note that although Y generates its own canonical metric on Γ, we shall
treat it as defined on T equipped with the canonical metric of X. The
following step in the proof is important enough to be singled out as an
independent result.
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4.9 LEMMA. IfY is denned as at (4.20) then, for all s,teT,

E{X,-Xtf < 6E(Yt-Yt)
2.

PROOF: For s,teT, choose N > 1 such that

(4.21) 2~N < d{s,t) = γ

By (4.18), it thus follows that for n > N + 1, πn (t) φ τrn (s). (For n< N + 1
it is impossible to say whether π n (t) = πn (s) or not. This is what makes
it impossible to use this argument to obtain a proof of the lower bound as
well.) Using the representation (4.20) of Y we thus deduce that

E{Yt-Y.f > £ 2— E[ζ(πn(t)) -

= 2 ~2n

Comparing this to the upper bound in (4.21) proves the lemma. •

It now follows from Theorem 2.8 or 2.9 (the two forms of the Sudakov-
Fernique inequality) that JE7||-SΓ|| < 2\/6JE||Yr||5 and so it suffices to prove
(4.3) for the process Y.

To do this, let r : Ω —•> T be a random point in Γ. If we can show that
there exists an M > 0 such that for every such random variable r

(4.22) EYT < M,

then it must follow (by contradiction) that

(4.23) E\\Y\\ = EsuvYt < M.
teT

Thus, consider (4.22) and let the distribution of r on T be given by a prob-
ability measure u. Since each Tn is finite, (4.20) gives us that

(4.24) EYT =

Note the easy fact that for ζ standard normal

(4.25) E{a{i>VΈg{a)]} = (2*)" Γ xe-ϊ*3dx
J V2g(a)

Ί "I ° °
p 35 I \

\y/2\oK(l/a)
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Now note that each expectation in the summation in (4.24) can be
written as

(4.26) < E{ttI{€t>VΈgMt))}} + V2g{μn(t))E{I{nniτ) = t}}

= (2π)-»μ n ( ί ) + y/2g(μn{t))P{πn{τ)=t},

the last line following from (4.25) and the definition of μ.
Thus, substituting into (4.24), and applying (4.19) to obtain the third

inequality below, we obtain

(4.27)

< !
— \/2π

^ 1

— \/2π

< 1
— N/2TΓ

^ 1

~ N/2T

+

+

oo

n = l
oo

oo

fi= 1

JT

oo

.Wee

9(μ{B{t,

-n+>g(μ

)P{*

)))H

2 -»- 3)))

2 -

i/(Λ)

"3)))
n = l

Replacing the sum over n by an integral over e (c.f. Observation 4.8) gives
us that there exists a constant K such that

and so, allowing JΪ to change from line to line,

= K(l + sup ί u{dt) ί g(μ{B{t,e))) de)
^ v JT JO '

g{μ{B{t,e)))de),
t Jo

the last inequality coming from the fact that v is a probability measure.
I claim that supt/0°° g(μ(B(t,e))) de can be bounded from below by

\/log2. To see this, note that T has at least two distinct points (since we
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have assumed that diam(Γ) > 0). Thus there must be at least one point
t <Ξ Γ with μ(B(t, e)) < \ for all e < 1. For this t

(4.28) ί g(μ(B{t,e)))de >
Jo

as claimed.
Thus the 1 in the above bound can be absorbed into the integral, albeit

with a slightly larger constant, and we are done. •

Although this section is advertised as being devoted to upper bounds,
while we have the appropriate notation at hand we shall also give the

PROOF OF THE LOWER BOUND OF THEOREM 4.3: We shall need two
facts. The first, as you can verify with a little calculus, is that the function
g satisfies

(4.29) xg{x) < xg{y) + || = ,

for all x and y. The second is the rather useful inequality that

(4.30) sup / u{dt) I g(ι/(B(t,e)))de > \/log2>

v€P (T) JT JO

which you can verify by choosing v to be concentrated on two points θ,ί G T
with d(s,ί) > 0 and f ({s}) = v({t}) — j . (This is the second, and last, time
we need the assumption that T has non-zero diameter.)

In what follows, given a measure v G P{T) we write τv to denote a
Γ-valued random variable with distribution v. We shall use the notation
of the previous proof without comment other than to point out now that
when notation from there appears with a suffix m this is to indicate that the
construction of the proof relates to the specific measure m. By (4.4), a proof
of which is in the following section, there exists a universal K and a measure
m such that

KE\\X\\ > sup Γ g(m(B(t,e)))de
t€T Jo

= sup / v{dt) I g(m(B(t,e)))de - 77,
v€P(T)Jτ Jθ

for any η > 0. To prove the above inequality simply take v concentrated at
a point to for which

/ g(m(B{to,e)))de > sup / g(m(B{t,e))) de - η.
Jo *eτ Jo
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Thus

KE\\X\\ + η> sup ί v
u€P{T)Jτu€P{T)Jτ n = 1

> sup I u{dt)Y^2-
Jτ n = 1

ΣΣ 2 ~"~ 4

By (4.29) this is bounded below by

which, by (4.18), is in turn bounded below by

oo

sup

The sum is equal to

oo

sup

> sup

> sup ^

> sup

Now apply (4.30) to find that, modulo a multiplicative constant, J5||X|| is
bounded below by

sup / u{dt) ί g{v{B{t,e)))de,
v€P(T) JT JO

which is precisely what we had to prove. •
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3. Lower Bound Proof.

The time has now come to tackle the hardest proof in these notes, that
of establishing the lower bound in Theorem 4.1.

In principle, the idea behind the proof is easy. Recall that the proof of
the upper bound was based on comparing a given process X with a simpler
process Y which dominated it, in the sense that E(Xt —X9)

2 < const E(Yt —
Y8)

2 for all s,t £ Γ. Since the structure of Y was simpler, it was possible to
calculate a good upper bound for -E?||lΊ|, and so, by the Sudakov-Fernique
inequality, obtain an upper bound for J5||X|| as well.

We shall follow this path once again. What makes it somewhat harder
to traverse this time, however, is that even after we have found a simple com-
parison process, the lower bound calculation is difficult. C'est la vie. What
is somewhat more disappointing is that even after we shall have worked so
hard to prove the result, we shall not have discovered how to built majorising
measures. The proof is not constructive.

Before we start, we require the following standard result.

4.10 LEMMA. L e t X l 5 . . . , X ^ be a sequence of i.i.d. standard Gaussian
variables. There exists a universal K > 0 such that

(4.31) E sup

PROOF: Take Zλ^...^ZN to be a sequence of i.i.d. random variables on
[l,oo] with probability density f(z) — z~2 and distribution function F(z) =
1-z-1.

The probability density of the m i n ^ ,...9ZN) is thus given by

WFiz))"-1 = Nz~N~\

so that

EmhL{Z1,...,ZN) = jf—^.

Note that Z{ = l/Φ(X t ), where Φ, as usual, denotes the standard nor-
mal distribution function. Thus

(4.32) jj—j = Emm(Z1,...9ZN)
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But Φ~ x (x) is a convex function, since

χ(x) d

μ

and the last expression is clearly positive for x > 0 and also positive for
x < 0 since it is zero at — oo and increasing thereafter.

Thus Jensen's inequality and (4.32) give

JV — 1
maxl<i<N J N

Apply the inequalities of (2.1) to complete the proof. •

We now require some rather formidable notation, in which A will always
be a subset of Γ, m a measure on T and P (A) the set of probability measures
on A.

roo

Ίm{A) = η{m,A) = sup/ g(m(B(t,e))) de
teA Jo

η(A) = inf Ίm(A)
mGP(A)

OL(A) = sup
BCA

a = sup {a(V): 0 ^ F C Γ, F finite }.

We have to establish the existence of a m 6 P (Γ) such that for some
universal constant K

Ίm(T) < KE\\X\\T.

Our first step towards this will be a little more modest.

4.11 LEMMA. There exists a universal constant K such that for every
non-empty, finite, V C T

(4.33) α(V) < KE\\X\\V.

You should think of this lemma as an approximate version of our theo-
rem. It is going to be easier to prove than the general result because of the
fact that OL{V) is determined by what X does on a finite subset of T. Before
we prove this lemma, however, we shall see that it is in fact equivalent to
the full result.

PROOF OF THE LOWER BOUND ( 4 . 3 ) : Since (4.33) implies that α <
KE\\X\\T, we need only show the existence of a m G P (Γ) for which ηm (Γ) <
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Ka. This we shall do by a reasonably straightforward subsequencing argu-
ment; i.e. We shall use the definitions of the α's and 7's on finite subsets,
where infima and suprema are achieved, to show that appropriate m's can
be constructed there, and then take a weak limit of these as our subspaces
grow towards the whole of T.

For each n > 1 let Tn = {tki}
r

i^1 be a finite subset of T such that

"~n~4sup inf d(t,tki) < 2
t€T 1^*^ rΛ

Now we choose one of these sets, which we denote by Tk. (Be careful
in following the subscripts in what follows. Tn and Tk are chosen from one
large family of sets, but whereas Tk is (temporarily) fixed, Tn will vary.)

Since η{Tk) < a(Tk) < α, there exists a mk G P{Tk) such that, by
Observation 4.8,

- 1

,2-<))) < 2 sup / g(mk(B(t,e))) de
ten Jo

; ( ( ) ) /
<εr k j = 1 t en Jo

(4.34) < 2a.

Consider mk as a measure on T, by setting mk(A) = mk(A (Ί Tk) for
A C T. Now follow the same construction as used in the proof of the upper
bound - viz. (4.14)-(4.17) - to obtain a family of subsets {C*.}ι

ri*1'
n) of T

and a mapping τr£ : Γ —• Tk satisfying (4.18) and such that for each t € T
the unique C*(ί) = CK with center TΓ* (ί) = tk

ni satisfies

(4.35) rnk(Ck

n{t)) < m f c ( β ( ί , 2 - " - 3 ) ) .

(As before, we must assume that the {ί^} have been reordered to satisfy
(4.14) for μ = mk, but, as before, this involves no loss of generality.)

Def ined e P{Tn) by

Now switch the sequencing, and hold n fixed while sending k —• oo.
Since n is fixed, Tn is finite, and so a standard argument shows that there
is a subsequence {μ* }k> of the above measures for which liπifc/^oo μ* = μn

exists (pointwise) and is an element of P{Tn).
We are almost done. Fix t € T and choose a further subsequence such

that limfc/z — oo τr£ "(ί) = π n ( ί) exists. Note from the finiteness of Tn that for
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large enough k" we must have that τr£' (ί) = πn (ί). Let τk (ί) be the first tki

such that d(t,tki) < 2" f c " 4 . Then, by (4.33), (4.34) and Fatou's lemma

* = 1

oo

< 16
»=i

< 32 α.

Finally, define m € P{T) by m(A) = ^ ,°1 1 2~nμn{A), Note that

and that by (4.18) and (4.35) m(B(t,2-n)) > m({πn(t)}). Thus

f g(m(B(t,e)))de < f^2~n g{m{B(t,2-n)))

t = l

t = l t = l

Since ί was arbitrary, the same is true for the supremum over t. This
completes the proof of the majorising measure lower bound, assuming Lemma
4.11. •

We must now show that Lemma 4.11 is valid. Before we can do so,
however, we have two preliminary results to establish. These are actually
the key to the proof, for they will show how to pack into the metric space
(Γ, d) small balls that are separated from one another by an appropriate (even
smaller) distance while at the same time ensuring that many side conditions
are satisfied. The proof of Lemma 4.11 then proceeds by replacing X by a
process defined, essentially, on the centers of these small balls, and studying
the supremum of the new process. The fact that the values of the new process
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have a certain minimal correlation between them (i.e. the centers of these
balls are a certain d-distance apart) is what makes the new process easier to
handle.

If you are familiar with mixing arguments for proving central limit or
Poisson limit theorems, in which one takes larger and larger time intervals,
split into more and more large subintervals, themselves separated by yet more
comparatively small but actually quite large subintervals, then you should
think of what we are about to do as being a similar construction, but with
"small" replacing "large" throughout.

4.12 LEMMA. If (T, d) is a metric space of diameter D and Ax,..., An a
partition ofT, then there exists a non-empty subset I of {l,...,ra} such
that, for all i G I,

α{Ai) > α{T) -

where \I\ denotes the number of elements in I.

PROOF: Order the At so that α{Aλ) > α(A2) > Fix S C Γ, and choose
πii β P(Ai Π S), i = l , . . . , n . Set α< = (i + I ) " 2 , note X)"=1 α< < 1, and
define m G P(S) by

Then,

/

oo rD

g(m(B{t,e)))de < / g(αimi(B{t,e))) de
Jo

fD

< Dgidi) + / g(mi(B{t,e)))de.
Jo

Thus,

7(m,5) < sup iDgM + ηim^AiΠ
l<i<n K

= Dg{αio) + η{mio,Aio nS),

for some io G {l,. . .,n}. By taking infima first over m» G P{Aio) and
then over m e P(S) it follows from the above and the definition of η that
η(S) < Dg(αio) + η{Aio Π S). This, in turn, implies that

α{T)<Dg{αio) + α{Aio).

Taking I = {1,... ,io}, so that |/ | = io, and noting the monotonicity of the
α(Λ»), completes the proof. •
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The next lemma is the important one. To formulate it, for each i > 1
and A C Γ set

βi{A) = a{A) - supα
t€A

4.13 LEMMA. If (T,d) is a finite metric space of diameter D < 6-< then
there exists a non-empty subset I of { l , . . . , |Γ|} and subsets {Bk}k€i ofT
such that

(4.36) diam{Bk) < β"*"1

(4.37) d{B, ,Bk) > 6-<-2 for j φ k,

(4.38) α(Bk) + βi+1(Bk) > α(T) + β<{T)

PROOF: By induction over A;, construct a sequence {Ak ,Bk,Tk }k of triplets
of subsets of Γ that satisfy

Γ f c=Γ\ (J A,-, QφBkCAkCTk,

diam(Afc) ^ β ^ - 1 ,

and such that for each k either

(4.39) α(Bk) + α{Tk) > 2α{Ak),

or

(4.40) α{Bk) + A + 1 ( B 0 > α{Tk).

Denote those k for which (4.39) is satisfied by Ix, and those for which
(4.40) is satisfied by J2.

The construction starts with Tx = T. Given Tk, if

(4.41) ^(Bίt.β-*-3)) + α{Tk) > 2α(B{t,2 6-i-ηn

forsomei eTk then set Ak = B(t,2-6~i-2)nTk and Bk = B ^ β - '
In this case k G h Otherwise, set Ak = B(to,Z β"^ 2 ) Π Tk and Bk =
β ^ ^ β-'^jnΓfc, where to eTk maximises α{B{t, 2-6"*- 2) ΠΓfc). In this
case, k £ I2, since

α{Tk) - 2 sup a(B(t,6-"-2) Π Tk)
teBk

> α(Tk) - α(Bk),
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the second inequality coming from (4.41) with the inequality sign reversed.
The construction stops when ct(Tk) < a(T) — 2 6~f, and let K, denote the
first k for which this is true. Thus, in particular, a(Tk) > OL{T) — 2 6~* for
all k < K.

Since a{Tκ) < ot{T) — 6~*\/2log3, the previous lemma, applied to the
two set partition {\Jk<κ Ak9Tκ} of Γ, gives us that

a(
k<κ

Another application of the previous lemma gives that there exists a non-
empty / C {1,... 5 K — 1} = 7χ U I2 such that for k (Ξ I

oc{Ak) > α(
k<κ

> a{T) - 6"<(λ/2log2 + \/2log(l

> a{T) - 2-6-* (2 +

Finally, we obtain that for k G / (Ί Ix

oc{Bk) + βi+1{Bk) > 2α(Λ) - α(

> α(Γ) + A(Γ) -3(α(Γ)-α(Λ))

> o(Γ) + A(Γ) - 6-'(2 +

Similarly, if k e I Π 72 then

α(B fc) +/9 i + 1 (B f c ) > α(Γ) - 2 - 6 - *

> 2α(Γ) - a{Ak) - 4 6- ' (2

> o(T) +

which proves the lemma. •

All that now remains is to provide a

PROOF OF LEMMA 4.11: Choose a finite V C Γ. Suppose a(V) <
63diam(Vr), and take θ,ί G v with rf(θ,ί) = diam(Vr). Since by Lemma
2.7 Emax(X9,Xt) = diam(7)/\/27Γ, we have that (4.33) holds with K =

Thus, we assume henceforth that a(V) > 63diam(Vr). Recall that we
have a global assumption, as discussed at the beginning of the previous
section, that diam(Vr) < 1. Set

L = max{j: diam(y) < 6"y},

M = minim: inf {d(s,t): d{s,t) > 0} > 2 " m ) .
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We now call on the construction of Lemma 4.13, which can be applied
M — L times to establish the existence on non-empty families BL, - 5 SM of
non-empty subsets of V such that BL = {F}, supB 6 S | . diam(JB) < 6"* and if
B φ B' are both in βt then d(B,B') > 6~*~2. Indeed, a careful sequential
application of Lemma 4.13 allows us to assume that for every B G B» and
j < i there is a 5 ' G By with B C B1.

Furthermore, if for ί G V there is a (necessarily unique) B G B» with
ί 6 ΰ , then we denote this J5 by J5* and we shall write Nf = \{B G Bi+1: J5 C
Bj}|. Then, by Lemma 4.13,

(4.42) a{B) + A + 1 (B) > α(JBj) + A(Bj)

for each B G β ί + 1 such that B <Z B\.

Now set V = f)*ίL UB€Bt B. a n d φ " = Σ ^ ^ e - ^ V l o g i V ; , for t G

V\ Note that J5t

M = {ί}, and Bt

L = V, so that

) > o.

This allows to use the following telescoping sum, to which we can apply
(4.42):

M - l

a{V) < inf

< 36 inf Φf + I

< 36 inf Φf + ^α(V^),

so that

(4.43) α(F) < 72 inf Ψf

Now we define a family of comparison processes. Let {{£B }B es, }ϋ

be a collection of i.i.d. standard Gaussian variables, and for ί G V set f*

£B<. Define, for ί G V and L < k < M - 1,

M

(4.44) yt

fc =
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For s,t eV with d(s,t) > 0 we have that 6"**-1 < d(s,t) < 6~io for
some io, which puts s and t in the same element of β{ for all i < max(L, io -2)
so that

E{Yt

L-Ίf)2 = [
i=max(L+

oo

6 ~ 2 '
(4.45) < 2

U-X.Y

Set Ck ={BΠV: B E 8k}. Then, from Lemma 4.10 and the definition
of Φ£, we have that there is a universal constant K such that for k = M — 1
and for each B (Ξ Ck

(4.46) tfsupY;* > ί ί i n f Φ t \

If we could show that (4.46) was also true for k = L, we would be done,
for then by (4.43), (4.45), Theorem 2.8 (the weak version of the Sudakov-
Fernique inequality) and the fact that V C V we would have that

a{V) < KE\\YL\\~ < KΈ\\X\\~ < E\\X\\V,

as required.

Fortunately, we can get precisely what we need by backward induction.
Thus, assume that (4.46) is true for some L < k < M — 1. We shall show
that it is also true for k — 1. This is all we need.

Thus, with k fixed, choose a B e Cfc_i Set C* = {C E Ck : C C £} ,
and let Ωc denote the event that Yc > Yc for all C φ C in Cξ. Because of
the finiteness of the parameter spaces, there is a well defined random variable
r\U -^ Cξ defined by the relationship

(4.47) Yτ\ω){ω) = supYt

k{ω) on ω e Q
v tec
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Now use the independence of the £* and (4.46) as follows:

f1 > ? 1

teB

cecξ t e σ

= TFΓ\ Σ

* T̂ T Σ ω*?tec

> K inf Φ * " 1 ,
~ tβB

which is precisely what we had to show. •

REMARK: Because this proof has been so very long and convoluted, you
should think carefully about precisely what we have needed to make it work.
One of the most important steps has been to move the problem from a general
parameter space to a finite one. We have used the finiteness a number of
times, but never more crucially than in the very last stage, in the definition of
the random variable τ at (4.47). It is this step, more than any other, that once
more seems to indicate that majorising measures are closely related to the
distributions of the positions in T of suprema. Unfortunately, however, the
proof relies on the position of the supremum of the comparison process Y, and
not that of X itself, so that we cannot obtain this variable in the final result.
(Again, I reiterate that in general we have no assurance that such a random
variable need be uniquely defined, but that in the case of continuous X
Pollard's (1990) result does give us this.) Thus the construction of majorising
measures in the most general situations, remains, for the moment, an elusive
goal.

4. Entropy.

We have now completed the main results associated with majorising
measures. Since this is, however, a somewhat difficult tool to work with,
we now return to the use of a somewhat easier, albeit not quite as efficient,
concept.

For e > 0, let N(e) as usual denote the minimal number of d-balls
of radius e needed to cover Γ. Then, as we noted in the Introduction,
H(e) = log JV(e) is called the (metric) entropy of Γ. We refer to any re-
sult or condition based on N or H as an entropy result/condition.

The fact that entropy results are generally implied by results involving
majorising measures is a consequence of the following important lemma.
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4.14 LEMMA. If Jo°° (logN(e))*de < oo, then there exists a majorising
measure m and a universal constant K such that

(4.48) sup Γ g(m(B{t,e)))de < κ(η\logη\ + Γ (logTV(e)) >&),
ter Jo v Jo '

for all η > 0.

PROOF: As usual, we can and so shall assume that diam(Γ) = 1. For n > 0,
let {AnΛ,..., ^4n,Λr(2-Λ)} be a minimal family of rf-balls of radius 2~n which
cover Γ. Set

(4.49) Bn,k = An,k \

so that βn = {J5n l,..., BnN(2-
n)} ι s a partition of T and each JBt is con-

tained in a d-ball of radius 2~ n . Define a probability measure m on T by

n = 0

where χ(A) = 1 if A φ 0 and χ(-A) = 0 otherwise. For every ί G Γ w e have
that if e 6 ( 2 - ( n + 1 > , 2 - n ] , then

m(B{t,e)) >

This implies that, for all t e T and all n > 0,

Γ (log (l/m(B(t,€))))*&
Jo

< (n + 2)2"n χ/ϊόg2 + 2 / (log{N{e)) 2 de,
Jo

the last line following from a little elementary algebra.
It is now easy to complete the proof, using monotonicity arguments to

pass from dyadic η to all η. •

An immediate consequence of Theorem 4.1 and Lemma 4.14 is the fol-
lowing:
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4.15 COROLLARY. A sufficient condition for the continuity of a centered
Gaussian process on T is that /0°° (log(iV(e))2 de < oo. Furthermore, there
exists a universal constant K such that

(4.50) E\\X\\ < K ί (logJV(β))' de.
Jo

PROOF: To establish continuity we need only, in the notation of, and by,
Theorem 4.5 show that ηm (η) —> 0 as η —• 0 for some m. This, however, is
immediate from Lemma 4.14 and the finiteness of Jo°° (log(JV(e)) * de.

The inequality (4.50) is an immediate consequence (in the case D = 1,
which is sufficiently general) of setting η = 1 in (4.48). •

There is also a lower bound to 2£||X|| involving entropy conditions, dat-
ing back to Sudakov (1971), viz.

^ < E\\X\\.
e>0

Given what we have behind us, this inequality is easy to prove. Details of
how to proceed appear in Exercise 4.4.

Since entropy calculations are easier to make than are those based on
majorising measures, a natural question to ask is whether or not there is a
converse to the above corollary.

When X is stationary, the answer is positive, and in 1975 Fernique
established the following result for processes on 3id, d > 1. We can easily
obtain a somewhat more general result from what we have already laboured
to prove.

4.16 THEOREM. Let X be a stationary Gaussian process on a compact
group, or a compact subset of an inήnite group. Then the following three
conditions are equivalent:

(i) X is a.s. continuous on Γ,

(ii) X is a.s. bounded on Γ,

(iii) Γ {log{N{e)))i de < oo.
./o

PROOF: That (i) implies (ii) is obvious. That (iii) implies (i) is Corollary
4.15. Thus it suffices to show that (ii) implies (iii), which we shall now do.
Note firstly that by Theorem 4.4 we know that

/•oo

(4.51) sup/ g(m(B(t,e)))de < oo
ter Jo
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for m either normalised Haar measure on Γ, in the compact case, or the nor-
malised restriction of infinite Haar measure in the second case. Furthermore,
by stationarity, the value of the integral must be independent of t.

For e e (0,1) let M(e) be the maximal number of points {tk}^Jl] in Γ
for which

min d(ί, ,ffc) > e.
<j\fc<M (c)

It is easy to check (Exercise 4.3) that

N{e) < M{e) < N{e/2).

Thus, since m has total mass unity, we must have

m(B(t,ή) < (N(2e))-\

Consequently, by (4.51) and, in particular, its independence on t

oo > ί g(m(B{t,e)))de > ί (logN{2e))> de
Jo Jo

= 2 Γ {\ogN(e))> de,
Jo

which proves the theorem. •

That an entropy condition cannot in general provide a necessary and
sufficient condition for continuity can be seen by counterexamples. Here is
one.

4.17 EXAMPLE. Let {Xn}n>i a sequence of i.i.d. Gaussian variables such
that

(4.52) σn = σ{Xn) = {EX2

n)^ = (1 + logn)"^ .

Tien t ie sequence {Xn} is a.s. bounded but does not satisfy the "βnite
entropy" condition.

PROOF: Note that for each n > 1 and λ large enough (λ > 2 will do)

PίY > \\ < p~χ2/2σl

< KrΓ 2 λ 3 e~

Thus

(4.53) P { s u p | X n | > λ } = P{3n>l:

n= 1

<
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It is now a trivial calculation to check (Borel-Cantelli) that supn Xn is
a.s. bounded.

Note that so far we have not had to use the fact that the Xn are inde-
pendent to prove boundedness of the supremum.

The sequence {Xn}n> 1 does not necessarily give a finite entropy integral
however. Now use the fact that the Xn are independent, and take e > 0.
Then, for n < ne = exp(- l + l/(2e2)), we have σ[Xn) > ey/2. Thus,

d(n, m) > 2e for all n, m < ne.

Since this means that n and m cannot belong to the same e ball if n, m < n e ,
it follows that N(e) > ne — 1, so that

inf e(logJVe)^ > 0,
€> 0

and so the metric entropy integral /(log JV(e))^ de cannot be finite. •

Despite the lack of a finite entropy integral, however, there must be an
appropriate majorising measure. In this case it is not too hard to find, and
an appropriate measure is

(4 54) ™(W) = ,, K\^
v J v ι JJ n(logn) 1 + e

for any a > 0, where Ka is the appropriate normalising constant. There are
many counter-examples of this kind. All are based, as is the above, on being
forced to use too many balls to cover parts of the parameter space that are
somehow too "thin" for anything important to happen.

One way to get around this, while remaining with metric entropy, is to
try to divide the space up in two stages, firstly by looking to see which parts
are most likely to be problematic, and only then doing entropy calculations.
This is an approach that has turned out to be useful in getting good bounds
for the supremum probabilities P{ | |X| | > λ} and we shall employ it to much
advantage in the following chapter.

A result based on this approach is the following, which goes part of the
way towards closing the gap between the entropy and majorising measure
conditions for continuity. It is due to Samorodnitsky (1988). The proof we
give is based on a personal communication of Talagrand.

Firstly, note that by Theorem 3.6 it is enough to study a.s. continuity at
each point of T individually in order to determine full sample path continuity.
Let to 6 T be fixed, and let J9(ίo,<5) be the d-ball around to of radius δ.
Furthermore, for each η G (0,5), set

A{tOiδ,η) = {teT:η<d{t,to)<δ},

so that if η < δ
B(to,6) = B{to,η)UA{to,δ,η).

For a general set C C T, let N(C, e) be the minimal number of d-balls
of radius e required to cover C Then the following is true.
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4.18 THEOREM. A sufficient condition for the a.s. continuity of X at the
point to G T is the existence of a function H(s,t) satisfying the following
two conditions:

(4.55) lim / H>{s,t)dt = 0,
• - o Jo

(4.56) logN(B(t0,η,δ),e) < H{η,e).

for all e > 0 and any 0 < 77 < £ < Δ, Δ some fixed constant.

It is easy to see that Theorem 4.18 gives weaker conditions for continuity
than does Corollary 4.15, and there are examples covered by the weaker
conditions only. Counterexamples show, however, that even the use of a
"two-parameter entropy" cannot give necessary and sufficient conditions for
continuity.

The proof of this result is a very nice example of how judicious use of
Borell's inequality, can easily lead to powerful results.

PROOF OF THEOREM 4.18: Consider the process Yt = Xt -Xto. Clearly
Y induces the same canonical metric on T that X induces, and all entropies
remain unchanged.

Let Cn = {t β T: 2~n < d{t,to) < 2~n + 1}. It clearly suffices to show
that for any sequence en [ 0 the sequence P{suptGC^ Yt > en} is summable.
Note firstly that

/ (logN(Cn,ή) > de < 4 / (H{2~\e)Y de,
Jo Jo

by (4.56), so that by Corollary 4.15 and 4.55

lim E sup Yt = 0.

Let ηn = EsupteCn Yt. By Borell's inequality

P{snpYt>en} < 2e" H**-**)2/*'*.
tecn

By letting en decrease slowly enough we obtain a summable series and so
complete the proof. •

5. Ultrametricity and discrete majorising measures.

If you have ever so much as browsed through the papers of Fernique
and Talagrand on Gaussian processes (I would hope that by now you have
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done more than just browsed) you will have noticed that there is one glaring
omission in the current notes. The word "ultrametric", which is so very
prevalent there, has not appeared here at all.

A metric space (Γ,d) is called ultrametric if for all r,s,ί G T w e have

(4.57) d(s,t) < max(d(s,r), d(r,ί)),

and a Gaussian process X on a space T is called ultrametric if T, together
with the canonical metric generated by X, is ultrametric.

The most important aspect of ultrametricity, from the point of view of
Gaussian processes, is that two balls of the same radius are either identical or
disjoint. We have already seen two very important examples of ultrametric
spaces in this chapter, but before I tell you where they were, let us look at
a very general way to construct examples.

Let {Γn}n>i be a collection of finite sets, and {π^ : Tn —> T m } i < m < n a
collection of mappings such that for m <n < p

and, for t e T n , π£(t) = ί. If Γ is the projective limit of the {T n ,π^},
furnished with the natural metric, then T is a compact ultrametric space.

To define a ultrametric Gaussian process on T we argue as follows:
Firstly, let π n denote the projection of T onto T n . Then to every point
t G U n Tn assign a standard Gaussian random variable f (ί). Take the
to be mutually independent. Choose 0 < q < 1, and for t G T define

(4.58) X(t) =
n = l

This process is ultrametric, as you can check for yourself (Exercise 5.1).
Now you should remember where we have used ultrametric spaces in

these notes. The proofs of both the upper and lower bounds of Theorem 4.1
relied on comparing a given process to one whose structure was somewhat
simpler - simpler enough to permit calculation. In both cases, the processes
constructed were ultrametric.

In fact, we could have rewritten our proofs somewhat (thus taking them
closer to the style of Talagrand's) by first proving what we needed for ultra-
metric processes, and afterwards mapping the results across to the general
case. (Historically, this is precisely how the decade from the mid 'seventies
until the mid 'eighties saw most of the majorising measure results derived.)
Whether one works this way, or as we have, is very much a matter of taste.
Both routes involve the same amount of work - there are no free lunches
here.
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To be fair, however, I should point out that there are certain advantages
to taking the route of first proving things for ultrametric processes and then
generalising. The first is that since the first stage of the proof is easier, it
gives you a better chance of checking whether or not a new result may or may
not be correct and/or provable. Secondly, it has certain distinct advantages
when dealing with non-Gaussian processes.

To see how useful ultrametricity can be in terms of simplifying proofs,
you should look at a series of papers by Evans (1988a,b, 1989) that are con-
cerned with the sample path properties and extrema of Gaussian processes
indexed by local fields. Although Evans does not use the notion of ultra-
metricity directly, the structure of his parameter space gives him properties
of this kind for free, and so allows for neater proofs and occasionally more
powerful results than one can obtain in a general setting. •

We can now turn to the notion of discrete majorising measures, which,
as with ultrametricity, can sometimes save one some work.

If (Γ,rf) is a metric space, then a probability measure m is called a
discrete majorising measure for Γ if there exists a countable set S C T
which supports m and a sequence of mappings {πn}n>i from T into S such
that

(4.59) d(t9πn[t)) < 2" n , ί G Γ , n > 1,

and

oo

(4.60) S U P Σ
 2 ~ Λ ί ( m KW)) < °°

To see an nice example of why it is sometimes easier to use discrete
majorising measures than their regular counterparts, you should look at An-
dersen et. al. (1988), which has a detailed and powerful treatment of central
limit theorems and laws of the iterated logarithm for empirical processes on
very general parameter spaces. At this point I shall content myself by just
quoting the main results from there which link the two types of majorising
measures. The proof is left as an exercise.

4.19 THEOREM. If (T,d) has admits a majorising measure μ, then it also
admits a discrete majorising measure m. If μ satisfies

rδ

(4.61) limsup/ g(μ(B(t,e))) de = 0
6-+0 t € T Jo

then m can be chosen to satisfy

oo

(4.62) lim s u p ^ 2 - n f f ( m ( { τ r n ( ί ) } ) ) = 0 .
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This result, along with what has gone before, is sufficient to establish
that essentially all the results that we have stated relating boundedness and
continuity of Gaussian processes to majorising measures have a corresponding
discrete majorising measure form.

For example, if you look again at the upper bound proof for Theorem 4.1,
you will see that we have actually proven there that the comparison process
Y of (4.20) is a.s. bounded on T when there exists a discrete majorising
measure on Γ. In fact, we showed that the upper bound in (4.3) can be
replaced by

oo

(4.63)

You should work through the details yourself in Exercise 5.3. In view of
Theorem 4.19, a corresponding lower bound also holds.

Again, for more information on discrete majorising measures see Ander-
son et. al. (1988).

6. Discontinuous Processes.

Up until this point we have concentrated on finding conditions under
which a Gaussian process X is continuous, and, once it is known to be
continuous, measuring its smoothness in terms of moduli of continuity. It
seems only reasonable to make a slight detour to see what happens when X
is discontinuous.

Recall first that by the zero-one law of Theorem 3.12, if the probability
that X is continuous on T is less than one then this probability must be zero,
and so X is actually discontinuous with probability one. It then follows from
Theorem 3.6 that, for each t β Γ,

P{limX θ φ Xt} = 1 .

Thus X is discontinuous with probability one at every point in a dense subset
of Γ, and so discontinuous at every point in Γ.

Like the little girl with the curl in the middle of her forehead, when X
is good (continuous) it is very very good, but when it is bad, it is horrid.

My task now, as an adherent of the Gaussian school, is to show you
that things aren't quite as bad as they seem, as long as you look at them
the right way. The way to do this will be to set T = [0, l] (although any
compact T C 9ΐfc would do) and to describe some very elegant results due to
Don Geman, written up in an unpublished manuscript, Geman (198?). (If
you want details, you will have to write to Geman himself. If enough of you
do this, this may convince him to publish the paper, as should have been
done long ago!) We start with the concept of Lebesgue density.
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Let A C [0,1] be Lebesgue measurable, and let

; l i m

tio t

be the Lebesgue density of A at zero, (λ is, as usual, Lebesgue measure.)
Do (A) is a measure of how "thick" A is in the vicinity of ί = 0. The basic
idea is going to be that any set that has Lebesgue density zero at 0 is so
thin that we are going to be prepared to throw it away when we consider the
local behaviour of X near 0.

Thus, if φ is a Borel measurable function on [0,1], we define

aplimsup<£(f) = inf {α: D0({s: φ(s) > a}) = θ},
no

and
apliminf φ(t) = sup{α: D0({s: φ(s) < a}) — θ},

where the "ap" here is to be read as "approximate". Clearly, if ap liminfno Φt
= aplimsup t i 0 φt, we call the resulting number the approximate limit of φ
at zero, and write it as aplim n o φt.

One more definition will suffice for the main result. We shall call a
non-negative function φ = φφ an approximate upper function for φ at 0 if

< i.
t|0 φ(t)

Approximate lower functions are similarly defined. Here is Geman's main
result.

4.20 THEOREM. Let X be centered, Gaussian on [0,1], and set

p{u) = (E\Xu-X0\
2)\

If X is stationary, p increasing, and if

(4.64) Π m p(u/|logu]) =

ujO p(u)

then

ap hm sup — ! — , = < 1
no p(ί)ylog|logί|

with probability one. That is, p(t) y/log |logί| is an a.s. approximate upper
function for X at 0.
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if X is not stationary, then set

fΛxr\ ~f \ ( E(Xt - X0)(X8 - Xo) S . r / n i x |

(4.65) ,(«) = sup{ ^ ^ : - = u, s,t β (0,1)},

and assume that

(4.66) /
Joo (l-β{s)y

< oo.

Then p(t)y21og|logij is an a.s. approximate upper function for X at 0.

I shall not even attempt to prove this result, other than to note that it
is based on the non-probabilistic result that a set A has density 0 at t = 0
if, and only if,

m(AΠ (0,ί))\ dt\ dt

) T
< oo,

for a some continuous, strictly increasing Φ on [0,1] with Φ(0) = 0.
You can find precursors to Theorem 4.20, along with full proofs, in

Geman (1977, 1979) and Geman and Zinn (1978), but only Geman (198?)
has all the details.

The interest in this theorem is that it covers very many processes that
are discontinous in the usual sense, but continuous in the "approximate"
sense. In fact, there is a (very reasonable) conjecture that this is true of
all Gaussian processes on [0,1]. Don Geman described it to me as follows:
"If, after we have drawn a discontinuous, unbounded, Gaussian sample path
on the blackboard, we were to step far enough backwards so that we could
no longer see sets of zero Lebesgue density, the sample path would become
continuous and bounded".

There are examples in the Exercises.

7. Exercises.

SECTION 4.1:

1.1. Let m i , . . . , mn be a sequence of majorising measures on (Γ, d), and
«i,. . . ,α n a sequence of non-negative numbers summing to 1. Show that
Σfc=i akmk is also a majorising measure. That is, convex combinations of
majorising measures yield majorising measures.

SECTION 4.4:

4.1. Let T be an compact metric space. Construct a centered Gaussian
process on T whose entropy integral diverges, but whose sample paths are
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continuous with probability one. (Hint. Use the construction of Theorem
1.6 together with the arguments of §4.4.)

4.2. You are now going to prove Corollary 4.15 directly, following Dudley's
(1973) proof.

Let N(e) be the entropy function for X on Γ, set H(e) = log N(e) and
f(η) = /J7 (H(e)) a" de. We are going to show that / is a modulus of continuity
for X in the canonical metric. This will imply Corollary 4.15.
(i) Define sequences δn [ 0 and en j 0 inductively as follows: ex = 1. Given
€ X , . . . , en, let

5n = 2inf{6:

en + 1 = min(en/3,<5n).

Show that

OO

Σ Hϊ(em)em < f(en) < 4

(ii) Note that for each n > 1 there is a set An C Γ such that, for any t (ΞT,
rf(θ,ί) < 2(5n. Set £ n = {θ - ί : s,t G XΛ_i U ̂ ln}, and let

By using entropy arguments to bound the number of elements of Qn, along
with standard Gaussian inequalities, show that

Pn < 4 e x p { - i # ( e n ) } .

(iii) For any t eT, set Ao (t) = t, and for n > 1 let An (t) G An be such that
d{t,An{t)) < 2δn. Write Xt as

Xt =
n = 0

and use this representation plus the results of (i) and (ii) to show that / is
a modulus of continuity for X.

4.3. For e G (0,1) let M(e) be the maximal number of points {tk}^Jl m

T for which
min d(fy,ίfc) > e.
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Show that

N{e) < M(e) < N{e/2).

4.4. To give a direct proof of Sudakov's lower bound

( γ < E\\X\\,€ > 0

proceed as follows:
Fix € > 0 and choose a maximal set of points, Tc, say, as in the above

exercise. Choose i.i.d. zero mean Gaussian variables {Yn}™!^ with vari-
ance e2. Apply the Sudakov-Fernique inequality of Theorem 2.8 to compare
#||X||Te to E\\Yn ||. Then bound the latter from below by Lemma 4.10. Now
send £ —> 0 to get a result involving £"||X||T. If you did it all properly, you
will have proven Sudakov's lower bound.

4.5. Find an example satisfying the entropy condition of Theorem 4.18
but not that of Corollary 4.15.

SECTION 4.5:

5.1. Show that the process defined by (4.58) is in fact ultrametric.

5.2 Prove Theorem 4.19.
(Hint: Use the construction we made in the proof of the upper bounds

on #||X||, defining πn as there, and setting μn(t) = m(τrn(ί)). This result is
due, in this explicit formulation, to Anderson eί. al. (1988).)

5.3. Prove the upper bound to £Ί|X|| of (4.63). (Note that since T is
finite all integrals involving majorising measures are in fact sums.)

SECTION 4.6:

6.1 LetX t be stationary on [0,1] and assume E\XU-XO |2 ~ | l o g u ^ , 0 <
β < oo. Show that X is continuous for β > 1 and discontinuous otherwise.
In the former case find the regular modulus of continuity at 0. In both cases,
calculate the approximate modulus of continuity.

6.2 Let Xt be an index-/? process on [0,1]. Show that (4.40) is satisfied
for these processes. Calculate regular and approximate upper functions at 0
and compare them.




