
CHAPTER 6. THE DUAL TO THE MAXIMUM LIKELIHOOD ESTIMATOR

KULLBACK-LEIBLER INFORMATION (ENTROPY)

Before turning to the dual of the maximum l i k e l i h o o d estimator we

define the Kullback-Leibler information, and prove a few of i t s simple

propert ies. The goal of th is detour is to provide a natural p r o b a b i l i s t i c

i n t e r p r e t a t i o n for th is dual as the minimum entropy expectation parameter.

6.1 Def in i t ions

Suppose F, G are two p r o b a b i l i t y d i s t r i b u t i o n s with densities f , g

r e l a t i v e to some dominating σ - f i n i t e measure v. The Kullbaok-Leibler

information of G at F is

(1) K(F, G) = E F ( l n ( f ( x ) / g ( x ) ) )

with the convention that °° 0 = 0, 0 / 0 = 1 , and y/0 = °° for y > 0. K is als

referred to as the entropy of G at F.

I t can easi ly be v e r i f i e d that K(F, G) is independent of the

choice of dominating measure v. The existence of K w i l l be established in

Lemma 6.2 where i t is shown that 0 <_ K £«>.

In exponential famil ies i t is convenient to w r i t e

(2) K(ΘQ, θ j ) = K(PΘ , Pθ ) , ΘQ, θ j e N
0 1

For S c H l e t

(3) K(S, θ χ ) = i n f { K ( θ Q , θ j ) : ΘQ € S} ,

e t c .

174
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K( , ) as defined in (2) has domain A/χA/. I t is convenient to

also transfer this def in i t ion to the expectation parameter space. Accordingly,

define K(ξQ, ζ χ ) by

(4) K(ξQ, ξ χ ) = K(θ(ξ Q ), θ ( ξ 1 ) )

for (ξg.ξ j) € ξ(W°) x ξ(M°). I f the family is steep this def in i t ion is val id

on K° x K°.

I t is also sometimes convenient to extend the

def in i t ion of K( , ζ,) to a l l of Rκ, by lower semi continuity. Accordingly,

for a minimal steep family, and for ξQ € R - K°, ξ>1 € K°, define

(5) K(ξ 0, ξ 1 ) = l im i n f { K ( ξ , ξ χ ) : ξ € K°9 | |ξ - ξQ| | < ε}
eΨO

For ξ f. K9 ξ 1 € K° define

(6) K(ξ, ξ j ) = -

I t is to be emphasized that this is a formal, analytic extension of

the d e f i n i t i o n . κ(ξn» ξ i ) f ° r £n f- °̂ does not necessarily have a

probabi l ist ic interpretat ion l i k e (1). (Sections 6.18+ give a probabi l is t ic

interpretat ion of K, val id under some auxi l iary conditions.)

K is often called the Kullback-Leibler "distance" from ΘQ to θy

but i t is not a metric in the topological sense. In part icular, i t is -- in

general -- not symmetric. There i s , however, one yery important special case

where K is symmetric and (K) 2 is a metric: the normal location family,

{P } = {ΦΛ - : θ e R , forms a standard exponential family with canonical
θ θ,2

s t a t i s t i c t* x (see Example 1.14), and has

( 7 ) K ( Θ Q , θ j ) = ( θ j - θ o ) i Z " 1 ( θ 1 - θ Q ) / 2

The following proposition has already been mentioned above.
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6.2 Proposition

For any two distributions K(F, G) exists and satisfies

(1) 0 <_ K(F, G) £ oo

K(F, G) = 0 i f and only i f F = G.

Proof. E F (1n(f(X)/g(X))) = E F (- ln(g(X)/f(X)))

> -In E F (g(X)/f(X))

= -In 1 = 0

by Jensen's inequality, with equality i f and only i f f = g a.e.(v). ||

For exponential families K has an especially simple and appealing

form.

6.3 Proposition

Let {pθ> be a standard exponential family. I f ΘQ € W°, θ j € N

then

( 1) K(θQ, θ χ ) = ( θ Q - θ χ ) ξ ( θ Q ) - (ψ(θ0) - ψίθj))

= log (p θ ( ξ ( θ o ) ) / p θ ( ξ ( θ Q ) ) )

{Bemark. Suppose {p θ ) is steep and ΘQ € N - N°, θ 1 € W°. Then

K(θQ, θ χ ) = « = lim K(η, θ χ ) for {ηΊ.} c hl° by steepness. Since the only

^ i ^ o

sensible interpretation for (θ Q - θ j ? ( 6 Q ) is « here, (1) may be considered

valid for a l l ΘQ € hi for regular or steep families.)

Proof. Note that

l n ( p θ ( x ) / p θ ( x ) ) = ( θ j - ΘQ) x - ( ψ t θ j ) - ψ ( θ 0 ) )

and Eθ (X) = ξ ( θ Q ) . ||
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6.4 Remark

The second part of 6.3(1) shows how the Kullback-Leibler informa-

tion is related to maximum likelihood estimation. For S c N l e t

(1) K(ΘQ, S) = i n f { K ( θ Q , θ j ) : θ χ € S}

Then, by 6 .3 (1 ) , i f ΘQ e A/°

(2) K(ΘQ, S) = K(ΘQ, θ)

for θ € S i f and only i f θ e θ s ( ξ ( θ Q ) ) .

In other words, for steep famil ies, for Θ = S, and for an

observation x € K° the maximum likelihood estimator is the closest point in S

to θ(x) in the Kullback-Leibler sense. (For observations x € K - K° such

an interpretation requires an extension of the definit ion of K l ike that to

be provided in Sections 6.18+.)

Note also that

(3) K(ΘQ, θ χ ) = £ ( θ 0 , ξ ( θ Q ) ) - 1{QV ζ ( θ Q ) )

The fact that the quantity on the right is positive (for ΘQ e M°, Q- f θ Q )

has already been used in 5.8(3) and 5.12(3).

6.5 Theorem

Let {p } be a standard exponential family. Then K( , ) is
θ

i n f i n i t e l y d i f f e r e n t i a t e on W° x W°. On W°

(1) VK(ΘQ, •) = ξ( ) - ξ ( θ Q )

(2) D
2
K(Θ

Q
, •) = D

2
ψ( ) = Z( ) , Θ

Q
 € H°

If {p_} is minimal and steep then on K°
Ό

(3) VK( , ξ
χ
) = θ( ) - θίζj)
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(4) D
2
K( , ξj) = Γ^θt )) , ξj € /C°

Consequently, given ξ , e K° and ε- > 0 there is an ε« > 0 such t h a t

(5) K(ξ, ξ j ) >. ε 2 | | ξ - ζ 1 | | whenever l l ξ - ξ j l l > ε j

I f s c K° is compact then a value ε ? > 0 can be chosen so that (5) is v a l i d

uniformly f o r a l l ξ , 6 S.

Proof. Formulae ( 1 ) - ( 3 ) a r e s t r a i g h t f o r w a r d from 6 . 3 ( 1 ) . ( N o t e a l s o

t h a t ( 1 ) , ( 2 ) a r e m e r e l y a r e s t a t e m e n t o f 5 . 3 ( 1 ) , ( 2 ) . ) ( 4 ) f o l l o w s from ( 3 )

by t h e i n v e r s e f u n c t i o n theorem s i n c e θ ( ) = ξ (•) and V ξ ( ) = Σ( )

Formula ( 5 ) f o l l o w s f r o m ( 3 ) , ( 4 ) as d i d t h e analogous c o n c l u s i o n 5 . 3 ( 3 ) , and

5 . 3 ( 5 ) o f Lemma 5 . 3 f o l l o w from 5 . 3 ( 1 ) , ( 2 ) . The a s s e r t e d u n i f o r m i t y o f ( 5 )

o v e r ζ 1 € S i s easy to check i n t h a t p r o o f . ||

( N o t e : i f pQ i s not minimal 6 . 5 ( 3 ) i s s t i l l v a l i d and 6 . 5 ( 4 ) i s
u

v a l i d w i t h %" i n t e r p r e t e d as a g e n e r a l i z e d i n v e r s e . )

CONVEX DUALITY
6 . 6 D e f i n i t i o n

Let φ: R -> (-«>,<»] be convex. The convex dual o f φ i s t h e f u n c t i o n

d : Rk -> [-oo, oo] d e f i n e d by

( 1 ) d φ ( x ) = s u p U φ ( θ , x ) : θ e R k }

( R e c a l l , J L ( θ f x ) = θ x - φ ( θ ) . )

We w i l l be i n t e r e s t e d i n t h e s i t u a t i o n when φ i s r e g u l a r l y

s t r i c t l y convex and s t e e p . (See D e f i n i t i o n 5 . 2 . ) Then i f x e R = ξ ( N φ h

l( 9 x ) i s s t r i c t l y concave on hi. and V£( , x ) ι θ / x ) = 0 . Thus

( 2 ) d φ ( x ) = £ φ ( θ ( x ) , x ) f o r x € R = ξ ( W ° )

(In such cases, and somewhat more generally, the pair (d., R ) is called the
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L e g e n d r e t r a n s f o r m o f ( Φ , Λ / φ ) . I t i s e a s y t o c h e c k f r o m ( 2 ) a n d T h e o r e m 6 . 5

t h a t

( 3 ) d d ( θ ) = φ ( θ ) f o r θ e W °
Φ

It can be shown that (3) actually holds for all θ € R , but we do not need

this fact in what follows.)

Suppose ψ is the cumulant generating function of a steep

exponential family. Then

( 4 ) d ψ ( x Q ) = K ( x 0 , X ; L ) + θ ( X l ) x Q x
Q

If the coordinate system and dominating measure are chosen so that

ψ(0) = 0 = ξ(0) then (4) becomes

(4
1
) d

φ
(x

Q
) = K(x

0
, 0) x € K°

This provides a p robab i l i s t i c in te rpre ta t ion for d(x) on K°. I t w i l l be

seen l a t e r that d( ) is the maximal lower semi continuous extension of

( d ( x ) : x € K°) to a l l of Rk, and (4) is va l id for a l l xQ € Rk.

Lemmas 6.7 and 6.8 and Theorem 6.9 present some important basic

facts about convex d u a l i t y . They are j u s t the t i p of a r ich theory. We w i l l

not fur ther develop this theory as an abstract u n i t ; although other important

features of the theory are impl ic t in results we state elsewhere ( e . g .

Theorem 5 . 5 ) . A uni f ied presentation of the theory appears in Rockafel ler

(1970) , and many elements of i t are in Barndorff-Nielsen (1978, especia l ly

Chapters 5 and 9 ) .

6.7 Lemma

The convex dual d is a lower semi continuous convex function.

Hence,N. is convex. Suppose φ is regularly strictly convex. Then d is

strictly convex and twice different!able on R. On R
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(1) Vd(x) = θ(x) ,

and

(2) D
2
d(x) = ( D ^ ) "

1
 (θ(x)) .

Proof. Since d is the supremum of linear functions i t is lower semi-

continuous and convex.

For x € R, d(x) = x θ(x) - ψ(θ(x)). Hence ( 1 ) , (2) hold, by

the same computation that yielded 6 . 5 ( 3 ) , ( 4 ) . d is s t r i c t l y convex on R

since D2d is positive definite. ( I t is possible to also directly establish

s t r i c t convexity without requiring that φ be twice d i f f e r e n t i a t e . ) ||

I t is now convenient to consider

£ d (x, θ) = x θ - d(x) .

Under the conditions of Lemma 6.7 Vd(x) = θ(x) so that for Θ6W°

&Λ('> Θ ) Ί S uniquely maximized at the value x for which θ(x) = θ. This value

is precisely ξ ( θ ) . This interpretation is developed further below, especially

in Definition 6.10.

The following equivalent expression for steepness is a fundamental

building block in the proof of Theorem 6.9, and has other uses.

6.8 Lemma

Let φ be regularly strictly convex. Then φ is steep if and only if

implies

(2) l|Vφ(θ.)|| - - .
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Proof. Assume (1) implies (2). Let θ
n
 e N°, θ, e W - N°,

0 c ™ ' σ l

θp = ΘQ + p(ej - θ 0 ) . Then

' θ o ) = d ( ξ ( θ

P ) ) - ξ ( θ

p ) θ

0

• «<Θ

P>
 ( Θ P ' V - * ( V

d is s t r i c t l y convex and twice d i f f e r e n t i a t e on the open set R with (D?d)

nonsingular on R. Hence

(4) lim £ d (x, θ) = -oo

f o r every θ € θ(R) = N° by Lemma 5 . 3 ( 3 ) . Since | | ξ ( θ p ) | | + », by ( 2 ) , we have

(5) ξ ( θ p ) ( θ p - ΘQ) - φ ( θ p ) = - A d ( ξ ( θ p ) , ΘQ) - « .

Since θ . e A/, l im φ(θ ) = Φ ( θ Ί ) is f i n i t e . This implies
1 p+1 p L

(6) ξ ( θ p ) ( θ 1 - ΘQ) = ξ ( θ p ) ( θ p - θ Q ) / p •> - as p t l ,

By d e f i n i t i o n , Φ is steep.

Conversely, suppose there is a sequence s a t i s f y i n g ( 1 ) f o r which

(2) f a i l s . The sequence can be chosen so t h a t

sup 11Vφ(θ i )11 = B < -

This means that ξ(θ.) = Vφ(θ ), i=l,... is a bounded sequence, thus,

without loss of generality, the original sequence {θ..} can be assumed to

have been chosen to satisfy ξ(θ.j) -> x*.

Hence, for any θ
1 € Rk
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(7) θ x* - φ(θ) = Tim (θ. ξ(θ.) - φ(θ
Ί
.))

>_ Tim sup (θ
1
 ξ(θ

Ί
.) - Φ(θ'))

= θ1 x* - φ(θ ' )

It follows that

(8) d(x*) = θ x* - φ(θ) < °°

This means that θ f. hi° s a t i s f i e s θ € θ ( x * ) . By Theorem 5.5 th is is

impossible i f φ is steep. Hence φ is not steep. ||

Proof of Proposition 3.3. I t is now easy to prove the converse assertion

in Proposition 3.3, namely that a minimal exponential family satisfying

( 9 ) E 0 ( | | x | | ) = oo f o r θ G W - W°

is steep.

By Fatou's lemma i f {θ } s a t i s f i e s (1) then

11m ||Vψ(θ.)|| = l im ||Eθ.(x)|| > l im E0.( | |x| |) = « .

Hence (2) is s a t i s f i e d . Thus ψ is steep, which is the desired r e s u l t . ||

6.9 Theorem

Assume φ is steep and regularly strictly convex. Then d. is

also, and

(1) «"
d
 = % - ξ(N ) .

φ
Proof. Let xQ e R, v e Rk. Let p y = i n f {p > 0: xQ + pv £ R} .

Note that p > 0 since R is open. Assume p < °° and l e t x, = xQ + p v

and x p = xQ + p ( X l - χ Q ) . Note that x 1 ί R.

Suppose i t were true that
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(2) lim inf | |θ(x ) 11 < co .
pfl

 p

Then there would be a sequence p.. t 1 with θ ( x p . ) + θ * , say. θ * (. A/° since

Xj f. R = ξ ( W ° ) . But then, since φ is steep, th is would imply

I Up.11 = l l ξ ( θ ( χ p . ) ) l l - -

by Lemma 6 . 8 , which is a c o n t r a d i c t i o n since x p . -> x-. Hence (2) is f a l s e ;

so t h a t a c t u a l l y

(3) l im | | θ ( x j | | = oα .

p t l p

The argument i n the f i r s t part of the proof of Lemma 6.8 applies

to y i e l d the dual to 6 . 8 ( 6 ) , namely

(4) θ ( x p ) ( x χ - x 0 ) -> oo as p t l .

(Technically, the lemma as stated cannot be directly quoted since we have not

yet established that R = M . so that d is regularly strictly convex. But, d has

the desired convexity and differentiability properties on R c w, by Lemma 6.7.

It is then easy to check that the first part of Lemma 6.8 indeed applies since

} c R and yields (4) as the dual of 6.8 (6).)

d is therefore a convex function with

p i

(5) ^ d ( x + p ( x j - x 0 ) ) + oo as p t l .

This implies t h a t

( 6 ) d(x Q + p ( x χ - x 0 ) ) = « f o r p > 1 .

Since the above argument applies for a l l v € R , i t y ie lds that

(7) d(x) = « , for x £ R

Thus R => W.. This y ie lds (1) s ince, a lso , R c W d because

d(x) = θ ( x ) x - Φ ( θ ( x ) ) < oo on R.
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I t now follows that d is regularly s t r i c t l y convex since i t has

the desired smoothness properties, e t c . , on R = N°. by Lemma 6.7. And, f i n a l l y ,

d is steep since (5) applies to any xQ e R, x 1 e R - R. | |

Remark. Since d i s convex, lower semi continuous, and d ( x ) = °° f o r x f. R

i t must be t h a t d( ) on R i s the maximal lower semi continuous e x t e n s i o n o f

d ( x ) : x e R (= K°) to a l l o f R k . That i s , f o r x χ € R - R

d ( x j = l i m i n f { d ( x ) : x € R, I |x - x . I I < ε }
1 εΨO L

I t follows that i f {pQ} is a steep exponential family. The relation 6.6(4)

between d(xQ) and K(xQ, x χ ) is valid for a l l xQ € Rk, xχ € K°.

MINIMUM ENTROPY PARAMETER

The path has been prepared for the definit ion of the dual to

maximum likelihood estimation, and for the basic existence and construction

theorems.

6.10 Definition
I,

Let d: R - * ( - « , °°] be convex and lower semi continuous.

Let S <z Rk. Define

(1) ξ s ( θ ) = {ξ € S: £ d ( ξ , θ) = Ad(S, θ) = inf { λ d ( x , θ ) : x € S}} .

Obviously ξ^ is related to I. in the same fashion as θ, the maximum likelihood

estimator for an exponential family, is related to the log likelihood function

£,.. ( I t would therefore seem logical to adopt the notation ξ ς rather than ξς.

However for reasons of convenience and tradit ion we wish to reserve the

notation ξ s for the set of maximum likelihood estimates of expectation

parameters. That i s , ξς(x) = ξ ( θ s ( x ) ) .)

The function ξL has been given a variety of f a i r l y inconvenient

appelations. For example, values in ξς(θ) can be called minimum entropy
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(expectation) parameters r e l a t i v e to the set S c K°. Barndorff-Nielsen (1978)

refers to values θς(x) = θ(ξς(.θ(x))) , x e K°9 as maΰsimum likelihood predictors.

(Note however that ξ $ (θ) n (K - K°) t φ is possible even i f {pθ> is regular as

long as S is not convex (see Theorem 6.13). Hence values in ξ need not always

be expectation parameters.)

Another i n t e r p r e t a t i o n is provided by the Kullback-Lei b ier

information. Consider a steep minimal exponential fami ly. I f ξ e ζς(θ) Π K°

then

K(ξ, ξ(θ)) = i n f {K(x, ξ ( θ ) ) : x € S n K°} .

Thus, θ € θ ( ξ ς ( θ j ) is a parameter i n Θ(S) whose Kullback-

Leibler distance to θ, is a minimum over a l l parameters i n θ(S).

Suppose {p f i } is a minimal, steep standard exponential fami ly .

Then Theorem 6.9 establishes that d, is steep and regular ly s t r i c t l y convex

with R = ζ(W°) = K°. Consequently ξ possesses the properties established f o r

θ in Chapter 5. The main properties are formally stated below; t h e i r proofs

consist only of reference to the appropriate results i n Chapter 5.

Convention. In the fol lowing statements {p Q } is a minimal steep standard

exponential fami ly. Note that R = K° c Wd c K.

6.11

(1)

Theorem

I f θ € then

UΘ)

I f θ e N - N° then ξ w (θ) is empty.

Proof. This i s the dual statement to Theorem 5.5. ||

Note t h a t

(2) θ ( ζ w ( θ ( x ) ) ) = θ w (x) , e t c .

In other words, for a f u l l exponential family the maximum l i k e l i h o o d predictor
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is the same as the maximum likelihood estimator. However (2) does not extend

to non-full famil ies.

6.12 Theorem

Let S cW.be a non-empty, r e l a t i v e l y closed subset of W^. Suppose

θ e N°. Then ζ ( θ ) is non-empty.

Suppose θ € W - W° and there are values θ i € W°, i = l , . . . , I and

constants $.. < » such that

I
( 1 ) S c y H " ( θ - θ . , (3.) .

Then ξ(θ) is non-empty.

For any ξ € ξ
s
(θ) n K°

(2) θ - θ(ξ) € V
s
(ξ) .

Proof. Invoke Theorem 5.7 and Theorem 5.12. ||

6.13 Theorem

Suppose S Π W, is a relatively closed convex subset of W^ with

S n K° non-empty. Then ξ
s
(θ) is non-empty if and only if θ € W° or θ e W - W° and

(1) S c H"(θ - θ
χ
, Bj)

for some θ e W°, 3, € R.

If ζ
s
(θ) is non-empty then it consists of the unique point ξ € SΠK°

satisfying

(2) (θ - θ(ξ)) (ξ - ξ) > 0 v ξ e S .

Proof. Invoke Theorem 5.8. ||

6.14 Construction

Theorems 6.12(2) and 6.13 have a geometrical interpretation which

looks exactly like that of their counterparts in Chapter 5. For example,
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suppose S = H n K with H the hyperplane H(a, α ) , and H n K°is non-empty. Then in

order to find ζς(θ) one need only search for the unique point ζ* € H for

which θ - θ(ζ*) = pa for some p € R. The process can be pictured from two

different perspectives. Both of these are shown in Figure 6.14(1).

(i) One may proceed from ξ(θ) along the curve {ζ(θ + pa): p € R}

until the unique point at which ζ(θ + pa) € H.

(ii) Alternatively one may map S n K° back into Θ as θ(S n K°)

and then proceed along the line {θ + pa: p € R} until the unique point at

which θ + pa ε θ(S n κ°).

e

Θ(S)

Figure 6 . 1 4 ( 1 ) : Construction of ξ s ( θ ) when S = H(a, α) n K

There is an important s t a t i s t i c a l d i f f e r e n c e between the s i t u a t i o n

pictured here and the dual s i t u a t i o n . d i s p l a y e d i n 5 . 9 .

In Construction 5.9 Θ = H n N and the problem considered was to

f i n d θ . In that case one could proceed via the geometrical dual to Figure

6 . 1 4 ( 1 ) . See Figures 5 . 9 ( 1 ) and 5 . 9 ( 2 ) . However, one could also reduce by

s u f f i c i e n c y to a minimal exponential family with parameter space Θ. θ 0 could

then be found by applying Theorem 5.5 to this minimal f a m i l y . A corresponding
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statistical interpretation is not available for the dual problem of finding

ζ
HnK'

Furthermore, i f Θ = H n N and S = ξ(Θ) the maximum likelihood

predictor relative to S cannot legally be found by f i r s t reducing by

sufficiency. This very undesirable property of a statist ical estimator is

displayed in the following example.

6.15 Example

Consider the Hardy-Weinberg problem discussed earl ier in

Examples 1.8 and 5.10. Let S = ξ(Θ) and consider the problem of finding ξς.

Rather than provide a general formula for ξ (a messy exercise) we discuss a

special case, and some implications.

Suppose N = 18 and x = ( 3 , 6 , 9 ) . We have already seen that

2x + x
P = * 2 = g Thus ξ ( x ) = 18(J, J , | ) = ( 2 , 8 , 8 ) , and

(1) θ ( ξ ( x ) ) = θ(x) = ί p ( l , l , l ) + (In 1, In 4, In 4)}

= { β j ί l . l . l ) - ( In 2 ) ( 2 , l , 0 ) + (0, In 2, 0)} c θ

Note also that

(2) θ(x) = { p d . l . D + (In 1, In 2, In 3)} .

Of course θ(x) n θ = Φ

Since ς(p) = ( p 2 , 2pq, q 2 ) = ( p 2 , 2p(l-p). (1-p) 2 ) the tangent

space to S = ί ξ ( p ) : 0 < p < 1} can be found by taking 4 - ξ(P). Evaluated at

p = = this tangent space, T, is spanned by the vector

τ = (2p, 2 - 4p, -2 + 2p)

,2 2 4>
" (3» 3* - 3 }

By definition v s ( ξ ) = {v: v τ = 0} .
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Now, from (1) and (2)

θ(x) - θ(ζ) = {p'(l,l,l) + (0, In 2 - In 4, In 3 - In 4): p
1 € R} .

Thus

(3) (θ(x) - θ(ξ}) τ = (2/3) In (1/2) - (4/3)ln (3/4) f 0 .

The implication of (3) is that θ(x) - θ(ζ) £ V
$
(ξ). It follows

from Theorem 6.12(2) that

(4) θ(x) n θ(x) = φ ,

or, in other words,

(4') ξ(x) t ξ(x) .

Finally, suppose instead that the sample point is x* = (2,8,8).

Note that x* = ξ(x) with x = (3,6,9), as above. In this case ξ(x*) = x*

and hence

(5
1
) ξ(x*) = ξ(x*) = x*

and

(5) θ(x*) = θ(x*) = θ(x*) .

Recall from the discussion in Example 5.10 that,over the domain

K°, ξ(x) coincides with the minimal sufficient s t a t i s t i c . Thus, from (4) and

(5) (or (41) and (51)) i t can be seen that here the "estimator"

θ(x) = θ(ξ(θ(x))) is not a function of the minimal sufficient statistic. This

is a very undesirable property for a stat ist ical estimator. Indeed, we

emphasize, the primary stat ist ical use of θ does not l i e in i ts use as a

stat ist ical estimator, but rather in i ts use in the theory of large deviations.

See, for example, 7.5 and Exercises 7.5.1 - 7.5.6.
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ENTROPY

6.16 Discussion

In statistical mechanics and elsewhere the term entropy appears

and has a definition whose connection with the quantity K(θ
Q
, θ,) for

exponential families is not at first obvious. See Ellis (1984a; 1984b).

k k
Let F be a probability distribution on R . Let x e R and define

the entropy of x under F as

(1) E
F
(x) = inf {K(G, F): E

Q
(X) = x} .

There is, as yet, no exponential family apparent in this definition.

However, there is indeed an intimate connection between ξ and K, as revealed

in the following theorem. The theorem is proved only for the case where F

satisfies certain mild assumptions and x € κl or x t Kp We leave it to the

reader to develop the appropriate results when F does not satisfy these

assumptions. The situation where x € K - K° can sometimes be treated using

the methods at the end of this chapter.

6.17 Theorem

Suppose the exponential family generated by F is a steep minimal

family with 0 € int N. Let ξQ = ξ(0) = ER(X). Let K denote the usual

Kullback-Leibler function, 6 . 1 ( 4 ) , for this exponential family. Then

(1) EF(y) = K(y, ξ Q )

i f y € K°. I f y £ K

( 2 ) » = Ef(y) = K(y, ξ Q )

Proof. Suppose y € K°, it is obviously true that

(3) EF(y) < K(y, ξ
Q
)

since the distribution G(dx) = p
0
/ %(x)F(dx) =

 p

θ
(

y
) (

d χ
) satisfies E

Q
(X) = y
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and K(G, F) = K(y, ξ
Q
) . Suppose K(G, F) < «> and

(4) E
G
(X) = y =

It must be that G <*« F, for otherwise K(G, F) = ». Let g = 4S-

and p = P
θ
(

y
) Then

( 5 ) K(G, F) - K ( P θ ( y ) 5 F) = / [ g ( χ ) In g(χ) - p ( χ ) Ί n p ( χ ) ] F(dx)

= / g ( x ) ( l n g(x) - In p ( x ) ) F ( d x )

+ / ( g ( x ) - P ( x ) ) ( l n p ( x ) ) F ( d x )

= K(G. P θ ( y ) ) > 0

since / ( g ( χ ) - p ( x ) ) ( l n p ( x ) ) F ( d x ) = / ( g ( x ) - p ( x ) ) ( θ x - φ ( θ ) ) F ( d x ) = 0

by ( 4 ) . I t follows from ( 3 ) and ( 5 ) t h a t ( 1 ) holds. (Also, note t h a t

G = Fθ/y\ is the unique d i s t r i b u t i o n s a t i s f y i n g ( 4 ) and y i e l d i n g

K(G, F) = Ef(y) . )

If y £ K then Eg(X) = y implies G « F and hence

K(G, F) = - = κ(y, ξ
Q
) . ||

AGGREGATE EXPONENTIAL FAMILIES

If {p
Q
} is a full canonical exponential family and x € dK

then θ(x) = φ. (See Theorem 5.5.) If v(8K) > 0 then this means that with

positive probability the maximum likelihood estimator fails to exist. This

occurs most commonly when v has countable support. In most such

cases the family of distributions {p
Q
: θ € N] can be augmented in a natural

way so that the maximum likelihood estimator is always defined over this new,

larger family of distributions. The augmented family will be called an

aggregate exponential family.
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Aggregate exponential families can also be satisfactori ly defined

in a few special cases where v does not have countable support, but v(8K) > 0

nevertheless. However, such situations are rare in applications and the

general theory involves d i f f i c u l t i e s not present in the countable case; hence

we do not treat such situations below. For similar reasons of convenience we

avoid non-regular exponential families.

Special cases of the theory are extremely familiar — for example

the aggregate family of binomial distributions, which is just B(n, p ) ,

0 < p £ l . The general theory for the case where v has f i n i t e support

appears in Barndorff-Nielsen (1978, p.154-158), along with some observations

about generalizations.

6.18 Definitions

Let v be a measure concentrated on the countable subset

X = {χv x 2 , . . . } c Rk. Thus

(1) v ( ί χ . } ) > 0 1 = 1 , 2 , . . . , v(X c) = 0 .

Consider the closed convex set K = K . The faces of K are the non-empty sets

of the form

(2) F = K n H(v, α) where K c H~(v, α)

By convention the set K is i t s e l f a face of K (corresponding to v = 0 , α = 0 ) .

A f a c e , F, is i t s e l f a closed convex subset, which has dimension

s, 0 <_ s <_ k. (Only the face F = K can have dimension k.) The relative

interior of F, denoted r i ( F ) is the i n t e r i o r of F considered as a subset of

Rs. An a n a l y t i c c h a r a c t e r i z a t i o n of r i ( F ) is t h a t x e r i (F) i f x € F and i f

for every hyperplane H 6 Rk such that x € H but F £ H then both F n H+ ϊ <f>,

and F n H~ f φ.

Let F be a face of K. I f v(F) > 0 then the r e s t r i c t i o n of v to F,

v,c is uniquely defined and non-zero. We use the notation K.c =K . Note

t h a t while i t is usually true t h a t K,r = F t h i s need not always be the case.
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See Exercise 6.18.1.

The f i r s t main theorem involves the following structural assumption

on X:

For e\ίβry ξ G X there is a face F of K such that K ι c = F
(3) I F

and ξ € r i ( F ) .

I f X is f in i te then (3) is clearly satisfied. Another important

case where (3) is satisfied is when X = { 0 , 1 , . . . } , as for example when

Xj,...,X|^ are independent Poisson or independent negative binomial variables.

Assumption 6.22(1) provides an easily verified structural condition which

implies (3) .

6.19 Definition (Aggregate family)

Let X and v be as in 6.18. Let {p0} be the canonical exponential

family of densities generated by v. Assume the family is regular. As shown

in Chapter 3 this family can be reparametrized by the expectation parameter

ξ = ξ ( θ ) . Let

(1) q ζ ( θ ) ( x ) = P θ ( x ) θ € W

Then, { q ξ : ξ € K°} = {p0: θ € W} .

Now, for each face, F, of K with v(F) > 0 le t ψ r = ψv and

define the family of densities

exp(θ x - ψ.r(θ)) x € F
P θ , F (χ) = I F

θ l h 0 x j£ F

relative to the measure v. This is an exponential family relative to the

measure v . f . Assume this family is regular. Let ξ.p denote i ts expectation

parameter, and l e t

(2) < l ξ ( θ ) l F ( x ) = P θ l F ( x )

Thus ζ ranges over the set r i K. F as θ ranges over N^ = Wvjp Note that the
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family {p
Qj F
: θ € N.p} is not minimal. Hence the map θ •*• ξ,p(θ) is not 1 - 1 .

However, q>. >p = q^ ι p if and only if ξ, = ξp> by virtue of Theorems 1.9 and

3.6.

Let

(3) F = {x: 3 face F of K 3 v.
F
 t 0 and x e ri(F)} .

Lemma 6.20, below, establishes that for each ξ € F there is a unique F such

that ξ € ri(F) and a unique density q^.p corresponding to the pair ξ, F.

This density has

(4) E (X) = ξ .

qξ|F

We denote this density as q f . The aggregate family of densities

generated by v with parameter space F is the family

(5) { q ξ : ξ € F} .

Note that

(6) Pξ(X) = 1 V ζ € F .

6.20 Lemma

Make the assumptions in 6.18 and 6.19. Then for each ξ € F there

is a unique F such that ξ € r i ( F ) . The density q = q^. p satisfies 6.19(4).

I t i s , in fact, the unique density of the form q , ( F« having expectation ξ.

Proof. Suppose ξ e r i ( F ) and a l s o ξ € F1 = H ( v ' , α ' ) n K w h e r e

K c ί Γ ( v \ α 1 ) . Then e i t h e r ( i ) F c H ( v ' . a ' ) o r ( i i ) F n H + ( v ' , a 1 ) t φ

and F n H " ( v ' , α 1 ) t φ. I n c a s e ( i i ) H ( v ' , α 1 ) i s n o t a s u p p o r t i n g h y p e r -

p l a n e , a c o n t r a d i c t i o n . Hence ( i ) h o l d s , and so F 1 D F. R e v e r s i n g t h e r o l e s

o f F, F1 i n t h e above now shows t h a t ξ € r i ( F ) and ξ e r i ( F ' ) i m p l i e s F = F 1 .

By Theorem 3 . 6 , {En ( x ) : θ € N } = r i ( K l t : ) = r i ( F ) by
q ξ ( θ ) I F V I F I F

6 . 1 8 ( 3 ) s i n c e v i p g e n e r a t e s a r e g u l a r f a m i l y . Thus q ξ i p s a t i s f y i n g 6 . 1 9 ( 4 )

e x i s t s .



THE DUAL TO THE MLE 195

For every ξ € X the preceding shows that ζ = E (X) € ri(F) where
q ζ

F is the unique face of K with ξ € r i ( F ) . Hence ξ = E (X) = E (X)
q ξ | F q ξ § I F '

implies F = F1, and thus, as previously noted, implies q = q £ l . ||

Assumption 6.18(3) guarantees that F 3 X. i f the conclusion of

6.18(3) holds for a l l ξ € conhull X then F = conhull X. Otherwise i t may

occur that Fcconhull X. Exercise 6.20.1 sketches an example. I f Assumption

6.22(1) is sat is f ied then

(1) F = conhull X = K .

Here is the f i r s t main theorem providing the extension of Theorem

5.5.

6 .21 Theorem

Make the assumptions in 6.18 and 6.19. Then for x € F 3 X the

maximum likel ihood estimator, ξ ( x ) , is uniquely determined by the t r i v i a l

equation

(1) ξ(x) = x

Proof. L e t x e r i ( F ) f o r some f a c e F = H ( v , α ) n K o f K. I f ξ 1 € r i ( F ' )

and x £ F1 then q ζ , ( x ) = 0 .

Now suppose ξ ' e r i ( F ' ) , x e F 1 , b u t F1 t F. I t f o l l o w s (as i n

Lemma 6 . 2 0 ) t h a t F1 3 F. The argument now t a k e s p l a c e i n F 1 . Hence we can

assume f o r c o n v e n i e n c e , and w i t h o u t l o s s o f g e n e r a l i t y , t h a t F1 = R OK

and ξ 1 e K°. We may f u r t h e r assume t h a t x = 0 , K c ί Π e ^ 0 ) , and 0 e r i ( F )

w i t h F = H ( e l f 0 ) n K. Then, ξ 1 = ξ ( θ ' ) f o r some θ ' e W ° c R k . L e t

θ = θ l + p e 1 , ρ > 0 . Then

( 2 ) q ξ ( θ j ( 0 ) = e x p ( - ψ ( θ p ) )

and
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(3) e Φ ( θ p ) = / e θ ' χ + P χ

1 v ( d x ) + / eθ" χ v ( d x )
0 O

+ / e θ ' # x v ( d x ) = ψ | F ( θ )
xf° '

by the monotone convergence theorem and the d e f i n i t i o n of ψ.r. I t follows from

(2) and (3) that

(4) q ξ , ( 0 ) < q ξ ( θ )(0) < q ξ l , , F ( 0 ) , 0 < p < »

where ζ" is the unique point in r i ( F ) defined by ξ" = ξ ( p ( θ ' ) .

Finally, if ξ
1
" € ri(F) then applying Theorem 5.5 to the measure

v | F y ie lds

(5) q ξ , . .| F (0) < q Q | F ( 0 )

with equal i ty only i f ξ"1 = 0. Combining ( 4 ) , ( 5 ) , and the f i r s t comment

i n the proof y ie lds

(6) ζ(0) = 0 .

This verifies (1) when ξ = 0 , and completes the proof. ||

Remark. As noted in the remark preceding the theorem it is usually true

that F => conhull X. Assume so and assume the hypotheses of the theorem. Let

X,,...,X be i.i.d. random variables with density q
f
, ξ € F. As usual, let

n
X = Σ X./n. Then X € conhull X c F with probability one. The family ofn . = 1 l n

distributions of the sufficient stat ist ic Xn is then also an aggregate family

f i t t i ng the specifications of the theorem. Hence the maximum likelihood

estimator of ξ € F based on X-,... ,X satisfies the t r i v ia l equation

(6) £ ( X r . . . , X n ) = Xn .

The preceding theorem yields the existence of maximum likelihood
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estimates when the parameter space is F. In order to guarantee existence of

these estimates when the parameter space is a proper closed subset of K i t

suffices to establish continuity in ξ of q Λ x ) , x € X. This continuity is

useful for other purposes as well . Somewhat unfortunately, the assumptions of

Theorem 6.21 do not imply that q^x) is continuous in ξ (see Exercises 6.23.5-6)

and the following theorems demand stronger assumptions. Sufficient assumptions

are described below.

There is a further, aesthetic, reason for wanting to know that

q^(x) is continuous in ξ. The definition given in 6.19 of the aggregate

family { q ζ ( x ) : θ € F} is structurally natural. But there is also an analy-

t ical ly natural definition for the family of distributions generated from

{pn: θ G N] -- namely, the set of a l l probability distributions on X which
u

are limits of sequences of distributions in ί p θ h These two definitions

coincide when q^(x) is continuous in ξ.

6.22 Assumptions

K is called a polyhedral convex set i f i t can be written as the

intersection of a f i n i t e number of half spaces (see Rockafellar (1970)).

Assume that K is a polyhedral convex set and that for every one of the f i n i t e

number of faces, F, of /C

(1) F = K|F .

As previously noted in 6.20(1), this implies F = K = conhull X.

For any convex set S € R define the centered span of S to be

the subspace spanned by vectors of the form x - y, x,y € X. Denote this

subspace by csp S. Note that i f xQ € ri S then

(2) csp S = span {x - xQ: x € S}

Assume that for eyery face F of K

(3) P r ° J C s p F W "
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Note that i f X is f i n i t e then (1) is s a t i s f i e d , and (3) is t r i v i a l l y

s a t i s f i e d since A/|F = R for a l l faces F ( including F = K). I f v is a product

measure then (1) and (3) are again s a t i s f i e d . See Exercise 6 . 2 2 . 2 .

6.23 Theorem

Make the assumptions in 6 .18 , 6 .19 , and 6 .22 . Then for every

x € K, q (x) is continuous for ζ 6 K.

Proof. The proof involves an induction on the dimension, k. For k = 1

the r e s u l t is nearly obvious. Suppose ξ Q e 3K. Without loss o f g e n e r a l i t y

assume K c (-«, ξ Q ] . Then ξ i -• ζ Q with ζ i t ξ Q , i = l , . . . implies ξ Ί = ξ(θ Ί .)»

θ. -> W, and Q. - > « . I t follows t h a t q ξ . U 0 ) = P θ . ( ? 0 ) -* v ^ } ) " 1 = q ζ ( ξ Q ) ,

and f o r x f ξ Q , q ξ . ( x ) -• 0 = q ζ ( x ) .

For arbitrary k, including k=l, if ξ
Q
 € K° then q

ξ
(x) = p

Q
,^Λx)

is continous on a neighborhood of ξ
Q
. This completes the proof for k = 1.

We now turn to the case k >_ 2. We need to prove continuity of q>.

at ξ
Q
 € dK. Let ξ. -* ξ

Q
. We need consider only the case where {ζ.} c F

with F some face of K, since K has only a finite number of faces. If this F

is a proper face of K then q
r
 -> q

Γ
 by the induction hypothesis. Hence we

need consider only the case where each ξ. = ζ(θ ), θ^ e A/.

There is a unique face F
Q
 of K such that ξ

Q
 € ri FQ = ri ACjp .

o

W i t h o u t l o s s o f g e n e r a l i t y assume ξ Q = 0 , K c R " ( e - , 0 ) , - σ e , € K° f o r some

σ > 0 , F Q = H ( e 1 9 0 ) n K a n d c s p F Q = {w € R k : w = ( 0 , ω ) , ω € R S } ,

( 0 <_ s < k - 1 ) . L e t S = csp F Q . F o r w e Rk w r i t e w1 = ( w L , W / 2 J w i t h

w ( 2 ) G RS< F u r t h e r , assume 0 e N.p » ψ F ( 0 ) = 0 , ξ ( F ( 0 ) = 0 . N o t e t h a t

ψ|p ( θ ) i s a f u n c t i o n o f θ / 2 ) > a n d so we w i l l w r i t e ψ j F ( θ / 2 \ ) , w h e r e

c o n v e n i e n t .

We h a v e a l r e a d y a s s u m e d 0 e M , r . H e n c e { θ € S : | | θ | | <_ ό Q } c W.p

f o r some 6 Q > 0 . I t t h e n f o l l o w s f r o m 6 . 2 2 ( 3 ) t h a t f o r e a c h s u c h θ t h e r e i s a

σ ( θ ) , s a y , s u c h t h a t θ + σ e 1 € W, θ ^ σ ( θ ) . S i n c e { θ € S : | | θ | | < _ ό 0 } i s
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compact, with {θ € S: | | θ | | <• ό Q , θ + oeι € N} as a r e l a t i v e l y open subset,

there must, f u r t h e r , exists a σQ >_ 0 such t h a t θ + σe, e N for a l l σ >_ σQ,

θ e S, | | θ | | £ <50.

For 6 <_ όg, σ _> σQ define

( 1 ) Q = Q ( σ , 6 ) = { θ € R k : | | θ ( 2 ) | | < 6 ,

v x

Note t h a t θ ^ j x ^ j - σgθj x ^ j ± (-σ + σQ) | | X ( ^ | \< 0 , V x € K .

Hence for θ € Q

λ ( θ ) < λ(σ Q e χ ) < co

as in 6 . 2 1 ( 4 ) . I t follows t h a t Q c N.

Now assume f o r convenience, and without loss of g e n e r a l i t y , t h a t

σQ = 0. Then for θ € Q

(2) λ ( θ ) = J e θ χ v ( d x ) < / e " σ l l X ( l ) M + θ ( 2 ) X ( 2 ) v ( d x )

Ψ/ e ( 2 ) ( 2 ) v (dx)

as σ •> °°, uniformly f o r θ ^ ) 1 6 Q . In p a r t i c u l a r

(3) sup {|ψ(θ) I: θ £ Q(σ, δ ) } •+ ψ , F ( 0 ) = 0
1 Γ o

as σ -> ~, 6 •> 0. I t follows that

(4) sup ί | p θ ( x ) - q Q ( x ) | : θ e Q ( σ , 6)} ^ 0 as σ -̂  °°, 6 •> o

for each x € K. [For x € FQ the convergence in (4) is uniform over compact

subsets of Fo; however i f x £ FQ then as σ -> «, 6 » 0, p Q (x) = e

θ # x " ψ ( θ ) ~ e θ # x

-> 0 = q Ω ( x ) , but the convergence is not uniform over a r b i t r a r y compact subsets

of K. ( I t is uniform over bounded subsets of X i f e, x < -ε < 0 for a l l

x € X - F o . ) ]
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I t remains to show that for given σ >̂  a Q , δ <_ δQ there is an

α > 0 such that ||ξ|| < α, ξ € K° , implies θ(ξ) € Q(σ, δ) . Once th is has

been done i t follows from ( 4 ) , and the induction hypothesis, that q^-ίx) is

continuous in ξ ε K f o r each x € K.

For convenience we show below only that there is an α > 0 such

that ||ξ|| < α implies θ(ξ) € Q(0, δ ) . The proof for a r b i t r a r y α > 0,

in place of σ = 0, requires only minor a l terat ions of the constants appearing

in the proof. In the fol lowing α, ε are generic posi t ive constants whose

numerical value may decrease as the proof progresses. Since 0 € W. F there

is an α > 0 such that ||θ/2%11 > δ implies ψ J F ( θ / 2 \ ) >. 201 |θ/2% ||. Let

C c X be a f i n i t e subset of X such that C n FQ t φ and F n C f φ for eyery face

F of K which properly contains FQ. The existence of C is guaranteed by

6.22(1).

Suppose I I Θ ( 2 ) M > δ a n d θ ( i ) * x m > ° for s o m e x e κ τ h e n

max { Θ Q X X / ^ : x € C} > 0 . I f ||ξ|| < α and α i s s u f f i c i e n t l y small then

ξ/-x i s i n the convex h u l l o f ί x / i \ : x € C} U { 0 } . Hence there i s an η ε R

such t h a t

(5) θ^j ζ^x <_ ηα max ίθ.^x x ^ x € C}

f o r a l l I |ξ| I < α . L e t p = max { | | X / 2 Λ I I : x € C } , vQ = min { v ( { x } ) : x € C } .

Then

A ( θ , ξ ) = θ ξ - ψ ( θ )

= θ ( 2 ) ξ ( 2 ) - β | | θ ( 2 ) | | + θ ( 1 ) ξ ( 1 ) - l n ( e ( 2 ) λ ( θ ) ) .

N o w ,

( 6 ) λ ( θ ) >_ λ j F ( θ ( 2 j ) + v 0 e x p ( θ ( 1 ) x ( 1 ) + θ ( 2 ) x ( 2 ) )

>. e x p ( 2 3 1 | θ ( 2 j | | ) + v 0 e x p ( θ ( 1 ) x ( 1 ) - P | | Θ ( 2 ) | | ) .
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For n o t a t i o n a l s i m p l i c i t y l e t t = θ / , x x ^ x > 0 . Then f o r α <_ 3 / 2

( 7 ) A ( θ , ξ ) 1 θ ( 2 ) ξ ( 2 ) - 3 | | θ ( 2 ) | | + η α t - I n ( e

3 l l θ ( 2 ) M +

VQ exp ( t - p I I θ / o \ I I ~ 31 I θ / p \ I I /

£ - ε + η α t - ( 3 | | θ ( 2 ) | | V ( t - (p + 3 ) | | θ ( 2 ) | | + I n v Q ) )

1 -ε

for α > 0 sufficiently small, since

3 t
3 | | θ | | V ( t - ( p + 3 ) | | θ ( 2 ) | | - a ό ) >

( 2 ) i r v ^ ; 1 1 - p + 23 + a

f o r I | θ / 2 x 11 > δ , a _> 0 .

I f I | θ # 2 j | I > δ b u t Θ Q J X / j x 1 0 f o r a l l x € K then

( 8 ) ι ( θ . ξ ) < θ ( 2 ) ξ ( 2 ) - Ψ l F o ( θ ( 2 ) ) + θ ( 1 )

1 θ ( 2 ) * ξ ( 2 ) " ψ F 0

( θ ( 2 ) ) 1 " ε

- δ i b u t Θ ( D * x { i ) > ° f o r s o m e x e κ t h e n

θ ( l ) X/.% > 0 f o r some x e C; and

( 9 ) £ ( θ , ξ ) 1 θ ( 2 ) ξ ( 2 ) - ψ | F ( θ { 2 ) ) + η α θ ( 1 ) X ( 1 }

2

θ ( i ) χ ( D

ψ I F 0

< - ε < 0

f o r α > 0 and some e > 0 s u f f i c i e n t l y s m a l l , s i n c e ψ F ( θ / 2 \ ) 1 ° b u t

s u p { ψ | F ( θ ( 2 j ) : l | θ ( 2 ) | | 1 δ j } < « . I f | | ζ | | < α a n d θ j f Q o n e o f ( 7 ) , ( 8 ) ,

o r ( 9 ) a p p l y so t h a t
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(10) A(θ, ξ) £ -ε < 0 .

On the other hand, there is a σ > 0 s u f f i c i e n t l y large so that by (2) or ( 3 ) ,

(11) Hoey ξ) = σeχ ξ - ψ(σeχ) ^ σe][ ξ - ε/3

>_ -2ε/3

for ||ξ|| < α £•—• . It follows from (10) and (11) that if ||ξ|| < α,

ξ € K°, then if θ (έ Q

&(θ, ξ) £ -ε < -2ε/3 £ il(θ(ξ), ξ).

Hence θ f θ ( ξ ) . I t follows that θ(ξ) € Q.

We have thus proved that given σ, 6 there is an α > 0 such that

||ξ|| < α, ξ € K°, implies θ(ζ) € Q(σ, 6 ) . As previously noted, th is

completes the proof of the theorem. | |
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EXERCISES

6.6.1

Assume φ i s r e g u l a r l y s t r i c t l y convex. V e r i f y 6 . 6 ( 3 ) .

6.7.1

For φ regularly s t r i c t l y convex, when does d. = φ?

6.9.1

Generalize Theorem 3.9 to apply to steep, regularly convex functions

φ [i.e.; write φ =
 v

 and consider the map θ -M
 v
 ' . Show this map is

V Φ
( 2 )

; λ
Φ

( 2 )
( θ ) ^

1 - 1 and continuous on N° with range ξ^AN°) x φ/
2
x(M°) = K,.* x φ/

2
\(W°)].

6.18.1

( i ) Show that Kj F f F in the fol lowing example:

X = ( 1 , -1) u { ( ( i 2 - l ) J V i , 1/ i ) ; 1 = 1,2,...} , F = K n H ( ( l , 0 ) , 1).

( i i ) Construct an example of the same phenomenon in R where X is

a discrete set ( i . e . X has no accumulation points in R ). [Construct X so

that the set X in ( i ) is i t s project ion on the space spanned by the f i r s t

two coordinate axes.]

6.19.1

Show that the following three families are aggregate exponential

families:

( i ) Binomial (n, p), 0 <_ p <_ 1

( i i ) Poisson (λ), λ >. 0

k
( i i i ) Multinomial (N, p), 0 < p., Σ p. = 1 .

"
 Ί

 i=l
 Ί

6.19.2

Suppose the d i s t r i b u t i o n of X form an aggregate exponential

family { q ί Ί ' b , i = l , 2 , and X ^ , X ^ are independent. Show that the d i s t r i b u -

tions of ( X ^ , X^2M form a ( k j + k2 parameter) aggregate exponential family.
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6.20.1

Construct an example in which 6.18(3) holds but F f conhuil X.

[Let X1 be the set in 6.18.1(i) and define X € R3 by

X = ίx: ( x
Γ
 x

2
) E X

1
, x

3
 = ±(1 - x

2
)} u (1,0,1) U (1,0,-1).]

6.21.1

Let X be the set defined in 6.20.1 with the additional point

(1,0,0). Show

(i) 6.18(3) fails at x = (1,0,0).

( i i ) The maximum l i k e l i h o o d estimate f o r the aggregate family

{q : ξ e F} f a i l s to e x i s t ( i . e . is the empty s e t ) when X = ( 1 , 0 , 0 ) ,

which occurs with p o s i t i v e p r o b a b i l i t y .

( i i i ) The f a i l u r e in ( i i ) can be r e c t i f i e d in a natural way by

l e t t i n g G = conhull { ( 1 , 0 , - 1 ) , ( 1 , 0 , 1 ) } and adding the densit ies

q ξ ( θ ) | G = p θ|G t 0 t h e f a m i l y { q ξ : ξ € F }

( i v ) Addition of the densit ies q ζ j G is " n a t u r a l " in the sense t h a t

f o r each ξ € G there is a sequence θ. 6 U° such t h a t q ε .ς;(x) = ] im Pθ ( x ) .
^ i-*» i

[This sequence cannot be chosen to be of the form θ = θ
1
 + iv for fixed v € R ,

θ
1
 e W° as was the case in the proof of Theorem 6.21.]

6.21.2

Let v be linear measure on the perimeter SS, of the unit square,

S. This measure does not have a countable supporting set. Nevertheless,

describe its "natural aggregate family", having parameter space S and

satisfying the conclusion of Theorem 6.21 for each x € S.

6.21.3

( i ) Let v be uniform measure on the perimeter S, say, of the unit

c i r c l e S. Thus, {pQ} is the family of Von-Mises d is t r ibut ions (Example 3 . 8 ) .

u

Show there can be no possible way of constructing a family of densities {q-}

which contains {p
θ
> such that the maximum likelihood estimate for {q^} exists
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with probability one. [ lim P Θ M = °° for each x € 8S.]

( i i ) Note that i f Xn is the sample mean from a sample of size n,

n >• 2, having the above distribution, then the maximum likelihood estimate does

exist with probability one.

( i i i ) Construct a measure v for which {pQ} is a regular exponential
Ό

family but there does not exist an n for which i t is possible to construct

an "aggregate family" of densities {q^}9 containing the densities of X under

θ, such that the maximum likelihood estimator exists with probability one.

[There exists such a measure v having K = {x € R : x* + x* < x* 0 < x < 1},

and v({0}) > 0.]

6.22.2

Show that 6.22(1) (including the polyhedral nature of K) implies

6.20(1). [The polyhedrality of K guarantees that for ey/ery x e 8K there is

a face F of K such that x € ri F.]

6.22.2

Prove that 6.22(1) and 6.22(3) are satisfied whenever v is a
k

product measure on a countable set X = Π X., X. € R. [The faces
j = l J J

F = H ( v , α ) n X o f X a r e d e t e r m i n e d u n i q u e l y by ( s g n V j , . . . , s g n v k ) . ]

6 . 2 2 . 3

( i ) P r o v e t h a t

(1) M
| F
 = Proj

c s p F
(W

| F
) x (csp F )

1
 , and

^ p M c P r c s p F ( M | F ) .

( i i ) Give an example in which X = { 0 , 1 , . . . } ,

F = {(0, 0), (1, 0),... }, N = (-»,0)
2
 ,

( 3 ) P r o j ' c s p F ( N ) = (-°°» ° ) x ° * R x 0 " P r ° J C s p F ( W I F )
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and

(4) ξ|
F
((0, 0)) = (1, 0) € X .

(Thus 6.22(3) is not valid here.)

(ii) In the example (ii) show that qE((x.i» °))>
 x
τ
 =
 °> 1> . >

is not continuous at ξ = (ξ^, 0), ξ j > 1. [If θ. is chosen so that θ. j Φ 0

somewhat slowly and θ.g "*• "°°
 t h e n

 ξ(
θ

Ί
 ) •*• (ξ-|> °)

 b u t
 q

ε
(

θ
 )(

χ
) + °1M O ) ^ "

6.23.1

Prove versions of Theorems 5.7, 5.8 and 5.12 valid for aggregate

exponential families. [Make the assumptions in Theorem 6.23.]

6.23.2

Show that q (x) is not jointly continuous in (ξ, x) at any point

with ξ = x € dK.

6.23.3

Are the analogs to Theorems 6.12 and 6.13 valid for aggregate

exponential families under the assumptions of Theorem 6.23?

6.23.4

Suppose X = (0, 0) U {x € R2: x. = 1,..., i = 1,2}. Note that

Assumption 6.22(1) is not satisfied. Show that, nonetheless, q J x ) is

continuous at every ξ € conhull X = F. (If one defines q
ζ
(x) = q

Q
(x) for

ξ € K - conhull X then it is even true that q#(x) is continuous on K.)

6.23.5

Let X = {((i2 - 1)*/1, 1/1): i = 1,...} U (1, 0). For

x = ((i2 - l)*/i, 1/i) € X let v({x}) = 1/21, and let v({0}) = 1. Note that

6.22(1) is not satisfied. Show that q ((1,0)) is not continuous at ξ = (1,0)

[q/ j Q \ ( ( 1 , 0 ) ) = 1 . Let 0 < c < 1. For i sufficiently large let θ
£
 = p^x

£

with
 Prt

 chosen so that p
Λ
 ((1,0)) = c ({p

0
} is a swiftly increasing
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sequence.) Then ξ(θ
£
) + (1, 0) but q

ς
,

θ
 j((l

f
 0)) • c ̂  1.] (In this

X>

example q
Γ
(0) is, however, upper semi continuous; so that, for example, the

conclusion of Theorem 6.23 remains valid. Exercise 6.23.4 shows this need not

be the case.)

6.23.6

F o r x = x ( i j ) = ( ( i 2 - \ ) H / \ , 1 / 1 , j ) , 1 = 1 , . . . , j = ± 1 , l e t

v ( { x ( i j ) } ) = ( 4 + 3 j ) / 2 i . F o r x = x ( j ) = ( 1 , 0 , j ) , j = - l , 0 , + 1 l e t

v({x>) = 2 - | j | . Otherwise v ( { χ } ) = 0.

Construct {θ^} in a manner s imi lar to 6.23.5 with ( θ ^ ) 3 = 0 so that

P θ ( ί x ( j ) : j = 0 , ± 1 } ) + 1/3 and ( Φ ι ) ) ι + 1. Ver i fy t h a t ξ ( θ £ ) - ( 1 , 0 , 1/2)
XJ

and Pθ U^h) - fc (x("1})+ 1/12, but ^ j ^ i ^ ) = ' ( L O . * ) ^ " ^ =
Λ/ XJ

( 1 / 4 ) 2 < 1/12. Hence q ζ ( x ) i s not continuous at ξ = ( 1 , 0, 1/2) or even

upper semi continuous. I f E c K is the closed set ί ξ ( θ ^ ) : λ = l , . . . } U ( 1 , 0, 1/2)

or o\

(-1)

then the maximum likelihood estimator over the family {q
ζ
: ξ € E} fails to

exist at the possible observation xv




