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1. INTRODUCTION

Euclidean geometry has served as the major tool in clarifying the

structural problems in connection with statistical inference in linear normal

models. A similar elegant geometric theory for other statistical problems

does not exist yet.

One could hope that a more general geometric theory could get the

same fundamental role in discussing structural and other problems in more

general statistical models.

In the case of non linear regression it seems clear that the

geometric framework is that of a Riemannian manifold, whereas in more general

cases it seems as if a non-standard differential geometry has yet to be

developed.

The emphasis in the present paper is to clarify the abstract

nature of this differential geometric object.

In section 2 we give a brief introduction to the notions of modern

differential geometry that we need to carry out our study. It is an extract

from Boothby (1975) and Spivak (1970-75) and we are mainly using a coordinate-

free setup.

Section 3 is an ultrashort summary of some previous developments.

The core of the paper is contained in section 4 where we abstract the notion

of a statistical manifold as a triple (M,g,D) where M is a manifold, g is a

metric and D is a symmetric trivalent tensor, called the skewness of the

manifold. Section 4 is fully devoted to a study of this abstract notion.

Sections 5, 6, 7, and 8 are detailed studies of some examples of
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statistical manifolds of which some (the Gaussian, the inverse Gaussian and

the Gamma) manifolds are of interest because of their leading role in statis-

tical theory, whereas the examples in section 8 are mostly of interest because

they to a large extent produce counterexamples to many optimistic conjectures.

Through the examples we also try to indicate possibilities for discussing

geometric estimation procedures.

In section 9 we have tried to collect some of the questions that

naturally arise in connection with the developments here and in related pieces

of work.



2. SOME DIFFERENTIAL GEOMETRIC BACKGROUND

A topological manifold ji is a Hausdorff space with a countable

base such that each point pεM has a neighborhood that is homeomorphic to an

open subset of IR
m
. m is the dimension of M. and is well-defined. A differen-

tiate structure on JM is a family

U
 - ί

U
χ *

λ
)χεA

where IL is an open subset of .M and ψ
Λ
 are homeomorphisms from U. onto an open

λ λ A

subset of IR
m
, satisfying the following:

(1) UU, = M
λ
 λ

(2) for any λ
Ί
,λ

9
εΓ: ψ. oψ" is a C°°(IR

m
) function wherever it is well

\ c. Λ-i Λ Λ

defined

(3) if V is open, ψ: V -> IR
m
 is a homeomorphism, and ψ o ψ " , ψ o ψ are

λ λ

C°° wherever they are well defined, then (V,ψ)εU.

The condition (2) is expressed as ψ. and ψ
Λ
 being compatible.

λ
l

 λ
2

In \ιery simple cases M. is itself homeomorphic to an open subset

of IR
m
 and the differentiate structure is just given by (M.,Φ

Ω
) and all sets

(U. ,φ.) where U. is an open subset of M. and ψ
Λ
 o φ

π
" is a diffeomorphism.

λ λ λ A U

The sets U are called coordinate neighborhoods and ψ coordinates.
A A

The pair (U ,ψ ) is called a local coordinate system.
A A

Γ1, equipped with a differentiate structure is called a differenti-

a t e manifold or a C^-manifold.

A different!able structure can be specified by any system satisfy-

ing (1) and (2). Then there is a unique structure L[ containing the specified
167
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local coordinate system.

The differentiate structure gives rise to a natural way of defin-

ing a different!able function. We say that f: fi •> IR is in C°°(M.) if it is

a usual C°°-function when composed with the coordinates:

f ε C°°(M) «-* f o φ "
Ί
 ε C°°(φ,(U)) for all λ.

— A A

Important is the notion of a regular submanifold N
 ς
 M of M. A subset N. of M.

is a regular submanifold if it is a topological manifold with the relative

topology and if it has preferred coordinate neighborhoods, i.e. to each point

pεj^ there is a local coordinate system (U
Λ
,Φ

Λ
) with pεU. such that

A λ A

i) φ
χ
(p) = (0 0); φ

χ
(U

λ
) = ]-ε,ε[

m

11) Φ
λ
(u

λ
nn) = {(x\...,x

n
,o o), |x

i
|<e}

t± inherits then in a natural way the differentiate structure from M by

(V ,Φ ) where
A A

where (U. ,ψ. ) is a preferred coordinate system.
A A

All C°°(N.)-functions can then be obtained by restriction to \± of

C°°(M)-functions.

For pεM̂ , C°°(p) is the set of functions whose restriction to some

open neighborhood U of p is in C°°(U). We here identify f and g ε C°°(p) if their

restriction to some open neighborhood of p are identical.

The tangent space T (H) to M. at p is now defined as the set of all

maps X : C°°(p) -* IR satisfying

i) X
p
(αf+3g) = αX

p
(f)+βX

p
(g) α,β e IR

ϋ ) x
p
(fg) = x

p
(f)g(p)+f(p)x

p
(g) f g ε c

TO
(

P
)

One should think of X as a directional derivative. X is called a tangent
P P

 a

vector.

T (M[) is in an obvious way a vector-space and one can show that

dim(T (M)) = m.
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For each particular choice of a coordinate system, there corre-

sponds a canonical basis for T (M), with basis vectors being

A vector field is a smooth family of tangent vectors X = (X ,p
ε
M) where

X εT (Nl). To define "smooth" in the right way, we demand a vector field X to

be a map:

X: C°°(M) - C°°(M)

i) X(αf+βg) = αX(f)+βX(g) α,βεIR

ϋ ) x(fg) = x(f)g+fx(g) f,gεC°°(M)

and now we w r i t e

•X p (f) = X ( f ) (P)

The vector fields on IA_ are denoted as X_(MJ. _X(M_) is a module over C°°(Mj: if

f,gεC°°(M), X,YεX(M) then

(fX+gY) (h) = fX(h) + gY(h)

is also in X_(M_). X_(M_) is a Lie-algebra with the bracket operation defined as

[X,Y](f) = X(Y(f)) - Y(X(f))

The Lie-bracket [ ] satisfies

[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 (Jacobi identity)

[X,Y] = -[Y,X] (anticommutativity)

[αXη+3X9,Y] = α[XΊ,Y] + 3[X9,Y] α , N IR
1 ά ' ά ( b i ϋ n e a r i t y )

[X,αY1+3Y2] = α[X,Y Ί] + B[X,Y2] α,BεIR

Further one can easi ly show that

[X,fY] = f[X,Y] + (X(f))Y .

The locally defined vector fields E
η
., representing differentiation w.r.t. local

coordinates, constitute a natural basis for the module XjU), where U is a

coordinate neighborhood.

A covariant tensor D of order k is a C°°-k-linear map

D: X(M)χ...χX(M) •> C°°(M),
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i.e.

D(X
r
...,X

k
) ε C°°(M),

D(X
r
...,fX

i
+gY

i
,X

i + 1
,...,X

k
)

= fD(x
r
...,x

k
) + gD(x

1
,...,Y

i
,x.

+ 1
,...,x

k
).

A tensor is always pointwise defined in the sense that if X . = Y ., then

D(X
r
...,X

k
)(p) = D(Y

r
...,Y

k
)(p).

This means that any equations for tensors can be checked locally on a basis

e.g. of the form E . These satisfy [E ,E.] = 0 and all tensorial equations hold

if they hold for vector fields with mutual Lie-brackets equal to zero. This is

a convenient tool for proving tensorial equations and we shall make use of it

in section 3.

A Riemannian metric g is a positive symmetric tensor of order two:

g(x,x) > o g(x,γ) = g(Y,x)

Since tensors are pointwise, it can be thought of as a metric g on each of the

tangent spaces T (M_).

A curve γ = (γ(t),tε[a,b]) is a C°°-map of [a,b] into M.. Note that

a curve is more than the set of points on it. It involves effectively the

parametrization and is thus not a purely geometric object.

Let now γ denote any vector field such that

γ(f)(γ(t)) = jξ f (γ(t)) for all tε[a,b]
s
fεC°°(M)

The length of the curve γ is now given as

a

Curve length can be shown to be geometric.

An important notion is that of an affine connection on a manifold.

We define an affine connection as an operator v

v: _X(M) x _X(M) +

satisfying (where we write v
χ
Y for the value)
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V
χ
(αY+3Z) = αV

χ
Y + |3V

χ
Z, α,6 ε IR

ϋ) v
γ
(fY) = X(f)Y + fv

γ
Y

iii) v
f χ + g γ

Z = fv
χ
Z
 +
 gv

γ
Z .

An affine connection can be thought of as a directional derivation of vector

fields, i.e. v
χ
Y is the "change" of the vector field Y in X's direction.

An affine connection can be defined in many ways, the basic reason

being, that "change" of Y is not well defined without giving a rule for compar-

ing vectors in T (M) with vectors in T (M), since they generally are different
p
l "

 P
2 ~

spaces.

An affine connection is exactly defining such a rule via the notion

of parallel transport, to be explained in the following. We first say that a

vector field X is parallel along the curve γ if

v X = 0 on γ,

where again γ is any vector field representing -rr-.

Now for any vector X / \ ε T (
a
\(_M) there is a unique curve of

vectors
X

γ ( t )
,tε[a,b], X

γ ( t )
 εT

γ ( t )
(H)

such that v X = 0 on γ, i.e. such that these are all parallel, and such that

X / % is equal to the given one. We then writeX / %

X
Y(b)

and say that π defines parallel transport along γ. π is in general an affine

map.

Note that π depends effectively on the curve in general.

An affine connection can be specified by choosing a local basis

for the vector-fields (E. ,i=l.... ,m) and defining the symbols (C°°-functions)

by
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where we adopt the summation convention that whenever an index appears in an

expression as upper and lower, we sum over that index. Using the properties of

an affine connection we thus have for an arbitrary pair of vector-fields

X = f^., Y = g
Ί
E.

v^fVg^+fVr^.

A geodesic is a curve with a parallel tangent vector field, i.e. where

V γ = 0 On γ.

Associated with the notion of a geodesic is the exponential map induced by the

connection.

For all pεM_, X ε T (M_) there is a unique geodesic γ
Y
 , such that

P P λ
p

γ
y
 (0) = p λ (0) = X

n
 (**)

X
p
 X

p P

This is determined in coordinates by the differential equations below together

with the initial conditions (**)

x
k
(t) + x ^ t ^ U K ^ W t ) ) = 0

where γ
Y
 (t) = (x (t),...,x

m
(t)) in coordinates.

X
P

Defining now for X ε T (M_)

exp{X
p
} = γ

χ
 (1)

we have expίtX } = γ
Y
 (t).

p
 X

P

The exponential map is in general well defined at least in a neigh-

borhood of zero in T (M.) and can only in special cases be defined globally.

In general, geodesies have no properties of "minimizing" curve

length. However, on any Riemannian manifold, (i.e. a manifold with a metric

tensor g), there is a unique affine connection v satisfying

i) v
χ
Y - v

γ
X - [X,Y] Ξ 0

ϋ) Xg(Y.Z) = g(v
χ
Y,Z) + g(Y,v

χ
Z).

This connection is called the Riemannian connection or the Levi-Civita connec-

tion.
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Property i) is called torsion-freeness and property ii) means that

the parallel transport π is Isometric, which is seen by the argument.

γg(Y.Z) = g(v^Y,z) + g(Y,v^z) = 0 if v^Y = v^z = 0.

We can then write g(ii
γ
Y,Π

γ
Z)

γ ( b )
 = g(Y, Z )

γ ( a )
 or just g(π

γ
Y,Π

γ
Z) = g(Y,Z).

If v is Riemannian, its geodesies will locally minimize curve length.

To all connections v there is a torsion free connection v such that

this has the same geodesies. All connections in the present paper are torsion

free, whereas not all of them are Riemannian.

When the manifold is equipped with a Riemannian metric, it is often

convenient to specify the connection through the symbols (C°°-functions) r... ,

where

Defining the matrix of the metric tensor and its inverse as

g
.. = g(E

Ί
.,E.) (g

i j
) = (g-jjΓ

1
,

the symbols are related to those previously defined as

The Riemannian connection is given by

A connection defines in a canonical way the covariant derivative of

a tensor D as

(v
χ
D)(X

1
,...,X

k
) = XD(X

r
...,X

k
) - Σ D(X

1
,...,v

χ
X.,...,X

|<
).

(v
Y
D) is again a covariant tensor of order k and the map

Λ

S(X,X
r
...,X

k
) = (v

χ
D)(X

r
...,X

k
)

becomes a tensor of order k+1. The fact that the Riemannian connection pre-

serves inner product under parallel translation can then be written as

(v
χ
g)(Y,Z) Ξ 0.

S i m i l a r l y , i f D i s a m u l t i l i n e a r map from _X(h1)χ.. . x X W i n t o ^ ( M ) i t s
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covariant d e r i v a t i v e is defined as

( v χ D ) ( X Γ . . . , X k ) = v χ D ( X Γ . . . , X k ) - Σ D ( X Γ . . . , v χ X . , . . . , X k ) .

Such multilinear maps are called tensor fields.

An important tensor field associated with a space with an affine

connection is the curvature field, R: _X(M) x J((M) * _X(M) + _X(M)

R(X,Y)Z = v
χ
v

γ
Z - v

γ
v

χ
Z - v

[ X j Y ]
Z .

A manifold with a connection satisfying R = 0 is said to be flat. If the

connection is torsion free, the curvature satisfies the following identities:

a) R(X,Y)Z = -R(Y,X)Z

b) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0

(Bianchi's 1st identity)

c) (vχR)(Y,ZsW) + (vγR)(Z,X,W) + (vzR)(X,Y,W) = 0

(Bianchi's 2nd identity).

Strictly speaking, a) does not need torsion freeness.

On a Riemannian manifold, we also define the curvature tensor R as

R(X,Y,Z,W) = g(R(X,Y)Z,W)

where R is used in two meanings, both referring to the Riemannian connection.

The Riemannian curvature tensor satisfies

i) R(X,Y,Z,W) = -R(Y,X,Z,W)

ii) R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W) = 0

lii) R(X,Y,Z,W) = -R(X,Y,W,Z)

iv) R(X,Y,Z,W) = R(Z,W,X,Y)'

We shall use the symbol R also for the curvature tensor

R(X,Y,Z,W) = g(R(X,Y)Z,W),

when _M has a Riemannian metric g and a torsion-free but not necessarily

Riemannian connection v. Then i) and ii) are satisfied, but not necessarily

iii) and iv).

If (E. ) is a local basis for T (M_), the curvature tensor can be

calculated as
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( r
1nn

Γ
jk "

The sectional curvature is given as

κ(
 ,

 =
 g(R(x,Y)Y,x)

X
'

Y
 g(x,x)g(Y,Y)-g(x,Y)

2

and determines in a Riemannian manifold also the curvature. If the curvature

satisfies i) to iv) the sectional curvature also determines R.

Two other contractions of the curvature tensor are of interest:

The Ricci-curvature

C l
R(X,X) = ™ Σ | g(R(u

i
,X)X,u

i
)

= g(X,X)
m
Σ K(σ

γ
 )

i=l
 λ

>
u
-j

where (X/g(X,X),u
1
,...,u

 1
) is an orthonormal system for T (M).

Finally the scalar curvature is

S(p) =Σ c
1
R(u

i
,u

i
)

where u,,...
9
u is an orthonormal system in T (M). We then have the identity

i m p —

S(p) =
Λ
K(σ

u
 ).

i.J i 3

If N̂  is a regular submanifold of M_, the tangent space of H_ can in a natural way

be identified with the subspace of XjM.) determined by

X
 ε
 X_(N)Ξ X(M) +-> [f=g on H + X(f) = X(g) on H],

In that way all tensors etc. can be inherited to N_ by restriction. If M̂  has a

Riemannian metric, N̂  inherits it in an obvious way, and this preserves curve

length, in the sense that the length of a curve in j^w.r.t. the metric inherit-

ed, is equal to that when the curve is considered as a curve in M.

An affine connection is inherited in a more complicated way:

We define

(
N
v

χ
Y)(p) = P

p
(v

χ
Y)(p)

where P is the projection w.r.t. g onto the tangent space T (U)E=T W of the

vector (v
χ
Y)n which is not necessarily in T

p
(Nj. In fact we define the
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embedding curvature of H_ relative to M̂  as the tensor f i e l d X(N) x XjN} -> XjMj

or,equivalently, as

' γ ) = v x γ "

H N (X,Y,Z) = g ( H N ( X , Y ) , Z )

Where X,Y ε X(N), 1 ε X(N)^ (or Z ε X(M)).

If H
N
 Ξ 0 we say that N. is a totally geodesic submanifold of M_. A

totally geodesic submanifold has the property that any curve in H_ which is a

geodesic w.r.t. the connection on N_, also is a geodesic in M_.



3. THE DIFFERENTIAL GEOMETRY OF STATISTICAL MODELS

A family of probability measures P on a topological space _X inher-

its its topological structure from the weak topology. Most statistical models

are parametrized at least locally by maps (homeomorphisms)

ψ: U + Θ clR
m

where U is an open subset of £ and Θ an open subset of IR
m
. From this para-

metrization we get P̂  equipped with a differentiate structure, provided the

various local parametrizations are compatible. Considering for a while only

local aspects, we can think of P as {P
Λ
,θεΘ}. We let now f(x,θ) denote the

— Θ

density of PΛ w . r . t . a dominating measure μ and assume these to be C°°-functions
θ

of θ. Under suitable regularity assumptions we can now equip P^with a

Riemannian metric by defining l(x,θ) = log f (x,θ) and

g
Ί
 j(θ) = g ( E

Γ
E j )

p
 = ^( E . ί D E j d ) ) .

The metric is the Fisher information and different parametrizations define the

same metric on P_. Similarly we can define a family of affine connections (the

α-connections) on P̂  by the expressions

? i j k = "Γijκ - f τ i j k α ε I R - w h e r e

r... is the Riemannian connection.
1 JK

The Fisher information as a metric was first studied by Rao (1945)

and the α-connections in the case of finite and discrete sample spaces by

Chentsov (1972). Later the α-connections were introduced and investigated

independently and in full generality by Amari (1982).

177
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For a more fair description of the history of the subject (the

above is indecently short), see e.g. the introduction by Kass in the present

monograph, Amari (1985) and/or Barndorff-Nielsen, Cox and Reid (1986).

Two of these connections play a special role:

The exponential connection (for α=l) and

the mixture connection (for α=-l).

The exponential connection has r...= 0 when expressed in the

canonical parameter in an exponential family, and similarly when we express

r. ., (the mixture connection) in the mean value coordinates of an exponential
ijk ^

family r. ., Ξ 0. Further we have the formulae
i JK

T
ijk "

Ί)) and

)

which often are useful for computations.

These structures are in a certain sense canonical on a statistical

manifold. Chentsov (1972) showed in the case of discrete sample spaces that

the α-connections were the only invariant connections satisfying certain in-

variance properties related to a decision-theoretic approach. Similarly, the

Fisher information metric is the only invariant Riemannian metric. These re-

sults have recently been generalized to exponential families by Picard (1985).

On the other hand, similar geometric structures have recently

appeared such as minimum-contrast geometries (Eguchi, 1983) and the observed

geometries introduced by Barndorff-Nielsen in this monograph.

The common structure that seems to appear again and again in cur-

rent statistical literature is not standard in modern geometry since it involves

study of the interplay between a Riemannian metric and a non-Riemannian connec-

tion or even a whole family of such connections.

It seems thus worthwhile to spend some time on studying this

structure from a purely mathematical point of view. This has already been done

to some extent by Amari (1985). In the following section we shall outline the

mathematical structures.



4. STATISTICAL MANIFOLDS

A statistical manifold is a Riemannian manifold with a symmetric

and covariant tensor D or order 3. In other words a triple (NUg,D) where M_ is

an m-dimensional C°°-manifold, g is a metric tensor and D: X.(MJ x X_{M) x ^{M) ->

C°°(MJ a trilinear map satisfying

D(X,Y,Z) = D(Y,X,Z) = D(Y,Z,X)

(=D(X,Z,Y) = D(Z,X,Y) = D(Z,Y,X))

D is going to play the role T... in the previous section. We use D to distin-

guish the tensor from the torsion field. D is called the skewness of the

manifold.

Instead of D we shall sometimes consider the tensor field B defined

as

g(Bf(X,Y),Z) = D(X,Y,Z).

We have here used that the value of a tensor field is fully deter-

mined when the inner product with an arbitrary vector field Z is known for all

Z.

The above defined notion could seem a bit more general than neces-

sary, in the sense that some Riemannian manifolds with a symmetric trivalent

tensor D might not correspond to a particular statistical model.

On the other hand the notion is general enough to cover all known

examples, including the observed geometries studied by Barndorff-Nielsen and

the minimum contrast geometries studied by Eguchi (1983).

Further, all known results of geometric nature for statistical

manifolds as studied by Amari and others can be shown in this generality and

179
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it seems difficult to restrict the geometric structure further if all known

examples should be covered by the general notion.

Let now (N[,g,D) (or(NUg,D)) be a statistical manifold. We now

define a family of connections as follows:

v
χ
Y = v

χ
Y - |D(X,Y) (3.1)

where v is the Riemannian connection. We then have

3.1 Proposition v as defined by (3.1) is a torsion free connection. It is the

unique connection that is torsion free and satisfies

(v
χ
g)(Y,Z) = αD(X,Y,Z) (3.2)

α

Proof: That v is a connection: Linearity in X is obvious. Scalar linearity

in Y as well. We have

v
χ
(fY) = v

χ
(fY) - |D(X,fY) = X(f)Y + fv

χ
Y.

Torsion freeness follows from symmetry of D:

v
χ
Y - v

γ
X - [X,Y] = v

χ
Y - v

γ
X - [X,Y]

-f [D(X,Y) - D(Y,X)] = 0.
α

That v satisfies (3.2) follows from

(v
χ
g)(Y,Z) = Xg(Y,Z) - g(v

χ
Y,Z) - g(Y,v

χ
Z)

= (v
χ
g)(Y,Z) + αD(X.Y.Z) = 0 + αD(X,Y,Z).

If ̂  is torsion free and satisfies (3.2) we obtain:

1) Xg(Y.Z) = g(v
χ
Y,Z) + g(Y,v

χ
Z) + αD(X,.Y,Z)

ϋ ) Zg(X,Y) = g(v
χ
Z,Y) + g(v

γ
Z,X) + oD(X,Y,Z)

+ g([Z,X],Y) + g([Z,Y],X)

111) Yg(z.x) = g(^
Y
z,x) + g(v

χ
Y,z) + αD(x,γ,z)

- g([x,Y],z)

Calculating now i) - ii) + iii) we get

Xg(Y,Z) - Zg(X,Y) + Yg(Z,X) = αD(X
5
Y,Z)

-g([Z,X],Y) - g([Z,Y],X) - g([X,Y],Z) + 2g(v
χ
Y,Z).
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Since this equation also is fulfilled for v we get

g(v
χ
Y,Z) = g(v

χ
Y,Z), whereby v = v.

0 _
Obviously v = v, the Riemannian connection.

To check what happens when we make a parallel translation we first

consider the notion of a conjugate connection (Amari, 1983).

Let (MUg) be a Riemannian manifold and v an affine connection. The

conjugate connection v* is defined as

g(v*
χ
Y,Z) = Xg(Y,Z) - g(Y,v

χ
Z) (3.3)

3.2 Lemma v* is a connection, (v*)* = v.

Proof: Linearity in X is obvious. So is linearity in Y w.r.t. scalars. We

have

g(v*
χ
(fY),Z) = Xg(fY,Z) - g(fY,v

χ
Z)

= X(f)g(Y,Z) + fXg(Y.Z) - fg(Y,v
χ
Z)

= g(X(f)Y + fv*
χ
Y,Z).

And further

g((v*)*
χ
Y,Z) = Xg(Y.Z) - g(v*

χ
Z,Y)

= Xg(Y,Z) - {Xg(Z,Y) - g(v
χ
Y,Z)} = g(v

χ
Y,Z).

If we now let π ,n* denote parallel transport along the curve γ we obtain:

3.3 Proposition

g(Π
γ
X,π*Y) = g(X,Y)

Proof: Let X be v-parallel along γ and Y v*-parallel. Then we have

γg(x,Y) = g(vo<,Y) + g( x , v M ) = o.

In words Proposition 3.3 says that parallel transport of pairs of vectors w.r.t.

a pair of conjugate connections is "isometric" in the sense that inner product

is preserved.

Finally we have for the α-connections, defined by (3.1):

3.4 Proposition (v)* = v .
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Proof:

g(v
χ
Y,Z) = g(v

χ
Y,Z) - I D(X,Y,Z)

g(Y,v
χ
Z) = g(Y,v

χ
Z) + | D(X,Z,Y)

Adding and using the symmetry of D together with the defining property of the

Riemannian connection we get

g(v
χ
Y>

Z
)
 +
 9(Y^v

χ
Z) = Xg(Y.Z) (3.4)

The relation (3.4) is important and was also obtained by Amari (1983). If we

now consider the curvature tensors R and R* corresponding to v and v* we obtain

the following identity:

3.5 Proposition

R(X,Y,Z,W) = -R*(X,Y,W,Z) (3.5)

Proof: Since we shall show a tensorial identity, we can assume [X,Y] = 0 as

discussed in section 1. Then we get

XYg(Z,W) = X(g(v
γ
Z,W) + g(Z,v*

γ
W))

= g(v
χ
v

γ
Z,W) + g(v

γ
Z,v*W)

+ g(v
χ
Z,v*W) + g(Z,v*v*W).

By alternation we obtain

0 = [X,Y]g(Z,W) = XYg(Z,W) - YXg(Z,W)

= R(X,Y,Z,W) + R*(X,Y,W,Z).

Note that the Riemannian connection is self-conjugate which gives the well

known identity for the Riemannian curvature tensor, see section 1.

Consequently we obtain

3.6 Corollary The following conditions are equivalent

i) R = R*

11) R(X,Y,Z,W) = -R(X,Y,W,Z)

Proof: It follows directly from (3.5).

And, also as a direct consequence:

3.7 Corollary v is flat if and only if v* is.
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The identity ii) is not without interest and we shall shortly

investigate for which classes of statistical manifolds this is true. Before we

get to that point we shall investigate the relation between a statistical mani-

fold and a manifold with a pair of conjugate connections.

We define the tensor field D-,, and the tensor D, in a manifold with

a pair (v,v*) of conjugate connections by

ίf^X.Y) = v*
χ
Y - v

χ
Y

D^X.Y.Z) = g(B
Ί
(X,Y),Z).

We then have the following

3.8 Proposition Γf v is torsion free, the following are equivalent

1
)
 v

* is torsion free

ii) D-. is symmetric

iii) v =

Proof: That D, is symmetric in the last two arguments follows from the

calculation

D^X.Y.Z) = g(v*Y,Z) - g(v
χ
Y,Z)

= Xg(Y>Z) - g(Y,v
χ
Z) - [Xg(Y,Z)-g(Y,v*Z)]

= D
Ί
(X,Z,Y)

The difference between two connections is always a tensor field, i) «-* ii)

follows from the calculation

g(v*Y-v*x-[x,γ],z) = g(v
χ
γ-v

γ
x-[x,γ],z)

+ D^X.Y.Z) - D^Y.X.Z).

That iii) •* i) is obvious since then v*=2v-v.

To show that i) •> iii) we use the uniqueness of the Riemannian con-

nection. We define

v =

and see that this is torsion free, when v and v* both are. But
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g(v
χ
Y,Z) + g(Y,v

χ
Z) = ̂ g(v

χ
Y,Z) + ̂ g(v*Y,Z)

+ hg(Ί,ψ) + ̂ g(Y,v
χ
Z) = Xg(Y,Z)

showing that v is Riemannian and thus equal to v.

Suppose now that v is given with v* being torsion free. We can then

define a family of connections as

and we obtain
α -α 1 -1

3.9 Corollary v* = v, v = 7 , v = v*.

Proof: It is enough to show v = v. But

V
 =
 ̂ V

4
^ " ̂ψ'h^

 =
 V*

We have thus established a one-to-one correspondence between a statistical

manifold (NUg,D) and a Riemannian manifold with a connection v whose conjugate

v* is torsion free, the relation being given as

D(X,Y) = v*Y - v
χ
Y

v
χ
Y = v

χ
Y - ̂

2
D(X

9
Y).

In some ways it is natural to think of the statistical manifolds as

being induced by the metric (Fisher information) and one connection (v) (the

exponential), but the representation (M,g,D) is practical for mathematical

purposes, because D has simpler transformational properties than v.

By direct calculation we further obtain the following identity for

a statistical manifold and its α-connections

3.10 Proposition

g(v
χ
Y,Z) - g(v

χ
Z,Y) = g(v

χ
Y,Z) - g(v

χ
Z,Y) (3.6)

Proof: The result follows from

g(v
χ
Y,Z) - g(v

χ
Z,Y) = g(v

χ
Y,Z) - g(v

χ
Z

9
Y)

- |D(X,Y,Z) + |D(X,Z,Y)

and the symmetry of D.
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We shall now return to studying the question of identities for the

curvature tensor of a statistical manifold. We define the tensor

F(X,Y,Z,W) = (v
χ
D)(Y,Z,W)

where D is the skewness of the manifold, and v is the Riemannian connection. We

then have

3.11 Proposition The following are equivalent

i) R = R for all αεlR

ii) F is symmetric

Proof: The proof reminds a bit of bookkeeping. We are simply going to estab-

lish the identity

R(X,Y,Z,W) - R(X,Y,Z,W) = α{F(X,Y,Z,W) - F(Y,X,Z,W)} (3.7)

by brute force.

Symmetry of F in the last three variables follows from the symmetry

of D. We have

2αF(X,Y,Z,W) = 2αXD(Y,Z,W)

-2α(D(v
χ
Y,Z,W) + D(Y,v

χ
Z,W) + D(Y,Z,v

χ
W))

α -α -α α

Since v = ̂ (v + v) and oD(X,Y,Z) = g(v
χ
Y,Z) - g(v

χ
Y,Z) we further get

2αD(v
χ
Y,Z,W) = 2g(v

z
W,v

χ
Y) - 2g(v

z
W,v

χ
Y)

= g(v
z
W,v

χ
Y) + g(v

z
W,v

χ
Y)

- g(v
z
W,v

χ
Y) - g(v

z
W,v

χ
Y),

and similarly for the two other terms. Further we get

2αXD(Y,Z,W) = 2X(g(v
γ
Z,W) - g(v

γ
Z,W))

= 2g(v
χ
v

γ
Z,W) - 2g(v

χ
v

γ
Z,W)

+ 2g(v
γ
Z,v

χ
W) - 2g(v

γ
Z,v

χ
W)

Collecting terms we get the following table of terms in 2αF(X,Y,Z,W), where

lines 1-3 are from 2αXD(Y,Z,W), 4 and 5 from 2αD(v
χ
Y,Z,W) 6 and 7 from

2αD(Y,v
χ
Z,W) and 8 and 9 from 2αD(Y,Z,v

χ
W).
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Table of terms of 2αF(X,Y,Z,W)

with + sign with - sign

-α -α α α

2g(v
χ
v

γ
Z,W)

α -α

g(v
γ
Z,v

χ
W)

α -α

g(v
γ
z,v

χ
w)

g(v
z
w,v

χ
γ)

g(v
z
w,v

χ
γ)

-α -α

g(v
γ
W,v

χ
Z)

-α α

g(v
γ
W,v

χ
Z)

-α -α

g(v
γ
z,v

χ
w)

-α α

g(v
γ
Z,v

χ
W)

Lines 4 and 5̂  disappear by torsion freeness and alternation. Lines ̂  + 9_ add up

to zero. Lines _3 + 7_ disappear by alternation. Lines 6^+8^ also. What is left

over are only terms from line ]_ whereby

2αF(X,Y,Z,W) - 2αF(Y,X,Z,W)

= 2R(X,Y,Z,W) - 2R(X
S
Y,Z,W)

and the result and (3.7) follows.

A statistical manifold satisfying this kind of symmetry shall be

called conjugate symmetric. We get then immediately

3.12 Corollary The following is sufficient for a statistical manifold to be

conjugate symmetric

'
 α

0
3
 α
n + such that R = 0,

i.e. that the manifold is α
n
-f

1.

2.

3.

4.

5.

6.

7.

8.

9.

2g(v χ vγZ,W)

g(v χ γ,v χ w)

g(vχY,vχw)

g(vzw,vχγ)

g(vzw,vχγ)

α α

g(vγW,vχZ)

α - α
g(vγW,vχZ)

α a
g(vγZ,vχW)

α - α

g w v^- 9^v" /
i Λ

As shown e.g. in Amari (1985), exponential families are ±1 - flat

and therefore always conjugate symmetric.

In a conjugate symmetric space, the curvature tensor thus satisfies

all the identities of the Riemannian curvature tensor, i.e. also
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R(X,Y,Z,W) = -R(X,Y,W,Z)

R(X,Y,Z,W) = R(Z,W,X,Y)j

This implies as mentioned earlier that the sectional curvature determines the

curvature tensor.

We shall later see examples of statistical manifolds actually

generated by a statistical model that are not, conjugate symmetric.

It also follows that the condition

3
 α
0 t 0 such that ΊFP = R° (3.9)

is sufficient for conjugate symmetry.

Amari (1985) investigated the case when the statistical manifold was

CIQ (and thus -α
Q
) flat in detail, showing the existence of local conjugate coor-

dinates (θ
Ί
) and (n

Ί
 ) such that r.

 k
 = 0 in the θ-coordinates and its conjugate

i\
 k
 = 0 in the η-coordinates.

Further that potential functions ψ(θ) and ψ(η) then exist such that

g ^ tθ) = E-Ejψίθ) g
i j
(n) = E Ejίφίη))

and the θ- and η-coordinates then are related by the Legendre transform:

θ
1
 = E

Ί
.(φ(η))

 ni
 = E.(ψ(θ))

ψ(θ) + φ(η) - θ
Ί

η i
 = 0.

In a sense αg-flat families are geometrically equivalent to exponential families..

If N̂  is a regular submanifold of (M_,g,D), the tensors g and D are

inherited in a simple way (by restriction). The α-connections are inherited by

orthogonal projections on to the space of tangent vectors to _N, i.e. by the

equation

g(v
γ
Y,Z) = g(v

γ
Y,Z) for X,Y,Z ε X(N). (3.10)

Λ Λ — —

It follows from (3.10) that the α-connections induced by the restriction of g

and D to 1(R) are equal to those obtained by projection (3.10). This consis-

tency condition is rather important although it is so easily verified.

A submanifold is totally α-geodesic (or just α-geodesic) if
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v
γ
Y ε X(N) for all X,Y ε X( N ) .

λ — —

If the submanifold is α-geodesic for all α we say that it is geodesic. We then

note the following

3.12 Proposition A regular submanifold Jj is geodesic if and only if there

exist α , j α
2
 such that R is α,-geodesic and α^-geodesic.

Proof: Let X,Y ε X(H) and Z ε T (N)
1
 p ε N_.

Then N is α.-geodesic, i=l, 2 iff
1

gfvjγ,z)
p
 = g(

α
v

χ
γ,z) = o

for all such X,Y,Z. But since

α

g(v
χ
Y,Z) = g(v

χ
Y,Z) - f D(X,Y,Z)

this happens if and only if D(X,Y,Z) = 0 for all such X,Y,Z, whereby N_ is geo-

desic iff it is α.-geodesic, i=l,2.

In statistical language, geodesic (α-geodesic) submanifolds will be

called geodesic (α-geodesic) hypotheses. A central issue is the problem of

existence and construction of α-geodesic and geodesic foliations of a statisti-

cal manifold.

A foliation of (M^g,D) is a partitioning

*
 =
 & h

of the manifold into submanifolds N of fixed dimension n(<m). IL are called

the leaves of the foliation.

The foliation is said to be geodesic (or α-geodesic) if the leaves

are all geodesic (or α-geodesic).

It follows from Proposition 3.12 that geodesic foliations of full

exponential families (and of α-flat families) are those that are affine both in

the canonical and in the mean value parameters, in other words precisely the

affine dual foliations studied by Barndorff-Nielsen and Blaesild (1983). In

the paper cited it is shown that existence of such foliations are intimately

tied to basic statistical properties related to independence of estimates and

ancillarity. Proposition 3.12 shows that the concept itself is entirely geo-
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metric in its nature.

It seems reasonable to believe that the existence (locally as well

as globally) of foliations of statistical models could be quite informative. It

plays at least a role when discussing procedures to obtain estimates and an-

cillary statistics on a geometric basis.

Let N_ be a submanifold of M and suppose that pεN[ is an estimate of

p, obtained assuming the model M. Amari (1982, 1985) discusses the α-estimate

of p assuming N[ as follows.

To each point p of JV we associate an ancillary manifold A (p)

A
α
(p) = exp (Tp(N)

1
)

α -

where exp is the exponential map associated with the α-connection and T (Nj~ is

the set of tangent vectors orthogonal to N at p. In general the exponential map

might not be defined on all T
p
(Nj~, but then let it be maximally defined,

p is then an α-estimate of p, assuming N̂  if

P ε A
α
(p).

Amari (1985) shows that if M_ is α-flat and N_ is -α-geodesic, then the α-estimate

is uniquely determined and it minimizes a certain divergence function.

This suggest that it might be worthwhile studying procedures that

use the -α-estimate for α-geodesic hypotheses N_, and call such a procedure

geometric estimation. In general it seems that one should study the decomposi-

tion of the tangent spaces at pεN[ as
T

p
(M) = T

p
( N ) ® T

p
( N Γ

and especially the maps of these spaces onto itself induced by α-parallel trans-

port of vectors in T (N), -α parallel transport of vectors in the complement,

both along closed curves in JY.

It should also be possible to define a teststatistic in geometric

terms by a suitable lifting of the manifold N_, see also Amari (1985). Things

are especially simple in the case where M̂  has dimension 2 and N̂  has dimension 1

and we shall try to play a bit with the above loose ideas in some of the

examples to come.



5. THE UNIVARIATE GAUSSIAN MANIFOLD

Let us consider the family of normal distributions N(μ,σ ), i.e.

the family with densities
I p^l -,

 2

f(x;y,σ) = V2πσ exp{ *• (x-μ) },μεIR,σ>0

w.r.t. Lebesgue measure on IR. This manifold has been studied as a Riemannian

manifold by Atkinson and Mitchell (1981), Skovgaard (1984) and, as a statistical

manifold in some detail by Amari (1982, 1985). Working in the (μ,σ) parametri-

zation we obtain the following expressions for the metric, the α-connections

and the D-tensor (skewness) expressed as T... (cf. Amari, 1985).

. 1 /I 0\

"7lo 2)
α α

l l l = Γ122 = Γ212 = Γ221

α-, α ? α ? α,
Γ Π Γ 1 2 Γ 2 1 Γ 2 2

Γ
1 1 2
 = (l-α)/σ

3
 Γ^ =

α α -< α ,

Γ ] 2 1 = Γ 2 n = -(1+cO/σ 3 ΓJ

Γ
222

Γ =

T m = T122 " T212 T221 " °

T Π 2 = T121 = T2Π = 2 / ° 3 T222 = 8 / σ

The α-curvature tensor is given by

R1212 = (l-α2)/σ4,

190



Statistical Manifolds 191

so the manifold is conjugate symmetric, and the scalar (sectional) curvature by

α p

For α = 0 (the Riemannian case) we have K(σ,p) = -1/2 and the manifold is the

space of constant negative curvature (Poincarέ's haifplane or hyperbolic space).

Note that it also has constant α-curvature for all α although nobody knows what

that implies, since such objects have r\e\/er been studied previously.

To find all α-geodesic submanifolds of dimension 1 we proceed as

follows. Let (e,E) denote the tangent vector fields

e = -2- E = -?-
9μ

 L
 8σ *

α
l

If we have μ = μ
Q
 constant on N_, XjNj is spanned by E. Since r

2
o = 0 we have

α

VpE = f E for all α,

and thus that the submanifolds

N = {(μ,σ) |μ=μ
Q
},μ

o
εIR

are geodesic submanifolds and the family

(N ,μεIR) (4.1)

constitutes a geodesic foliation of the Gaussian manifold.

If μ is non-constant on NU we must be able to parametrize N[ locally

as

(t,σ(t)), tεl SIR.

The tangent space to H is then spanned by

N = e + σ E

where we have let σ(t) = τ+
σ
(t) and extended σ to a function defined on all of

the manifold by σ(x,y):= σ(x).

α α . ot .α
 #

2
α
 ••

where we have used torsion freeness and the fact that e(σ) = σ, E(σ) = 0. Using
α
k

now the expressions for r.., we get

N σ 2σ
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If this again has to be in the direction of N, we must have

1+α « 2 1-α . •• l+2α 2
- Zσ = -x— + σ σ

σ do σ

which by multiplication with 2σ reduces to the differential equation

2σσ + 2σ
2
 = (α-1)

This is most conveniently solved by letting u = σ , whereby ϋ = 2σσ + 2σ and

the equation becomes as simple as

ϋ = α-1 +-> u(t) = ̂ (α-l)t
2
 + Bt + C, (4.3)

such that the α-geodesic submanifolds are either straight lines (α = 1) or
p

parabolas in the (y,σ )-parametrisation.
The special case α = 1, B = 0 corresponds to the manifolds

|(
σ
 = {(y,σ) |σ=σ

Q
}

5
 σ

Q
εIR

+

that give a 1-geodesic foliation.

Another special case is the submanifolds of constant variation

coefficient

V^ = {(y,σ)|σ=γy},γεIR
+

p
that we now see are α-geodesic if and only if α = l+2γ by inserting into (4.3).

V are now connected submanifolds but is composed by two non-connected submani-
—γ

folds V
 +
 and V "

V
 +
 = {(μ,σ)|μ>0>nV

 9
 V " = {(y ,σ) |y>0}ΠV .

The (V ,V ") manifolds do not represent α-geodesic foliations since they are

not α-geodesic for the same value of α. For α = 0 we see that the geodesic sub-

2 2

manifolds are parabola's in (y,σ ) with coefficient -k to y , a result also

obtained by Atkinson and Mitchell (1981) and Skovgaard (1984).

Consider now the hypothesis (y,σ) εV , i.e. that of constant varia-

tion coefficient. We shall illustrate the idea of geodesic estimation in this

example as described at the end of section 3.
2

V is α=l+2γ geodesic. The ancillary manifolds to be considered
are then -α-geodesic manifolds orthogonal to V .

An arbitrary -α-submanifold is the "parabola"
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σ = (-(l+γ
2
)y

2
+Bμ+C)

!5

p
which follows from (4.3) with α = -(l+2γ ). Its tangent vector is equal to

e+σE = ̂  [-2(l+γ
2
)y+B]E+e.

The tangent vector of the hypothesis is

e+γE.

They are at right angles at d
J
o'

Ύμ
n^ ^

 anc
*

1+J: [-2(l+γ
2
)y

0
+B]=0 ~ B=(l+2γ

2
)y

0
.

The ancillary manifold intersects at (μQ,γμQ) if and only if

-(l+γ
2
)y

2
+(l+2

γ

2
)y

2
+C=

γ

2
μ

2
 *"*

 c = 0

p
The -(l+2γ )-geodesic ancillary manifolds are thus given as

W^ = {(t,σ
μ
(t))|tεl }, yεIfK{0}

(WQ = {(0,σ)|σεIR
+
>)

where σ
 2
(t) = -(l+γ

2
)t

2
 + (l+2

γ

2
)yt and

I =
y

2

i ] i t ? ϊ _ μ , O [ 1f μ<0.
V 1+Y

2
The manifolds W , yεlR actually constitute a -(l+2γ ) -foliation of the Gaussian

manifold. To see this, let (x,s) be an arbitrary point in M_. If we try to

solve the equation

(ί,s
2
) = (t,-(l+

γ

2
)t

2
+(l+2γ

2
)μt)

we obtain exactly one solution μ for x=fθ, given as

Λ
 (l+γ

2
)x

2
+S

2
 (l+γ

2
)x+γ

2 $

S
2

i.e. a linear combination of x and
γ

y, as determined by (4.4) is the geometric estimate of y, when x

and s denote the empirical mean and standard deviation of a sample x,,...,x .

It is by construction (see Amari (1982)) consistent and first-order efficient.
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A picture of the situation is given below in three different parametrizations:

2 -2
(μ>σ), (μ,σ ) , and (μ,σ ) :

- 2 0 2

Fig. Ί: Geometric estimation with constant coefficient of variation, (y,σ)-

param.

Fig. 2: Geometric estimation, (y,σ )-param.



Statistical Manifolds 195

Fig. 3: Geometric estimation, (y,-γ) param.

To obtain a geometric ancillary and test-statistic we proceed as follows:

We take a system of vectors on the hypotheses whose directions are
2

-(l+2γ ) -parallel and whose lengths are equal to one. Further they are to be

orthogonal to the hypothesis (and thus tangent to the estimation manifolds).

The directions should thus be given as

v = (v
Γ
v

2
) = -e + j^ E

To obtain unit length, we get ||v| 1
σ V 2γ

2 \

a[-μ,i]

where a = (2γ /(2γ +1)) . To find the exponential map

when σ=γμ, and our orthogonal field is thus

V(y) » [v^μJ.

-(l+2γ
2
))
ίtV.(μ)} = (f(t,μ),σ(t,μ))

we shall solve the equations
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σ
2
(t,μ) = -(Hγ

2
)f(t,μ)

2
 + (l+2γ

2
)f (t ,μ)μ (4.5)

d f

ά
 [°'

μ )
 = -aμ and f(O,μ) = μ

f=2f I (i+α) ++ f = -2/γ
2
f ί (4.6)

since only the speed of the geodesic has to be determined. (4.6) is easily seen

to be equivalent to
2

f = Kσ"
4 γ
 for some KfO. (4.7)

Inserting (4.5) into this we obtain
2

f = K(-(HγV + (l+2γ2)μfΓ2γ

and separation of variables yield
2

Zί[-(1+Y
2
)u

2
 + (l+2γ

2
)μu]

2γ
 du = Kt+CΌ

Substituting v=u/μ we get
2

μ G(—*—2-E-*-) = Kt+C \4.o)

where G(x) = /J [-(l+
γ

2
)v

2
+(l+2γ

2
)v]

2Ύ2
dv.

Using the initial condition f(0,μ)=μ we get

C = μ
4 γ 2 + 1

G ( D

and the condition f(0,μ) = -ay yields together with (4.7)

K = σ
4γ2
(O,μ)(-aμ) = - a γ

4 Y
V

γ 2 + 1
,

whereby

μ
4γ

2

+1 G{
fψ

ίl)
 __ _

aγ
4γ

2

μ
4γ

2

+
l

t +
 y +

4v +1and dividing by μ
 Y
 yields thus

G
( )

 a γ
Λ
 6(1)

and therefore f(t,μ) = μh(t) where

2
h(t) = G ' V a γ ^ t + G(D).

Inserting this into (4.5) yields

σ(t.μ) = μ /-(l+
γ

2
)h(t)

2
+(H2γ

2
)h(t)

which is linear in μ. If we now interpret points of same "distance" from the
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hypothesis as those where t is fixed and only y varying, we see that s/x is in

one-to-one correspondence with t. We shall therefore say that s/x is the

geometric ancillary and this it also is the geometric test statistic for the

hypothesis σ=γμ.

It is of course interesting, although not surprising, that this

test statistic (ancillary) is obtained solely by geometric arguments but still

equal to the "natural" when considering the transformation structure of the

model.



6. THE INVERSE GAUSSIAN MANIFOLD

Consider the family of inverse Gaussian densities

f(χ;x.*>-
Ψ X
V

3 / 2
, χ,

Ψ
>o

w.r.t. Lebesgue measure on IR
+
. We choose to study this manifold in the para-

metrization (n,θ), where

"
1
 θn = x , i.e.

η 2 ηf(x n.θ) =

The metric tensor and the skewness tensor can now be calculated either by using

their definition directly or by calculating these in the (χ,ψ) coordinates and

using transformation rules of tensors. We get

1 λ
g =

θη I

and T 1 1 2 = 0 ,
ni ^ 2 2 2 f

α Γl

The Riemannian connection is now determined by

Γ i n = -O+α)/(2n3), Tm -

Γ2 2 ] = (l-o)/(2θη2), Γ ] 2 2 = 2 1 2

τ222 = (3α-l)/(2θ2n)

Multiplying with the inverse metric we get

= -(l+α)/(2θη2)

198
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α , α 9 α, α,

T\λ = -(l+α)/η Γf, = Γj2 - Γ^ = 0

Γ
2 2
 = (3α-l)/2θ.

To find all geodesic submanifolds of dimension one we first notice
α 2

that since r,, = 0, the manifolds

-θ Q ϋ

are α-geodesic for all α, i.e. geodesic and they constitute a geodesic foliation

of the inverse Gaussian manifold. Because

$ X = θ"
1

they correspond to hypotheses of constant expectation.

Consider now a submanifold of the form (n(t),t), i.e. with tangent

N given as

N = ή e + E, where e = ̂ , E = ± .

We extend η by letting η(x,y): = n(y), i.e. such that e(η) = 0, E(η) = η. Then

α oα α α
V N N = ^ e e + 2 η V e E + η e + V E E

1+α 2 l-θ ί\ Λ , / 1+α , 3 α - l \ Γη + )β + ( η + jE
/'* 1+α 2 l-θί\Λ , / 1+α ,

= (η " — η + — ) β + (- — η +

We now have V..N = hN i f f

•r 1+α , 3α-lη r 1+α , 1-αη
η[- Ί Γ

 η + i r ] = [η - — η + ~r]

which reduces to the differential equation

• 3α-l α-1
η " 1 Γ η = ΊΓ

This is f irst solved for α = i :

η(t) = - I t log t + C,t + C2
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l-3α
Ί O

For α j -j we get by letting u = ηt that u satisfies the differential

equation . ̂
 ]

_^
ύ=(α-l)t

 2

Whereby

n(t) - %

For α=l (the exponential connections) we get the parabolas:

n(t) = Bt
2
 + C

and for α=-l (the mixture connection) we get the curves:

η(t) = -t + B/t + C.

In the Riemannian case (α=0) we get

n(t) = -2t + B / T + C

that are parabolas in (/θ~,η).

The curvature tensor is given by

The manifold is thus conjugate symmetric (we already know, since it is an ex-

ponential family) and the sectional curvature is

κα(σ12) = -R1 2 1 2/(g1 1g22) = -O-«2)/2

Note that the Riemannian curvature (α=0) is again constant equal to -h
9
 as in

the Gaussian case. In fact the α-curvature is exactly as in the Gaussian case.

We can map the inverse Gaussian manifold to the Gaussian by letting

V = J2Q σ
2
 = η/2

and this map is a Riemannian isometry. However, it does not preserve the skew-

ness tensor and thus the Gaussian and inverse Gaussian manifolds do not seem to

be isomorphic as statistical manifolds, although they are as Riemannian mani-

folds.

Corresponding to the hypothesis of constant coefficient of vari-

ation, we shall investigate the submanifold corresponding to the exponential



Statistical Manifolds 201

transformation model /χψ" = —, γ fixed, i.e.

^
y
 σ>0

which in the (η,θ)-parametrization is a straight line through the origin (as

const, coeff. of var.)

{η = γθ} = V

This submanifold is α-geodesic if and only if

2(α-i:
γ =
 1 ^ Γ ~

α
- 2+37'

The tangent space to V is spanned by γ e + E, and the orthogonal -α-geodesic

submanifolds are given by solving the equations

l-3α

(5.1)

to get the intersecting point and orthogonality at ( ̂ ~ ' &,?) gives

3α+l

B
8α

l-9α
2 '

Combining this with (5.1) we get C=0, i.e. the estimation manifolds are given as

3α+Ί 1-3α

t+\ 2(Ί+α)
 +
 8α θ .

 2

l-9α

The manifolds W^, θ>0 again constitute a -α-foliation of the inverse Gaussian
—D

manifold as is seen by solving the equations

which gives t=θ
Q
, and

θ = "
2

3α-l

"0
u
0

4α
+
 9α

2
-1

 η
Q

8α Θ
Q
 j

2
3α+l

This again determines a geometric estimate 8 of θ from a sample x-,,...,x from

the inverse Gaussian distribution, and this is obtained by letting
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η 0 = Ί^* θ 0 = n" Σxΐ1 " ] / * '

and inserting α = (2+γ)/(2+3γ) into the expression given above.



7. THE GAMMA MANIFOLD

Consider the family of gamma densities

f(x;μ,e) = (3/y)
3
 x

3
"Vr(3) exp{- ̂ } μ>0, 3>0

w.r.t. Lebesgue measure on IR
+
. The metric tensor is obtained by direct cal-

culation in the (y,β)-parametrization as

"T
g -

 μ

0 φ(3)

where φ(e) = D
2
 log r(&) - 1/3.

The Riemannian connection is now obtained by

^ijk
 =
 ^

3
i

9
j k

 + 3
j

9
ik "

 3
k

g
ij-'

 t 0 b e

f
1 ] Ί
 = -3/μ

3
; f

1 1 2
 = - l/(2μ

2
); f

1 2 1
 = f

2 1 1
 = l/(2μ

2
)

Γ
222

 = J 5 φ
' (

β
) '

 Γ
221

 = Γ
122

 = Γ
212

 =
 °'

1
Similarly we calculate r... by the formula

1
Γ
ijk

 =
 t

( E
1

E
j

( Ί ) E
k

( Ί ) ) t 0 b e

r n i = -23/μ3 r1 2 1 = 1/μ2

1 1 1 1 1
Γ122 = Γ Π 2 = Γ212 = Γ222 = Γ221 = °

1
and the skewness tensor T\ ... = 2 ( r ^ - k - r . . k )

T Π 2 = T121 = T211 = " 1 / p T222 = φ'

T221 = T122 = T212 = °»

203
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whereby the α-connections are determined to be

Γ
lll

 =
 Γ ~

 Γ
Π 2

 =
 7 T

y <̂ y

α α i . α
 n

Γ = r = lί^- r = il2
1
Ί2Ί ^11

 9
 2 *222 2

2y

α α α
Γ
122

 = Γ
212

 = Γ
221

 =
 °'

Multiplying by the inverse metric we get

™!i
 =
 -ψ

[
λ2

 [
2λ 23 22

and all other symbols equal to zero.

The curvature is by direct calculation found to be

1212
 4Λ

Φ
(β)

The space is conjugate symmetric and therefore the curvature tensor is fully

determined by the sectional (scalar) curvature which is

K
<

α
) = -R g

Ί 1
g

2 2
 = 1-α

2
 [φ(β)+βφ'(β)3

Note that this is even for α=0 different from the two previous examples in that

the curvature is non-constant and truly dependent on the shape parameter 3.

To find all geodesic submanifolds we proceed as follows:

If μ=μ
n
 is constant on N, X(N) is spanned by the tangent vector E correspondingu — — —

to differentiation w.r.t. the second coordinate. Since

these submanifolds are geodesic for all values of α and constitute a geodesic

foliation of the gamma manifold.

Considering the manifold given by 3=3Q> its tangent space is span-

ned by e and since
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these are α-geodesic if and only if α=l.

In general let us consider a hypothesis (submanifold) of the type

(f(t),t). Its tangent vector is

f e + E and e(f) = 0, E(f) = f

we have

vj
 e + E

(f e + E) = f
2
v

e
e = 2fv

e
E + f e + v

E
E

= L
.μ J+SL

 +
 f U2L

 +
 f

] e +
 [f

2
 «ll_

 +
 J ^

μ 3 2
( )

 2
 φ(β)

If we now let β=t μ=f and multiply the coefficient to E by f we obtain the

equation

which unfortunately does not seem soluble in general. For α=l the solutions are

f(t) = t/(At+B).



8. TWO SPECIAL MANIFOLDS

In the present section we shall see that things are not always as

simple as the previous examples suggest, but even then we seem to be able to get

some understanding from geometric considerations.

First we should like to notice that when we combine two experiments

independently with the same parameter space, both the Fisher information metric

and the skewness tensors are additive. Let X^P
Q
 Y^P

Ώ
 and let A., B. denote the

derivative of the two log-likelihood functions

A
i
 =
 d r

1 o g f (x;θ) B
i
 =
 drj"

1 o g g(y;θ)

Then the skewness tensor is to be calculated as

= EA
j A j

A
k +

 EB.B.B,

since all terms containing both A's and B's vanish due to the independence and

the fact that EA
Ί
 = EB. = 0.

p
If we now let X^N(μ,σ ), Y^N(σ,l) and X and Y independent we get

by adding the information and skewness tensors that in the (μ,σ)-parametrization

and that, as in the Gaussian manifold, we have

T
lll •

 T
122 "

 T
212 •

 T
22Ί = °

 T
Π 2 = ^

 T
222 =

 8 /
°

3
'

α

Since derivatives of the metric are as in the Gaussian case, so are the i\ ...-

symbols:

206
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α
Γ121

α
Γ m

α
= Γ 2Π

α
= Γ122

-(1+α]

α
= Γ212

a
= Γ221

α
Γ222Γ

2 2 2
=-2(l+2α)/σ

3
.

But the α-connections are truly different which is seen by looking at the r..-

symbols:

Γ^ = (l-α)/(2σ+σ
3
) τ]

2
 = ̂  = -(l+α)/σ

Γ
2 2
 = -2(l+2α)/(2σ+σ

3
)

and all others equal to zero. Considering now the curvature tensor we get

K
1212

 U αJ
 4 ,

9 +
 2x

 R
2112σ (2+σ )

-α
and this is clearly different from R-|

2
12

 w
^

e r e
^

 t
'
ΊΊS s

P
a c
^ is not conjugate

symmetric. The sectional curvature is not determining the curvature tensor be-
1

cause e.g. R-ioi?^ ̂
ut t
'
Ίe s

P
a c e 1S n o t

 1 -flat since

R = -R = -M+α) [2(l-α)
+
α

2
(2

+
α)] _ «K

1221
 K

1212
 {l a

> 4,
9
. 2

λ
 ~ "

K
2121

a
From standard properties of the curvature tensor we have R... = 0, but we

obtain by direct calculation that

α α α α
R
1211

 = R
2111

 = R
1222

 = R
2122

 =
 °

s

such that the above components are the only ones that are not vanishing.

If we try to find the geodesic submanifolds we first observe that
α
lbecause r
0
 = 0 for all α. the submanifolds

N = {(μ,σ)|μ=μ
0
)

are totally geodesic for all α, and thus constitute a geodesic foliation of the

manifold. Following the remarks at the end of section 4, relating geodesic

foliations to the affine dual foliations of Barndorff-Nielsen and Blaesild

(1983), it is of interest to know that also in this example, the maximum likeli-
p

hood estimates of σ and μ are independent as expected from the foliation. We

shall now proceed to find the remaining geodesic manifolds.

If we consider manifolds of the type (t,f(t)) with tangent vector
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e + f E we get
α α .α ,«a
v
o+f F (

e + f E
)

 = v

Ω

e + 2 f v
^E + f V

C
E + f Ee+f E e e E

= _ 2£ (
1 + a

)
e +
 ( Ί-a _ 2(l+2a) '

f
Z^

 £
f
 2σ+σ

3
 2σ+σ

3

Multiplying the coefficient to e with f and inserting σ=f we get the equation

Multiplying on both sides with f(2+f ) and collecting terms gives

2f
2
f

2
(l+α) + 2ff + ff

3
 + 2f

2
 = α-1

and this does not seem to have a particularly nice solution.

Note that f(t) and γt is not a solution since then f=γ f=0 and we

obtain the equation for α:

2γ
4
t

2
(l+α) + 2γ

2
 = α-1

which can only hold when α = -1 and then we get

2γ
2
 = -2

which is impossible.

In this example the "constant coefficient of variation" does also

not have any simple group transformational properties.

It seems then of interest to see what happens if we consider the

model with X^N(y,σ ), Y^N(log σ,l) which is related to the example just consid-

ered but where the "constant coefficient of variation" js^ transformational. The

model is also transformational itself (the affine group). By the same argument

as before the skewness tensor becomes identical to that of the univariate Gaus-

sian manifold. The metric, however, becomes

i Λ A i 2 Λ

whereby we calculate the Riemannian connection to be

Γ112 = 1/σ3 f 2 1 1 = f 1 2 1 = -1/σ3

? 2 2 2 = -3/σ f n l = Γ122 = Γ212 = Γ221 = 0.
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The α-connections are

r 1 2 2 = d-αj/σ 3 r1 2 1 = r 2 1 1 =

α ^ α α α α
Γ??9 = ("3-4α)/σ Γ Ί Ί 1 = Γ 1 9 9 = Γ 9 1 9 = Γ 9 9 Ί = 0,

or in the r. .-symbols:

Γ^ = (l-α)/3σ Γ^ = Γ^ =

τ\
2
 = -(3+4α)/3σ.

The curvature tensor can be calculated to be

2 - (l-α)(3+α) Sί _ (Uα)(3-α)
K
1212 " 4

 K
1221 4

σ σ

So we do indeed again have a manifold that is not conjugate symmetric. All

other components are again vanishing apart from Ron?'
 R
212V

 T
^

e s
P

a c e ΊS n o t

flat for any value of α.

Considering the problem of finding all geodesic submanifolds we have

the same situation as earlier in that

N^ = {(μ,σ)|μ=μ
0
}

together constitute a foliation that is geodesic for all values of α, again in

accordance with the independence of μ and σ.

Consider now a submanifold of the type [t,f(t)] with tangent

e + f E. We get
α α

 #
α

 9
α

v ^r(e+fE) = v e + 2fv E + f v_E + fEe+fE e e E

. _ ψ (
1+α)e +

 [^L . 3±4«f2
 + ί]£

Multiplying the coefficient to e by f and everything by 3f and reducing, we

obtain the following differential equation:

(3+2α)f
2
 + 3ff = α-1 .

For α=0 (the Riemannian case), we get

3f
2
 + 3ff = -1.
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Letting f = Λf, u = f we obtain as in the Gaussian case the equation

ϋ = - I «-* u = - -jt
2
 + At + B,

2

i.e. again parabolas in the (y,σ ) parametrization but with a different coef-

ficient to t
2
.

Note that, in fact, considered as a Riemannian manifold there is no

essential difference between this and the univariate Gaussian manifold, since

we have constant scalar Riemannian curvature equal to

-
7 τ

--i.

i.e. again a hyperbolic space.

If α I {l,--^} the following special parabolas are solutions:

2 0 9 '
σ
 9TΓ^

 +
 Bμ + B -̂  , B

2 2
σ = σ

Q
 is 1-geodesic. For α = -3/2 nô  parabolas are geodesic. The equation

then reduces to

f
f _ α-1ff --j- ,

the general solution to which cannot be obtained in a closed form.

If we consider the transformation submodel of "constant coefficient

of variation" σ=γμ corresponding to f(t)= t, we get the equation

(3+2α)γ
2
 + 0 = α-1.

Solving this for α we find the following peculiarity:

α = (3γ
2
+l)/(l-2γ

2
) if γ

2
^

but if γ = /2/2, the equation has no solution!! In other words, all "constant

variation coefficient submanifolds" of the manifold studies are α-geodesic for
2

suitably chosen α except one (γ = h).

A reasonable explanation for this is at present beyond my imagina-

tion. Is there a missing connection (α=~)? Have I made a mistake in the cal-

culations? Or is it just due to the fact that the phenomenon is related to how

this model is a submodel of the strange two-dimensional model. In any case,

there is a remarkable disharmony between the group structure and the geometry.
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To go a bit further we consider the three-dimensional manifold

((μ,σ,ξ)-parametrized) obtained from considering X ̂  N(μ,σ ), Y ̂  N(ξ,l). The

metric for this becomes

0

g =

0 1

and the skewness-tensor and the α-connections are identical to the Gaussian

case when only indices 1 and 2 appear and all involving the third coordinate

are equal to zero. Letting (e,E,F) denote the basis vectors for the tangent

space determined by coordinatewise differentiation, we consider now the "con-

stant coefficient of variation" submanifold:

ί(t,γt, log γ t), t ε IR
+
}

with tangent-vector N = e + γE + xF, and we get

V
N

N =

2γV
e
E

Inserting the expressions for the α-connections we obtain

v N
 = .

2
 ̂ e - ( — + γ )E - — FN t 2γt t .2t

If this derivative shall be in N's direction we must have

but also

= g l + γ(l+2α) - 2γ
2
 = -

which is impossible. We conclude thereby that this transformational model is

not α-geodesic for any α, considered as a submodel of the full exponential

model.



9. DISCUSSION AND UNSOLVED PROBLEMS

The present paper seems to raise more questions than it answers.

We want to conclude by pointing out some of these, thereby hoping to stimulate

research in the area.

1. How much structure of a statistical model is captured by its

"statistical manifold", the manifold being defined through expected geometries

as by Amari, minimum contrast geometries as by Eguchi or observed geometries as

by Barndorff-Nielsen? On the surface it looks as if only structures up to

third order are there and as if one should include symmetric tensors of higher

order to capture more.

2. Some statistical manifolds (ML ,g-. ,D-,) and (Mo,g2,D2)
 are

"alike", locally as well as globally. Various types of alikeness seems to be of

some interest. Of course the full isomorphism, i.e. maps from M., to NL that

preserves both the Riemannian metric and the skewness tensor. But also maps

that preserve some structure, but not all could be of interest, in analogy with

the notion of a conformal map in Riemannian geometry (maps that preserve angles,

i.e. the metric up to multiplication with a function). There are several pos-

sibilities here. Isometries that preserve the skewness tensor up to a scalar

or up to a function. Maps that preserve the metric up to scalars and/or func-

tions and do and do not preserve skewness etc. etc.

3. In connection with the above there remains to be done a lot of

work on classification of statistical manifolds in a pure mathematical sense,

i.e. characterize manifolds up to various type of "conformal" equivalence,

"conformal" here taken in the senses described above. A classic result is that

212



Statistical Manifolds 213

two Riemannian manifolds are locally isomorphic if they have identical curvature

tensors. Do similar things hold for statistical manifolds and their α-curva-

tures? Note that the inverse Gaussian and Gaussian manifolds seem to be alike

but not fully isomorphic. Results of Amari (1985) seem to indicate that α-flat

families are yery similar to exponential families. Are they in some sense

equivalent? There might be many interesting things to be seen in this direc-

tion.

4. Some statistical manifolds seem to have special properties. As

mentioned above we have e.g. α-flat families, but also manifolds that are

conjugate symmetric or manifolds with constant α-curvatυre both for a particular

α and for all α at the same time. Which maps preserve these properties? Can

they in some sense be classified?

5. How does the geometric structures behave when we form marginal

and conditional experiments? Some work has been done on this by Barndorff-

Nielsen and Jupp (1984, 1985).

6. Is there a decomposition theory for statistical manifolds. We

have seen that there might be a connection between the existence of geodesic

foliations and independence of estimates. There might be a de Rham-like theory

to be discovered by studying parallel transports along closed curves in flat

manifolds?

7. Chentsov (1972) showed that the expected geometries were the

only ones that obeyed the axioms of a decision theoretic view of statistics, in

the case of finite sample spaces. It seems of interest to investigate general-

izations of this result, both to more general spaces and to other foundational

frameworks. Picard (1935) has generalized the result to the case of exponential

families and has some results pertaining to the general case.

8. What insight can be gained by studying the difference between

observed and expected geometries?

9. How is the relation between the geometric structure of a Lie-

transformation group and the geometric structure of its transformational statis-



214 Steffen L. Lauritzen

tical models?

Other questions and problems are raised by Barndorff-Nielsen, Cox,

and Reid (1986) and in the book by Amari (1985).
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