Chapter 9. Models

Fitting models to data is a popular activity. For data taking values in a group
or homogeneous space, the associated representation theory gives neat families of
models. Briefly, if P(z) is a probability on X, write P(z) = e™*) with h = log P.
Then expand h in a natural basis b; of L(X):h(z) = X6;bi(z). Any positive
probability can be expanded in this way. Truncating the expansion to a fixed
number of terms leads to families of simple measures or models; because b; are
orthogonal, 8; are identifiable.

It is an interesting fact that many models introduced by applied workers
fall into this class. The general story is presented first, then a specialization to
data on spheres, then a specialization to partially ranked data. A brief review of
other approaches to ranked data is followed by a section supplying the relevant
exponential family theory.

A. EXPONENTIAL FAMILIES FROM REPRESENTATIONS

Let G be a group acting transitively on a compact set X. Let L(X) denote the
real valued continuous functions on X. Suppose X has an invariant distribution
dz. The following abstracts an idea introduced by Lo (1977) and Beran (1979).

Definition. Let © be an invariant subspace of L(X) containing the constants.
Define a family of measures, one for each § € O, by specifying the densities to be

Py(dz) = a(8)e®®dz,

where a(#) is a normalizing constant forcing Py(dz) to integrate to 1.
Suppose O is finite dimensional. Let by =constant, by, b2,...,b, be a basis
for ©. Then the family can be parameterized as

(¥) Ps(dz) = a(0)e?*dz, 6 € R?,b = (by(z),...,b,(z)).

LEMMA 1. The family * is well parameterized in the sense that Py = Py if and
only if = 6'.

Proof. Only the forward direction requires proof. If Py = Py, then
(0 —6")-b(z) = log(a(8')/a(8)) for all z.

The left side is a linear combination of by, bs,...,b, which is constant. But
1,b1, b2,...,bp is a basis, so § = §'. O

In applications there is a decomposition into invariant subspaces L(X) =
VodVi®Va®...and O’s are chosen as a finite direct sum of subspaces. Usually
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168 Chapter 9A

these nest together neatly to form zeroeth order models (the uniform distribution),
1st order models, etc. The matrix entries of the irreducible representations then
provide a convenient basis.

The easiest example is for data on Z§¥. The exponential families that the
group theory suggests are exactly the log-linear models that statisticians fit to
2 X 2...x 2 tables (k factors). Here a person is classified via k dichotomous
variables. This gives rise to a vector in Z¥ or locates a cell in the table.

A useful entry to the statistical literature is provided by the first few chap-
ters of Gokhole and Kullback (1978). General contingency tables can be treated
similarly. Since this is such a well studied area, we will not pursue it further than
mentioning the important paper of Darroch, Lauritzen and Speed (1980). This
gives an elegant interpretation to setting 6; = 0 for a large class of models. It
would be an important contribution to generalize their ideas to the general group
case.

The measure Py(dz) governs a single observation. We model a sample of size
n by a product measure

n
Pg(:l:l,:ltg, e ,.’l)n) = H Pg(:l:,‘)dl‘i.
i=1

The statistical problem becomes, given a model ©, and observations z,,
Z9,...,Cn, What is a reasonable guess for #, and how sure are you about the
answer.

Remark 1. Crain (1973, 1974, 1976) suggested expansion of log P(z) in a
basis of orthogonal functions as a route to nonparametric density estimation. He
truncated the expansion at a point depending on sample size. This leads to an
approximate density in a finite dimensional exponential family as in the definition
above.

Crain’s later papers give conditions on how large the cutoff point should be
to have the maximum likelihood estimator exist. These are discussed in Section

E below.

Remark 2. There is a growing literature on orthogonal series estimators —
density estimators based on expanding the density directly as P(z) = X6;b;(z).
Hall (1986) makes noteworthy contributions providing simple useable estimators
and giving sharp rates of convergence. He gives pointers to the literature. Hall’s
results can be carried over to problems on compact homogeneous spaces in a
straightforward way.

Orthogonal series estimators suffer from the possibility of negative density
estimates. This is why Crain worked with log P(z). It is a worthwhile project to
combine the ideas and bounds of Hall with the ideas of Crain.

Remark 3. One problem encountered with log P: it is badly behaved if P = 0.
Consider a density on the circle. If P(z) > 0 outside an interval, things can be
rescaled and there is no trouble. If P(z) = 0 on several intervals the problem
can be treated as a mixture, but the log P approach is wearing out its welcome.
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There are so many other density estimates possible — from histograms, through
kernel estimators, through projection pursuit.

On more general homogeneous spaces, problems with vanishing density seem
even less approachable.

Remark 4. The definition above is in terms of real valued functions. This works
fine for the symmetric group and its homogeneous spaces and for the orthogonal
group. In general, L(X) may be taken as all complex functions and a model may
be taken as an invariant subspace of L(X). Just as any real function on Z, can
be expanded in terms of sin(27jk/n) and cos(27jk/n), any real function on X
can be expanded as a real linear combination of the real and imaginary parts of
the matrix entries of the irreducible representations that occur in the splitting of
L(X).

Remark 5. The models introduced here blend in nicely with the spectral theory
of Chapter 8. They are the largest models which allow as sufficient statistics the
ingredients of the matching spectral analysis. See E-1 below.

Remark 6. The ideas set out above can be generalized in various ways. One
natural extension begins with a space X and a symmetric Markov chain P(z,dz)
on X. Symmetric chains can be orthogonally diagonalized, and the eigen vectors
provide a convenient orthogonal basis for L(X). There are chains that don’t
arise from groups where this basis can be written explicitly. See Banni and Ito
(1986, 1987) or Diaconis and Smith (1987). It is not clear if these models can be
connected to the underlying chain.

A word of caution: 1 find the statistical community introduces models much too
easily. In some cases, there is a justification: “height is the sum of a lot of small
factors, so heights should be approximately normally distributed” or “the number
of accidents is the sum of a lot of roughly independent binomial variables with
small parameters, so accidents should be approximately Poisson.” In some cases
linearity or physical justification (and repeated comparison with reality) justify
models: Gauss’ discovery of Ceres, Bright-Wigner distributions in particle physics
or multinomial distributions in genetics are examples.

The cases where some slim justification is given seem alarmingly few to me.
Usually, one is contemplating some data and a model is chosen for convenience
as a way of doing data analysis. This is a curve fitting approach and is fine,
except that the product model assumes independence. Further, the assumptions
about Py(dz) may be a drastic oversimplification. One may well do better looking
directly at the data using spectral analysis, or a convenient ad hoc approach.

I must admit that I too find ad hoc modeling attractive and occasionally
useful — it seems like a most worthwhile project to try to isolate what good comes
out of the modeling paradigm and attempt to build a theory that optimizes this
good instead of behavior in a non-existent fantasy land of iid repetitions.
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B. DATA ON SPHERES.

Spherical data is discussed in Chapter 5-C. One important special problem
is testing for uniformity. A large number of special tests have been suggested.
These are reviewed by Mardia (1972) and Watson (1983). We discuss here one of
the earliest tests and follow its later developments.

Let X7, X3,...,X, be unit vectors on the sphere S? in p dimensions. Define
the sample resultant R and sample mean direction U(8) by

LS x; = RU@).
n i=1

Intuitively, if X; are uniform, R will be “small” because there will be a lot of
cancellation. If X; are non-uniform and cluster around some point, then R will
be “large.” Rayleigh (1919) worked out the distribution of R under the uniform
distribution and could thus propose a test “reject uniformity if R > r” where r
is chosen to achieve a given proportion of false rejections. A nice derivation of
Rayleigh’s results is given by Feller (1971, pg. 32).

Questions and alternate tests immediately suggest themselves. Observe that
Rayleigh’s test is invariant: R does not change if X;, Xj,...,Xn, are replaced
by I'Xy,...,I'X,, I orthogonal. On the negative side, Rayleigh’s test would not
be appropriate if the X; tend to cluster either close to a point or its antipode.
When is this test a good one? Some answers have come from statistical theory.

Independent of Rayleigh, a class of natural non-uniform distributions was
developed and used by Von Mises and Fisher. These have the form

Py k(dz) = Cpk)e* *da

with x € $P, dz the uniform distribution, p € S?, and k£ > 0. The normalizing
constant is

Cp(k) = kP=D/2 j(2m)PI2 L1y 12(K)

with I.(k) the modified Bessel function of the first kind.

The P, x have “mean direction” p and as k increases are more and more con-
centrated about u. They arise naturally from the first hitting place of a Brownian
particle with drift on the sphere. Watson (1983, Chapter 3) discusses this and
other justifications.

A nice result is that the likelihood ratio test of

Ho:k=0vs. Hy:k >0, g unknown

reduces to Rayleigh’s test. Further, Rayleigh’s test is the uniformly most powerful
invariant test of uniformity versus P, y(dz). These results are due to Beran (1968)
who discusses their analog on compact homogeneous spaces. Giné (1975), Wellner
(1979), and Jupp and Spurr (1985) amplify and develop these ideas. Closely
related developments in the signal processing literature are surveyed by Lo and
Eshleman (1979).
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These developments give a pleasing answer to the original question: when is
Rayleigh’s test good — it’s good if data cluster about one point u in a spherically
symmetric way.

Remark. I cannot resist reporting some background on Fisher’s motivation for
working with the distribution discussed above. This story was told to me in 1984
by the geologist Colin B. B. Bull. Dr. Bull was a student in Cambridge in the
early 1950’s. One day he ran across the street in haste and knocked an old man
off a bicycle! The old man seemed dazed. When asked where he was bound
he replied “India.” It turned out to be R. A. Fisher who was meeting a train
enroute to a visit to the Indian Statistical Institute. A month later, Bull met
Fisher at Cambridge and again apologized. Fisher asked what area Bull worked
in. Bull explained that a group of geologists was trying to test Wegener’s theory
of continental drift. Wegener had postulated that our current continents used to
nest together. He tested this by looking at the distribution of a wide variety of
bird, animal and plant life — arguing that matching points had close distributions.

Geologists found themselves far afield in trying to really understand We-
gener’s arguments. They searched for data that were closer to geology. They had
hit on the distribution of magnetization angle in rocks. This gave points naturally
distributed on the sphere. They had two distributions (from matching points on
two continents) and wanted to test if the distributions were the same.

Fisher took a surprisingly keen interest in the problem and set out to learn
the relevant geology. In addition to writing his famous paper (which showed the
distributions were different) he gave a series of talks at the geology department to
make sure he’d got it right. Bull told me these were very clear, and remarkable
for the depth Fisher showed after a few months study.

Why did Fisher take such a keen interest? A large part of the answer may
lie in Fisher’s ongoing war with Harold Jeffries. They had been rudely battling
for at least 30 years over the foundations of statistics. Jeffries has never really
accepted (as of 1987!) continental drift. It is scarcely mentioned in Jeffries” book
on geophysics. Fisher presumably had some extra-curricular motivation.

The motivation for Rayleigh’s and Von Mises’ work seems equally fascinating!
Watson (1983, Chapter 3) gives a good set of pointers.

There is a second family of probabilities on SP that has received a good deal
of attention. The Bingham densities are defined on S? as

by(D) exp{tr[DR'zz'R]}dzx

where D is a p X p diagonal matrix with (p, p) entry zero, and R is a p X p
orthogonal matrix.

These densities are invariant under  — —z and so are possible models for
unsigned directional data — lines in R? (or points in projective space). A host of
properties and characterizations of these densities are known.

Beran (1979) points out that both the Fisher-Von Mises and Bingham families
fit nicely with the definition of models given in Section A. Here, the group SO(p)
of pX p orthogonal matrices with determinant 1 operates transitively on the space
X = §P. Take L(X) as the continuous real valued functions on X.
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Let P be the homogeneous polynomials (in RP) of degree k. Let M; be the
P
subspace of harmonic functions in Py: My = {f: V:f = 0} where % = 3 53;2;-.
=1 ¢

These M} are invariant and irreducible under the action of SO,. Further, L(X) =
@®r=0Mj as a Hilbert space direct sum. Proofs are in Dunkl and Ramirez (1971).

Following the definition, M — the zero-th order model gives only the uni-
form distribution. My ® M; — the first order models is obviously spanned by
1, 1,%3,...,%p (these are all killed by 7?). The associated exponential family
is the Fisher-Von Mises family.

A second-order model is defined by My® M; ® M;. Beran (1979) shows these

are spanned by {z;z;}—{z2}, giving the Bingham distribution. In general, a basis

T
for @ M; consists of all distinct monomials of degree r and r — 1, excluding z,
k=0
if r is even or x;‘l if r is odd.
Some more technical discussion of estimates and their properties is given in
Section E below.

C. MODELS FOR PERMUTATIONS AND PARTIALLY RANKED DATA.

Begin with a data set on the symmetric group S,. Say f(7) is the proportion
of the data choosing rankng 7. In working with such data it seems natural to
begin by looking at first order statistics: the proportions ranking each item first,
or last, and more generally the proportion ranking item ¢ in position j. The
average rank given each item is a popular summary which is a mean of these first
order statistics.

Paul Holland suggested working with the exponential family through the first
order statistice in the early 1970’s. This leads to

Holland’s model. Let p be the n — 1 dimensional irreducible representation of .S,,.
Let Mat(n — 1) be the set of all n — 1 by » — 1 real matrices. Define

Py(x) = ¢(0)eTT0M); for § € Mat(n — 1),
with ¢(8)-1 = £, eTr(6(s(m)

Remarks. These models are well parameterized by § € Mat(n — 1) = R("—1)?,
To give an example, consider a simple sub family:

Qo() = c(8)e? ") | g ¢ R.

This can be described intuitively as “there is some special chance of ranking item
1 in position 1; whether or not this is done, the rest of the permutation is chosen
uniformly.

If item 1 were carefully ranked, and then the others chosen at random, the
appropriate family would be

QG(W) - C(Q)eel61(7I'(1))+...+9n_16,,-1(#(1)), 0 € Rn—l.

Holland’s model extends these considerations to a full first order model.



Models 173

Joe Verducci (1982) began with Holland’s model and the observation that
(n—1)? parameters is still a lot to work with and think about. He introduced some
natural low dimensional subfamilies and fit them successfully to real data sets.
One of his nice observations is that some of Mallows’ metric models introduced
in Chapter 6-A-1 are subfamilies of first order exponential families.

Consider

Qa(m) = (V)M (MmN € R, H = Hamming distance.

For fixed 7, this is a subfamily of Holland’s, taking 8 = Ap(w5'). Of course, if
To is also treated as a parameter, the two models are different. Verducci observed
that replacing H by Spearman’s $? also gives a first order model.

Arthur Silverberg (1980) began to work with second order models using the
proportion ranking ¢,¢' in position j, j'. Verducci (1982) realized the connection
with group representations could help sort out questions of when a model is full,
or well parameterized.

Silverberg worked with ¢g-permutations, where people rank their favorite g out
of n. This would be data on S, /Sn—4 in the language of Chapter 7. Generalizing
slightly, let )\ be a partition of n. Let X = §,/Sx, X Sy, ... % S, be the set or
partial rankings of shape A. Using Young’s rule, and notation of Chapter 7,

L(X)=M* = @k(v;1)S*

vkn

where the sum is over all partitions v of n which are larger than A in the partial
order of majorization and k(v, A) is the multiplicity of §¥ in M?. See the remarks
to Theorem 1 in Chapter 7A. Restricting attention to a few of the pieces in this
decomposition gives models of various sorts.

If X =(A1,...,Ak), the n—1 dimensional representation appears (k—1) times
(k(n—=1,1); A\) = k —1). The direct sum of these k — 1 dimensional subspaces has
dimension (k — 1)(n — 1) and it spans the first order model.

Let us apply Young’s rule to answer a question posed by Silverberg (1980) —
what is the dimension of 2nd order models for ¢g-permutation data. The partition
involved is n — ¢, 19. Suppose that 2 < ¢ < n—¢q. Second order models are associ-
ated with partitions (n — 2,1,1) and (n — 2,2). By Young’s rule, the multiplicity
of each in M1*»~9 is (). By the hook length formula of Chapter 7, the dimension
of §7=21:1 is (n — 1)(n — 2)/2. The dimension of S"~2:? is n(n — 3)/2.

If we also include the first order component, the dimension of the second

order model is g\ (n-1 ¢\ n(n —3)
‘1("—1)"‘(2)( 2 )"‘(2)—_2—'

Of course, it is important to keep the pieces separated, both for computation and
inference.

The models discussed above have not been broadly applied. At present, there
are no simple processes that lead to these models, nor simple interpretations or
benefits from them. Since exponential families have such a good track record in
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these directions, it seems like a worthwhile project to study and develop properties
of low order exponential families on partially ranked data.

Some technical and practical aspects of the models in this section are dis-
cussed in Section E of this chapter.

D. OTHER MODELS FOR RANKED DATA.

The models proposed for ranked data in the previous section and the metric
models of Chapter 6 have a distinctly ad-hoc flavor to them. There have been
energetic attempts in the psychological literature to develop models for ranked
data that are grounded in some more basic processes. This section briefly describes
some of the models and gives pointers to the literature.

.To fix a problem, consider an experiment in which p tones are played for a
subject who is to rank them in order of loudness. It is an empirical fact that
even a single subject, asked to repeat this task on different days, gives different
answers. To account for this variability, Thurstone introduced an unobservable
“discriminal process” of the form uy+ X1, ua+Xa, ... up+ X, where uy, ug,...,up
are fixed constants, and Xi,..., X, are random variables, independent with the
same distribution. It is postulated that on a given trial, a subject rank orders
tone ¢ in position j if u; + X; is the jth largest.

Thurstone proposed normal distributions for the X;. With a distribution
fixed, one can estimate best fitting u; and compare data and model. There has
been a lot of experimental work showing a good fit for certain tasks. An extensive,
readable review of this work appears in Luce and Suppes (1965).

A second line of work stems from a simple model put forward by Luce (1959).
This postulates an unobservable system of weights w;,ws,...,w,. It is proposed
that a subject ranks items by choosing the first ranked item with probability
proportional to W;. This choice being I, the second ranked item is chosen with
probability proportional to {w;} — wy, and so on.

This model has also been fit to data with some success. Holman and Marley
proved that if the underlying random variables X; in Thurstone’s approach have
an extreme value distribution P{X < t} = e=® ', —00 < t < oo, the resulting
choice probabilities are given by Luce model as well. Yellott (1977) gives refer-
ences, proves a converse, and suggests some intriguing open probability problems.

Yellott’s results deal with location shifts of extreme value distributions. Louis
Gordon (1983) has observed a neat reformulation: consider the basic weights
W1,...wp in Luce’s model. Let Y4,Y3,...Y, be independent and identically dis-
tributed standard exponential variables: P(Y > t) = e~*. Put a probability
on permutations by considering the order statistics of ¥; /wy,...,Y,/w,. Gordon
shows this induces the distribution of Luce’s sequential model. Since the log of an
exponential variable has an extreme value distribution, this is a special case of the
results described by Yellott. Gordon shows how to use the representation to give
an efficient algorithm for generating random permutations from this distribution.

Independent of the literature cited above, Plackett (1975) developed a family
of non-uniform probabilities on permutations. Plackett’s first order models are
the same as the Luce models. These are fit to some race horse data by Henery
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(1981). An order statistics version of Plackett’s higher order model is given by
Dansie (1983). Plackett’s motivation is interesting. One has available data on
the chance that a horse finishes first in a race. One wants to predict the chance
that the horse “shows” (finishes in the top 3). Plackett fit a model on the final
permutation using the first order data. This approach is the basis of several
believable systems for beating the races. See Zambia and Hausch (1984).

Models like Luce’s have been extended, axiomatized, and tested by modern
mathematical psychologists. The extensions account for practical difficulties such
as the irrelevance of alternatives. If Luce’s model is taken literally, one postulates
a weight associated to the ith object independent of the other choices available.
This easily leads to thought experiments generating data at variance with such a
model. The following example is due to L. J. Savage.

Suppose you are indifferent between a trip to Paris and a trip to Rome.
Thus w(Paris) = w(Rome). You clearly prefer Paris + $10 to Paris. On Luce’s
model, if asked to choose between Paris, Paris + $10, or Rome, you choose Rome
about 1/3 of the time. Something is wrong here — it is unlikely that such a
small inducement would change things so drastically. Tversky (1972) gives other
examples and discussion.

One simple way around this objection is to allow the weights to depend on
the problem under consideration. Going further, after the first choice is made,
the second choice can be modeled by a new set of weights. But then any set of
choice probabilities can be matched exactly so no test of the model is possible.

Some interesting half-way houses have been worked out. For example, Tver-
sky (1972) describes choice by a hierarchical elimination process. Each alternative
is viewed as a collection of measurable aspects. To make a choice, one selects an
aspect with probability proportional to its measure. This eliminates all alter-
natives not possessing this aspect. The process continues until one alternative
remains. For example, in choosing a restaurant for dinner, we may first choose
type of food (e.g. seafood), then location, then price. Tversky and Sattath (1979)
consider a subclass of these hierarchical models called preference trees which have
many appealing properties.

The present state of the theory is this — no one claims to have a reasonable,
believable and testable theory of how we perform ranking or choice. There is a
list of constraints and desiderata on potential theories. These offer insight into
choice behavior and rule out many naive suggestions. Thurstone’s models and
Luce’s model are seen as straw men which triggered these investigations. Slight
elaborations of these models have proven useful in horse race betting.

E. THEORY AND PRACTICAL DETAILS.

1. Justifying exponential families.

Return to the setting of Section A — exponential families on a space X. One
justification for these models Py that statisticians have developed goes as follows.
Consider first a sample X7, Xs,...X, from such a family with unknown 6. The
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sufficient statistics are

Any question about which § € © generated the data can be answered as well from
the averages b; as from the full set of data. Often a working scientist, or common
sense, will have reduced the data in just this way.

For example, if the data are n rankings of p items, it is natural to summarize
the data by collecting together the number of people ranking item ¢ in position j.
This amounts to the first order models for permutations described in Section C
above.

If summarization is deemed sensible, one may ask for the richest or fullest
model for which this summarization is “legal.” A classical theorem, the Koopman-
Pitman-Darmois theorem, implies that this is the exponential family Py through
these sufficient statistics.

This line of thinking has several modern versions. The Danish school of
Martin-Lof-Lauritzen formalizes things as extreme point models. Lauritzen (1984)
contains a clear description.

A Bayesian version is given by Diaconis and Freedman (1984). Briefly, if
X1,Xa,..., X, (the data) are judged invariant under permutations (exchange-
able) and more data of the same type could be collected, then de Finetti’s theorem
implies that the data were generated by a mixture of independent and identically
distributed variables. Ifthe b; summarize the data, in the sense that given {;} all
sequences Xj,..., X, with these b; are judged equally likely, then an extension
of de Finetti’s theorem implies the data are generated by a mixture of the ex-
ponential families introduced above. This brief description omits some technical
details but is correct for the examples introduced below. Diaconis and Freedman
also given versions of the Koopman-Pitman-Darmois theorem suitable for discrete
data. Diaconis and Freedman (1988) give versions for continuous data.

There is a related motivation in the non Bayesian setting when z; are iid:
the maximum entropy distribution for X7, ..., X, given the summaries {b;} is the
member P; of the exponential family with 6 chosen so the mean of P; equals b;.
See Kullback (1968) or Posner (1975) for details.

These justifications boil down to the following: if the data are collected and
it is judged reasonable to summarize by averages {Ei} then the exponential family
Py gives the only probability model justifying this summary.

2. Properties of erponential families. Consider a sample X, X,,..., X,
from Py, where it is assumed 6§ € RP. The maximum likelihood estimate of 8 is
a value # which maximizes II Py(z;). If X is finite this is an intuitively plausible
procedure. It also has the Bayesian justification of being the (approximate) mode
of the posterior distribution. Finally, it has quite a good track record in applied
problems. The log-likelihood function is

La(8) = 0" b(X:) — n $(6), $(8) = —log a(6).

i=1
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From the standard theory of maximum likelihood estimation in regular exponen-
tial families (see for example, Barndorf-Nielsen (1978) or Brown (1987)), we have
(i) Ln(0) is strictly concave in 6.

(ii) +(0) is analytic and 7 ¥(0) = Ep(b(z)), 2 ¥(8) = cove(b(z)), V* ¥(0) is
positive definite.

(iii) With probability one, there is an integer ng = no(Xi, X2,...) such that the
MLE 6 exists for all n > ng. If the MLE exists, it is unique.

Crain (1974, 1976) gives results proving that, for continuous carriers,

e If the number of observations is larger than dim ©, then the MLE exists.

e If dim O is allowed to grow with the sample size, then the “nonparamet-
ric density estimator” f*(z) = a(8*)e’ (¥) (6* the MLE) converges to the
true sampling density. When X is finite this is clear, for eventually ©® be-
comes the set of all functions and f*(z) is then the frequency cell count for
a multinomial.

(iv) A necessary and sufficient condition for the existence of the MLE is that
n

b; = LY 5(X;) € int Hull (K), where K=range {b(z); = € X} C RP.
i=1
(v) The MLE 4 exists iff the equations

Ea(b(X)) = = > b(X:)

i=1

have a solution. When a solution exists it is unique and is the MLE. Thus,
the MLE is that value of # that makes the theoretical expectation of ¢ equal
its observed average.

(vi) The MLE is almost surely a consistent estimate of §, and as n tends to infinity.
Further, for large n, the difference between 6 and @ has an approximate
normal distribution:

n¥(f - 8) ~ n(0, F2%(8)7).

This allows confidence intervals for 8, by using v2¢(é)‘1 for the covariance

matrix.
(vii) We have Py(dz) = a(f)e?®dz. The sufficient statistics are b;. Following
Crain (1974), consider a second expansion:

}%(dx)

= A; bi(z).
dz o+ % (=)

If the b; are orthogonal with respect to dx, then
Ai = Eg(b;) = Eg(b;).

In practice, 6 will not have a nice closed form expression. It will have to
be determined numerically. There is a reasonable discussion of Newton-Raphson
(called the method of scoring) in C. R. Rao’s (1965) book. Beran (1979) suggests
some other procedures as does Crain (1976).
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There has not been a lot of work on a reasonable Bayesian analysis for these
models. Consonni and Dawid (1985) develop some ideas which may generalize. A
second starting place is to consider, as in Diaconis and Ylvisaker (1979), conjugate
priors, and then their mixtures. There is probably some nice mathematics along
the lines of Diaconis and Ylvisaker (1983), but bringing in some group theory.

3. Introducing covariates. A. P. Dempster (1971) has suggested a reasonable
method of enlarging standard exponential families to include covariates. Suppose
X is a finite homogeneous space. We observe pairs (z;,2;), 1 < # < n where
z; € X and z; € RP is a covariate. Suppose that by,b,,...,b4 is a basis for the
model as above. The analog of Dempster’s suggestion is the following family of
probability densities (with respect to the uniform measure dz):

f(z]z) = exp (a + Z Z¢ij2jbi($)).

=1 i=1

Here, of course o is a normalizing constant and ¢;; are p - ¢ parameters to be
estimated. This amounts to the usual log-linear expansion

exp (a + Z aib,-(:z:))
i=1

P

with & = ) ¢;;z;. Dempster discusses some of the calculus of such families, as
ji=1

well as some of the numerical and philosophical problems associated to such mod-

els. Dempster’s analysis is an early version of the currently popular generalized

linear model (GLM). See McCullagh and Nelder (1983). It may be that some of

these analyses can be easily run in GLM.





