
CHAPTER 1. INTRODUCTION

Robert E. Kass*

Geometrical analyses of parametric inference problems have developed

from two appealing ideas: that a local measure of distance between members of a

family of distributions could be based on Fisher information, and that the

special place of exponential families in statistical theory could be understood

as being intimately connected with their loglinear structure. The first led

Jeffreys (1946) and Rao (1945) to introduce a Riemannian metric defined by

Fisher information, while the second led Efron (1975) to quantify departures

from exponentiality by defining the curvature of a statistical model. The

papers collected in this volume summarize subsequent research carried out by

Professors Amari, Barndorff-Nielsen, Lauritzen, and Rao together with their

coworkers, and by other authors as well, which has substantially extended both

the applicability of differential geometry and our understanding of the role it

plays in statistical theory.**

The most basic success of the geometrical method remains its concise

summary of information loss, Fisher's fundamental quantification of departure

from sufficiency, and information recovery, his justification for conditioning.

Fisher claimed, but r\e\/er showed, that the NILE minimized the loss of information

among efficient estimators, and that successive portions of the loss could be
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recovered by conditioning on the second and higher derivatives of the log-

likelihood function, evaluated at the MLE. Concerning information loss, recall

that according to the Koopman-Darmois theorem, under regularity conditions, the

families of continuous distributions with fixed support that admit finite-

dimensional sufficient reductions of i.i.d. sequences are precisely the exponen-

tial families. It is thus intuitive that (for such regular families) departures

from sufficiency, that is, information loss, should correspond to deviations

from exponentiality. The remarkable reality is that the correspondence takes a

beautifully simple form. The most transparent case, especially for the untrain-

ed eye, occurs for a one-parameter subfamily of a two-dimensional exponential

family. There, the relative information loss, in Fisher's sense, from using a

statistic T in place of the whole sample is

11m i(θ)"
Ί
[ni(θ)-i

T
(θ)] = γ

2
 + \ 3

2
 (1)

where ni(θ) is the Fisher information in the whole sample, i (θ) is the Fisher

information calculated from the distribution of T, γ is the statistical curva-

ture of the family and 3 is the mixture curvature of the "ancillary family"

associated with the estimator T. When the estimator T is the MLE, 3 vanishes;

this substantiates Fisher's first claim.

In his 1975 paper, Efron derived the two-term expression for infor-

mation loss (in his equation (10.25)), discussed the geometrical interpretation

of the first term, and noted that the second term is zero for the MLE. He

defined γ to be the curvature of the curve in the natural parameter space that

describes the subfamily, with the inner product defined by Fisher information

replacing the usual Euclidean inner product. The definition of 3 is exactly

analogous to that of γ, with the mean value parameter space used instead of the

natural parameter space, but Efron did not recognize this and so did not

identify the mixture curvature. He did stress the role of the ancillary family

associated with the estimator T (see his Remark 3 of Section 9 and his reply to

discussants, p. 1240), and he also noticed a special case of (1) (in his reply,

p. 1241). The final simplicity of the complete geometrical version of (1)
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appeared in Amari's 1982 Annals paper. There it was derived in the multi-

parameter case; see equation (4.8) of Amari's paper in this volume.

Prior to Efron's paper, Rao (1961) had introduced definitions of

efficiency and second-order efficiency that were intended to classify estimators

just as Fisher's definitions did, but using more tractable expressions. This

led to the same measure of minimum information loss used by Fisher (correspond-
2

ing to γ in equation (1)). Rao (1962) computed the information loss in the

case of the multinomial distribution for several different methods of estimation.

Rao (1963) then went on to provide a decision-theoretic definition of second-

order efficiency of an estimator T, measuring it according to the magnitude of

the second-order term in the asymptotic expansion of the bias-corrected version

of T. Efron's analysis clarified the relationship between Fisher's definition

and Rao's first definition. Efron then provided a decomposition of the second-

order variance term in which the right-hand side of (1) appeared, together with

a parameterization-dependent third term. The extension to the multiparameter

case was derived by Madsen (1979) following the outline of Reeds (1975). It

appears here in Amari's paper as Theorem 3.4.

An analytically and conceptually important first step of Efron's

analysis was to begin by considering smooth subfamilies of regular exponential

families, which he called curved exponential families. Analytically, this made

possible rigorous derivations of results, and for this reason such families

were analyzed concurrently by Ghosh and Subramaniam (1974). Conceptually, it

allowed specification of the ancillary families associated with an estimator:

the ancillary family associated with T at t is the set of points y in the sample

space of the full exponential family - equivalently, the mean value parameter

space for the family - for which T(y) = t. The terminology and subsequent

detailed analysis is due to Amari but, as noted above, the importance of the

ancillary family, at once emphasized and obscured by Fisher, was apparent from

Efron's presentation.

The ancillary family is also important in understanding information
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recovery, which is the reason Amari has chosen to use the modifier "ancillary."

In the discussion of Efron's paper, Pierce (1975) noted another interpretation

of statistical curvature: it furnishes the asymptotic standard deviation of

observed information. More precisely, it is the asymptotic standard deviation

-1/2
 Λ
 -1of the asymptotically ancillary statistic n ' i(θ) [I(θ) - ni(θ)], where

ni(θ) is expected information and I(θ) is observed information; the one-

parameter statement appears in Efron and Hinkley, (1978), and the multiparameter

version is in Skovgaard (1985). When fitting a curved exponential family by the

method of maximum likelihood, this statistic becomes a normalized component of

the residual (in the direction normal to the model within the plane spanned by

the first two derivatives of the natural parameter for the full exponential

family). Furthermore, conditioning on this statistic recovers (in Fisher's

sense) the information lost by the NILE, at least approximately. When this

conditional distribution is used, the asymptotic variance of the NILE may be

estimated by the inverse of observed rather than expected information; in some

problems observed information is clearly superior.

This argument, sketched by Pierce and presented in more detail by

Efron and Hinkley, represented an attempt to make sense of some of Fisher's

remarks on conditioning. In Section 4 of his paper in this volume, Amari

presents a comprehensive approach to information recovery as measured by Fisher

information. He begins by defining a statistic T to be asymptotically suffi-

cient of order q when

ni(θ) - i
T
(θ) = 0(n'

q + 1
)

and asymptotically ancillary of order q when

i
T
(θ) = 0(n"

q
) .

These definitions differ from some used by other authors, such as Cox (1980),

McCullagh (1984a), and Skovgaard (1985). They are, however, clearly in the

spirit of Fisher's apparent feeling that i (θ) is an appropriate measure of

information. To analyze Fisher's suggestion that higher derivatives of the

loglikelihood function could be used to create successive higher-order



Introduction 5

approximate ancillary statistics, Amari defines an explicit sequence of

combinations of the derivatives: he takes successive components of the residual

in spaces spanned by the first p derivatives - of the natural parameter for the

ambient exponential family - but perpendicular to the space spanned by the first

p-1, then normalizes by higher-order curvatures. In Theorems 4.1 and 4.2

Amari achieves a complete decomposition of the information. He thereby makes

specific, justifies, and provides a geometrical interpretation for Fisher's

second claim. In Amari's decomposition the p-th term is attributable to the.

p-th statistic in his sequence and has magnitude equal to n"^ times the

square of the p-th order curvature. (Actually, Amari's treatment is more

general than the rough description here would imply since he allows for the use

of efficient estimators other than the MLE.)

As far as the basic issue of observed versus expected information is

concerned, Amari (1982b) used an Edgeworth expansion involving geometrically

interpretable terms (as in Amari and Kumon, 1983) to provide a general motiva-

tion for using the inverse of observed information as the estimate of the

conditional variance of the MLE. See Section 4.4 of the paper here. (In truth,

the result is not as strong as it may appear. When we have an approximation v

to a variance v satisfying v(θ) = v
n
(θ){l + 0(n" )}, and we use it to estimate

v(θ), we substitute v (θ), where θ is some estimator of θ, and then all we
Λ
 I/O

usually get is v(θ) = v (θ){Ί + 0 (n )}. For essentially this reason,

observed information does not in general provide an approximation to the con-

ditional variance of the MLE based on the underlying true value θ, having

relative error 0 (n ) - although it does do so whenever expected information is

constant, as it is for a location parameter. Similarly, as Skovgaard, 1985,

points out in his careful consideration of the role of observed information in

inference, when estimated cumulants are used in an Edgeworth expansion it loses

its higher-order approximation to the underlying density at the true value.

This practical limitation of asymptotics does not affect Bayesian inference, in

which observed information furnishes a better approximation to the posterior
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variance than does expected information for all regular families.)

For curved exponential families, then, the results summarized in the

first few sections of Amari's paper provide a thorough geometrical interpreta-

tion of the Fisherian concepts of information loss and recovery and also Rao's

concept of second-order efficiency. In addition, in section 3.4 Amari discusses

the geometry of testing, as had Efron, providing comparisons of several commonly-

used test procedures with the locally most powerful test. Curved exponential

families were introduced, however, for their mathemetical and conceptual

simplicity rather than their applicability. To extend his one-parameter

results, Efron, in his 1975 paper, did two things: he noted that any smooth

family could be locally approximated by a curved exponential family, and he

provided an explicit formula for statistical curvature in the general case.

In Section 5 of his paper, Amari shows how results established for curved

exponential families may be extended by constructing an appropriate Hubert

bundle, about which I will say a bit more below. With the Hubert bundle,

Amari provides a geometrical foundation, and generalization, for Efron's sugges-

tion. From it, necessary formulas can be derived.

One reason that the role of the mixture curvature in (1) and in the

variance decomposition went unnoticed in Efron's paper was that he had not

made the underlying geometrical structure explicit: to calculate statistical

curvature at a given value θ
Q
 of a single parameter θ in a curved exponential

family, Efron used the natural parameter space with the inner product defined

by Fisher information at the natural parameter point corresponding to ΘQ. In

order to calculate the curvature at a new point θ,, another copy of the natural

parameter space with a different inner product (namely, that defined by Fisher

information at the natural parameter point corresponding to θ,) would have to be

used. The appropriate gluing together of these spaces into a single structure

involves three basic elements: a manifold, a Riemannian metric, and an affine

connection. Riemannian geometry involves the study of geometry determined by

the metric and its uniquely associated Riemannian connection. In his discussion
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to Efron's paper, Dawid (1975) pointed out that Efron had used the Riemannian

metric defined by Fisher information, but that he had effectively used a non-

Riemarπ. ian affine connection, now called the exponential connection, in cal-

culating statistical curvature. Although Dawid did not identify the role of the

mixture curvature in (1), he did draw attention to the mixture connection as an

alternative to the exponential connection. (Geodesies with respect to the

exponential connection form exponential families, while geodesies with respect

to the mixture connection form families of mixtures; thus, the terminology.)

Amari, who had much earlier researched the Riemannian geometry of Fisher infor-

mation, picked up on Dawid
1
s observation, specified the framework, and provided

the results outlined above.

The manifold with the associated linear spaces is structured in what

is usually called a tangent bundle, the elements of the linear spaces being

tangent vectors. For curved exponential families, the linear spaces are finite-

dimensional, but to analyze general families this does not suffice so Amari

uses Hubert spaces. When these are appropriately glued together, the result

is a Hubert bundle. The idea stems from Dawid
1
 s remark that the tangent

vectors can be identified with score functions, and these in turn are functions

having zero expectation. As his Hubert space at a distribution P, Amari takes

the subspace of the usual Lp(P) Hubert space consisting of functions that have

zero expectation with respect to P. This clearly furnishes the extension of

the information metric, and has been used by other authors as well, e.g.,

Beran (1977). Amari then defines the exponential and mixture connections and

notes that these make the Hubert bundle flat, and that the inherited connec-

tions on the usual tangent bundles agree with those already defined there. He

then decomposes each Hubert space into tangential and normal components,

which is exactly what is needed to define statistical curvature in the general

setting. Amari goes on to construct an "exponential bundle" by associating

with each distribution a finite-dimensional linear space containing vectors

defined by higher derivatives of the loglikelihood function, and using structure
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inherited from the Hubert bundle. With this he obtains a satisfactory version

of the local approximation by a curved exponential family that Efron had

suggested.

This pretty construction allows results derived for curved exponen-

tial families to be extended to more general regular families, yet it is not

quite the all-encompassing structure one might hope for: the underlying

manifold is still a particular parametric family of densities rather than the

collection of all possible densities on the given sample space. Constructions

for the latter have so far proved too difficult.

In his Annals paper, Amari also noted an interesting relationship

between the exponential and mixture connections: they are, in a sense he

defined, mutually dual. Furthermore, a one-parameter family of connections,

which Amari called the α-connections, may be defined in such a way that for each

α the α-connection and the -α-connection are mutually dual, while α=l and -1

correspond to the exponential and mixture connections. See Amari's Theorem 2.1.

This family coincides with that introduced by Centsov (1971) for multinomial

distributions. When the family of densities on which these connections are

defined is an exponential family, the space is flat with respect to the exponen-

tial and mixture connections, and the natural parametrization and mean-value

parameterization play special roles: they become affine coordinate systems for

the two respective connections and are related by a Legendre transformation.

The duality in this case can incorporate the convex duality theory of exponen-

tial families (see Barndorff-Nielsen, 1978, and also Section 2 of his paper in

this volume). In Theorem 2.2 Amari points out that such a pair of coordinate

systems exists whenever a space is flat with respect to an α-connection (with

α f 0). For such spaces, Amari defines α-divergence, a quasi-distance between

two members of the family based on the relationship provided by the Legendre

transformation. In Theorem 2.4 he shows that the element of a curved exponential

family that minimizes the α-divergence from a point in the exponential family

parameter space may be found by following the α-geodesic that contains the
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given point and is perpendicular to the curved family. This generates a new

class of minimum α-divergence estimators, the MLE being the minimum

-1-divergence estimator, an interpretation also discussed by Efron (1978).

As applications of his general methods based on α-connections on

Hubert bundles, Amari treats the problems of combining independent samples (at

the end of section 5), making inferences when the number of nuisance parameters

increases with the sample size (in section 6), and performing spectral estima-

tion in Gaussian time series (in section 7).

As soon as the α-connections are constructed a mathematical question

arises. On one hand, the α-connections may be considered objects of differen-

tial geometry without special reference to their statistical origin. On the

other hand, they are not at all arbitrary. They are the simplest one-parameter

family of connections based on the first three moments of the score function.

What is it about their special form that leads to the many special properties

of α-connections (outlined by Amari in Section 2)1

Lauritzen has posed this question and has provided a substantial

part of the answer. Given any Riemannian manifold M with metric g there is a

unique Riemannian connection v. Given a covariant 3-tensor D that is symmetric

in its first two arguments and a nonzero number c, a new (symmetric) connection

is defined by

v = v + c D (2)

which means that given vector fields X and Y,

v
χ
Y = v

χ
Y + c D(X,Y)

where

9
( D ( X , Y ) , Z ) Ξ D(X,Y,Z)

for all vector fields Z. Now, when M is a family of densities and g and D are

defined, in terms of an arbitrary parameterization, as
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where % is the loglikelihood function, and if c = -α/2, then (2) defines the

α-connection.

In this statistical case, D is not only symmetric in its first two

arguments, as it must be in (2), it is symmetric in all three. Lauritzen

therefore defines an abstract statistical manifold to be a triple (M,g,D) in

which M is a smooth m-dimensional manifold, g is a Riemannian metric, and D is

a completely symmetric covariant 3-tensor. With this additional symmetry

constraint alone, he then proceeds to establish a large number of basic proper-

ties, especially those relating to the duality structure Amari described. The

treatment is "fully geometrical
11
 or "coordinate-free." This is aesthetically

appealing, especially to those who learned linear models in the coordinate-free

setting. Lauritzen's primary purpose is to show that the appropriate mathemat-

ical object of study is one that is not part of the standard differential

geometry, but does have many special features arising from an apparently simple

structure. He not only presents the abstract generalities about α-connections

on statistical manifolds, he also examines five examples in full detail. The

first is the univariate Gaussian model, the second is the inverse Gaussian

model, the third is the two-parameter gamma model, and the last two are

specially constructed models that display interesting possibilities of the non-

standard geometries of α-connections. In particular, the latter two statistical

manifolds are not what Lauritzen calls "conjugate symmetric" and so the

sectional curvatures do not determine the Riemann tensor (as they do in

Riemannian geometry). He also discusses the construction of geodesic folia-

tions, which are decompositions of the manifold and are important because they

generate potentially interesting decompositions of the sample space. At the

end of his paper, Lauritzen calls attention to several outstanding problems.

Amari's α-connections, based on the first three moments of the

score function, do not furnish the only examples of statistical manifolds. In

his contribution to this volume, Barndorff-Nielsen presents another class of

examples based instead on certain "observed" rather than expected derivatives
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of the loglikelihood.

Although the idea of using observed derivatives might occur to

any casual listener on being told of Amari's use of expectations, it is not

obvious how to implement it. First of all, in order to define an observed

information Riemannian metric, one needs a definition of observed information

at each point of the parameter space. Apparently one would want to treat each

θ as if it were an MLE and then use I(θ). However, I(θ) depends on the whole

sample y rather than on θ alone, so this scheme does not yet provide an explicit

definition. Barndorff-Nielsen's solution is natural in the context of his

research on conditionality: he replaces the sample y with a sufficient pair

(θ,a) where a is the observed value of an asymptotically ancillary statistic A.

This is always possible for curved exponential families, and in more general

models A could at least be taken so that (θ,A) is asymptotically sufficient.

With this replacement, the second component may be held fixed at A=a while θ

varies. Writing I(θ) = I,g χ(θ) thus allows the definition I(θ) Ξ I, JQ)

to be made at each point θ in the parameter space. Using this definition of

the Riemannian metric, Barndorff-Nielsen derives the coefficients that deter-

mine the Riemannian connection. From the transformation properties of tensors,

he then succeeds in finding an analogue of the exponential connection based on

a certain mixed third derivative of the loglikelihood function (two derivatives

being taken with respect to θ as parameter, one with respect to θ as MLE). In

so doing, he defines the tensor D in the statistical manifold and thus arrives

at his "observed conditional geometry."

Barndorff-Nielsen's interest in this geometry lies not with

analogues of statistical curvature and other expected-geometry constructs, but

rather with an alternative derivation, interpretation, and extension of an

approximation to the conditional density of the MLE, which had been obtained

earlier (in Barndorff-Nielsen and Cox, 1979). In several papers, Barndorff-

Nielsen (1980, 1983) has discussed generalizations and approximate versions of

Fisher's fundamental density-likelihood formula for location models
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p(θ |a,θ) = c L(θ)/L(θ) (3)

where θ is the NILE, a is an ancillary statistic, p is the conditional density

of the NILE, and L is the likelihood function. (This is discussed in Efron and

Hinkley, 1978; Fisher actually treated the location-scale case.) The formula

is of great importance both practically, since it provides a way of computing

the conditional density, and philosophically, since it entails the formal

agreement of conditional inference and Bayesian inference using an invariant

prior. Inspection of the derivation indicates that the formula results from

the transformational nature of the location problem, and Barndorff-Nielsen has

shown that a version of it (with an additional factor for the volume element)

holds for yery general transformation models. He has also shown that for non-

transformation models, a version of the right-hand side of (3) while not

exactly equal to the left-hand side, remains a good asymptotic approximation for

it. (See also Hinkley, 1980, and NlcCullagh, 1984a.) In his paper in this

volume, Barndorff-Nielsen reviews these results, shows how the various observed

conditional geometrical quantities are calculated, and then derives his desired

expansion (of a version of the right-hand side of (3)) in terms of the geo-

metrical quantities that correspond to those used by Amari in his expected

geometry expansions. Barndorff-Nielsen devotes substantial attention to trans-

formation models, which may be treated within his framework of observed

conditional geometry. In this context, the models become Lie Groups, for which

there is a rich mathematical theory.

In the fourth paper in this volume, Professor Rao returns to the

characterization of the information metric that originally led him (and also

Jeffreys) to introduce it: it is an infinitesimal measure of divergence based

on what is now called Shannon entropy. Rao considers here a more general class

of divergence measures, which he has found useful in the study of genetic

diversity, leading to a wide variety of metrics. He derives the quadratic and

cubic terms in Taylor series expansions of these measures and shows how, in the

case of Shannon entropy, the cubic term is related to the α-connections.
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The papers here collectively show that geometrical structures of

statistical models can provide both conceptual simplifications and new methods

of analysis for problems of statistical inference. There is interesting

mathematics involved, but does the interesting mathematics lead to interesting

statistics?

The question arises because geometry has provided new techniques,

and its formalism produces convenient summaries for complicated multivariate

expressions in asymptotic expansions (as in Amari and Kumon, 1983, and

McCullagh, 1984b), but it has not yet created new methodology with clearly

important practical applications. Thus, it is already apparent from (1) that

there exists a wide class of estimators that minimize information loss (and are

second-order efficient): it consists of those having zero mixture curvature

for their associated ancillary families. It is interesting that the MLE is only

one member of this class, and it is nice to have Eguchi's (1983) derivation that

certain minimum contrast estimators are other members, but it seems unlikely -

though admittedly possible - that any competitor will replace maximum likelihood

estimation as the primary method of choice in practice. Similarly, there is

not yet any reason to think that alternative minimum α-divergence estimators or

their observed conditional geometry counterparts will be considered superior to

the MLE.

On the other hand, as I indicated at the outset, geometry does

give a definitive description of information loss and recovery. Since Fisher

remains our wisest yet most enigmatic sage, it is worth our while to try to

understand his pronouncements. Together with the triumvirate of consistency,

**
Since Rao's work on second order efficiency arose in an attempt to understand

Fisher's computation of information loss in estimation, it might appear that

Efron's investigation also began as an attempt to understand Fisher. He has

informed me, however, that he set out to define the curvature of a statistical

model and came later to its use in information loss and second-order efficiency.
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sufficiency, and efficiency, information loss and recovery form the core of

Fisher's theory of estimation. On the basis of the geometrical results, it is

fair to say that we now know what Fisher was talking about, and that what he

said was true. Here, as in other problems (such as inference with nuisance

parameters, discussed in Amari's section 5, or in nonlinear regression, e.g.,

Bates and Watts, 1980, Cook and Tsai, 1985, Kass, 1984, McCullagh and Cox, 1936),

the geometrical formulation tends to shift the burden of derivation of results

away from proofs, toward definitions. Thus, once the statement of a proposition

is understood, its truth is easier to see and in this there is great simplifica-

tion. One could make this argument about much abstract mathematical develop-

ment, but it is particularly appropriate here.

Furthermore, there are reasons to think that future work in this

area could lead to useful results that would otherwise be difficult to obtain.

One important problem that structural research might solve is that of determin-

ing useful conditions under which a particular root of the likelihood equation

will actually maximize the likelihood. Global results on foliations might be

very helpful, as might be formulas relating computable characteristics of

statistical manifolds to the behavior of geodesies. The results in these papers

could turn out to play a central role in the solution of this or some other

practical problem of statistical theory. We will have to wait and see. Until

then, readers may enjoy the papers as informative excursions into an intriguing

realm of mathematical statistics.
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