
CHAPTER 1. BASIC PROPERTIES

TANDARD EXPONENTIAL FAMILIES

,. 1 Definitions (Standard Exponential Family): Let v be a σ-finite measure

m the Borel subsets of R . Let

1) hi = Wv = {θ: /e θ ' x v(dx) < «>} .

et

2) λ(θ) = /e θ # x v(dx)

Define λ(θ) = °° i f the integral in (2) is i n f i n i t e . ) Let

ψ(θ) = log λ(θ) ,

nd define

3) Pθ(x) = exp(θ x - ψ(θ)) , θ € N

et Θ <Ξ w . The family of probability densities

{pθ : θ € 0}

s called a k-dimensional standard exponential family (of probability

lensities). The associated distributions

PΘ(A) = / Pθ(x)v(dx) , θ e 0
A

re also referred to as a standard exponential family (of probability

listributions).

W is called the natural parameter space, ψ has many names. We

vVill call i t the log Laplace transform (of v) or the owmlant generating

function. θ € 0 is sometimes referred to as a canonical parameter, and
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2 STATISTICAL EXPONENTIAL FAMILIES

x € X is sometimes called a canonical observation, or value of a canonical

statistic.

The family is called full if Θ = W . It is called regular if

N is open, i.e. if

W = M°

where W° denotes the interior of Λf, defined as i n t . N = {UQ: Q c N, Q is open}.

As customary, let the support of v (supp v) denote the minimal

closed set S c Rk for which v(Sc o m p) = 0. Let

(4) H = convex hull (supp v) = conhull (supp v) .

and let K = K = fl. K is called the convex support of v. (The convex hull of

a set S € Rk is the set {y: 3 {x..} cz s, {c^}, 0 < αη., Σα]. = 1 3 y = Σ α ^ } . )

For S c R the dimension of S, dim S, is the dimension of the

linear space spanned by the set of vectors {(x j - x 2 ) : x ^ x2 € S}. A k-

dimensional standard family is called minimal i f

(5) dim N = dim K = k .

Note that i f K is compact then W = Rk, so that the family is

regular.

(The exponential families described above can be called f in i te

dimensional exponential families. Various writers have recently begun to

investigate in f in i te dimensional generalizations. See Soler (1977),

Mandelbaum (1983), and Lauritzen (1984) for some results and references.)

Standard exponential families abound in stat ist ical applications.

Often a reduction by sufficiency and reparametrization i s , however, needed in

order to recognize the standard exponential family hidden in specific settings.

Here are two of the most f ru i t fu l examples.

1.2 Example (Normal samples): Let Yj ' Yη b e independent identically

distributed normal variables with meanμ and variance σ2. Thus, each Y. has
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density (relative to Lebesgue measure)

(1) Φ
 n
z(y) = (2πσ

2
)"^

2
 exp(-(y-μ)

2
/2σ

2
)

μ,σ

and cumulative distribution function Φ
 2

 . Consider the statistics

Ϋ = n"
1
 Σ Y.

S
2
 = n"

1
 Σ (Y. - Ϋ )

2

i = l
 1

X
χ
 = Ϋ , X

2
 = n"

1
 Σ Y

2
 = S

2
 + Ϋ

2
 .

The joint density of Y = Y
1S
...,Y can be written in two distinct revealing

ways, as

(2) f
μ
,

σ
2(y) = (2πσ

2
)"

n/2
exp(-ns

2
/2σ

2
 - n(y-μ)

2
/2σ

2
) ,

or as

(3)
 f

μ
,

σ
2(y) = (2πσ

2
)"

n/2
exp((nμ/σ

2
)x

1
 + (-n/2σ

2
)x

2
)exp(-nμ

2
/2σ

2
) .

From the f i r s t of these one sees that Y and S are sufficient

stat ist ics. (One can also derive from this expression that Ϋ and S are

independent (see sections 2.14 - 2.15) with Ϋ being normal mean μ, variance

σ2/n and V = S being (σ2/n) χ2 .. -- i.e. having density

(4) f(v) = (n/2σ2)m / 2(Γ(m/2))"1 v ( m / 2 " 1 } exp(-nv/2σ2)χ(θ9θo)(v)

with m = n-1 .)

X = (X.jXo) is also sufficient. This can be seen from the

factorization (3), or from the fact that X is a 1-1 function of (Ϋ,S ) .
2

Let v denote the marginal measure on R corresponding to X -- i.e.

v(A) - / dy
1
 ... dy

n
 .

n
 n
/2 V 1 2 "7"

(It can be checked that when n > 2, v(dx) = φ (π
2
Γ((n-l)/2)) (x^x^ dx

over the region K = {(xi,x
2
)-' x

2
 4

 X
2>

 w h e n n = 1 v ΊS
 supported on the
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p

curve {(x-j.Xg): x-| = x
2
h ) Then the density of X relative to v is

(5) p
θ jθ

 (x) = exp(θ
l X l
 + θ

2
x

2
 - ψ(θ))

with

θj = nμ/σ
2
 , θ

2
 = -n/2σ

2

and

ψ(θ) = -Θ
2
/4Θ

2
 - (n/2)log(-2θ

2
/n) .

Thus the distributions of the sufficient statistic form a 2 dimensional

exponential family with canonical parameters (θ^θg) related to the original

parameters as above.

This family is minimal. The natural parameter space is

A/ = {(θj, θ
2
) : θ

χ
 € R , θ

2
 < 0} .

The above can of course be generalized to multivariate normal

distributions. See Example 1.14.

1.3 Example (Multinomial distribution):

Let X = (X
1
,...,X

j<
) be multinomial (N,π) — that is

Pr{X = x} = (
 N

 )Π πj
1
 .

x
l " '

x
k
 Ί

Let v be the measure concentrated on the set {x : xΊ integers,
k

x. > 0 , i = l k , Σ X: = N} , and given by
1 1 = 1 Ί

N ) = N !(1) v ( { x } ) = ( χ 9

l\9χ ) = -λ

Then the density of X r e l a t i v e to v is

k
(2) p (x) = exp( Σ θ.x. - ψ(θ))

θ i = l Ί Ί

where

(3) θ. = log π. i = l , . . . , k
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and

(4) ψ(θ) = N log( Σ e
8
"
1
') .

1 = 1

This is a k dimensional exponential family with canonical s t a t i s t i c

X . I t s canonical parameter is r e l a t e d to π by ( 3 ) . I t has parameter space

(5) Θ = { ( l o g π.) : 0 < π., Σπ. = 1} .

Note that this exponential family is not full. The full family has

densities {p
θ
} as above with 0 = hi = R

k
 . (For 0 as in (5) ψ(θ) s 0 ,

however ψ as defined in (4), rather than ψ s o, is the appropriate cumulant

generating function, as defined in 1.1(3) for the full family.) However

for all a € R where Γ = (1,...,1) . Hence expanding this family to be a

full family does not introduce any new distributions.

The above phenomenon is related to the fact that the above family

is not minimal since dim K = k-1 < k . To reduce to a minimal family let

n X*

k-1

X* € Rk"1 be given by (X1,...,Xk_1) . Then X* is sufficient. (In fact, it is

essentially equivalent to X since Xk = N - Σ X* a.e.(v) .) Let θ* € R
1^"1

be given by θ* = θ. - θ. , and let v*({x*}) = ( N
 k-1 ) . Then

1 1 K JL, JL, M π JL,

the density of X* relative to v* is

k-1
(7) P**U*) = exp( Σ θ*x* - ψ*(θ*))

θ
 i=l

 l l

where

(8) ψ*(θ*) = N logCl + Σ e M .

k-1
This is a full minimal standard exponential family with M = R

Note that
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π. = exp(θ*)/(l + Σexp(θ*)) 1=1 k-1 ,

(9)

π
R
 = 1/(1 + Σexp(θ*)) .

k l
Here, each different θ* e R = N corresponds to a different distribution.

Reductions by reparametrization and sufficiency like those in the

above examples are frequent in statistical applications. Together with proper

choice of the dominating measure, v, they lead to the representation of

problems involving exponential families in terms of problems involving

standard exponential families. This is formally explained in the next few

paragraphs.

1.4 Definition:

Let {F : ω e Ω} be a family of distributions on a probability

space y,B . Suppose F -« μ , ω € Ω . Suppose there exist functions

c
R

T

h

: Ω ->

: Ω ->

: V •*

: V •+

(0

R
k

R
k

[0.-)

(Borel

(Borel

measurable)

measurable)

such

(1)

that

ω(y)
dF
ω

du
= C(ω)h(y)exp(R(ω) T(y)) .

Then {F } (or, { f }) is called a k dimensional exponential family of

distributions (or, of densities).

1.5 Proposition:

Any k dimensional exponential family (1.4(1)) can be reduced by

sufficiency, reparametrization, and proper choice of v to a k dimensional

standard exponential family (1.1(3)). The sufficient stat ist ic is X = T(Y), and

i ts distributions form an exponential family with canonical parameter

θ = R(ω) .

Proof: X = T(Y) is suff icient by virtue of 1.4(1) and the Neyman factorization
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theorem. (See e.g. Lehmann (1959) Chapter 2 Theorem 8.) Let μ*(dy) = h(y)dy

and l e t v(A) = μ*(T"1(A)) for Borel measurable sets A c Rk . Then the

induced densities of X with respect to v exist and have the desired form

1.1(3) with θ = R(ω) and ψ(θ) = -log C(R"1(θ)) . (Note that i f R ^ ) = R(α>2),

then f = f and hence C(ωχ) = C(α>2) .) II

In spite of appearances the above reduction process is not really

unique. Any standard exponential family can be transformed to a different,

but equivalent, form by linearly transforming X and Θ with linked nonsingular

affine transformations. This is described in the following proposition.

1.6 Proposition:

Let {pQ} be a k-dimensional standard exponential family. Let M be

a non-singular kxk matrix and l e t

Z = MX + zQ

( 1 )

Φ = (M1) θ + φQ .

Then the distributions of Z also form a k-dimensional standard exponential

family which is equivalent to the original family.

Proof: The equivalency assertion is immediate since the transformations (1)

are 1-1. Furthermore, the density of Z relative to the measure v2 defined

by v2(A) = v(M"X(A - z Q ) ) is

exp(θ'x(z) - ψ(θ))

(2) = exp((φ - φ 0 ) ' MM"Ί(z - zQ) - ψ(M'(φ - φ Q )))

= exp(φ'z - ψ(M'(φ - φQ)) + Φ'z0 - ΦQZ + Φ0 z 0 ) .

(By definition A - zQ = {x : 3 z € A, x = z - zQ} .)

Let Vjίdz) = exp(-φ^z)v2(dz) and ψ^φ) = ψ(M'(φ - ΦQ))

The densities of Z relative to v 1 are
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(3) exp{φ'z - ψjίφ)} ,

which, as claimed, form a k parameter exponential family. The natural

parameter space for this family is M'~ Θ + φ« and the cumulant generating

function is ψ, . ||

Proposition 1.6 shows that one may apply an arbitrary affine

transformation either to Θ or to X. In this way one may assume without loss of

generality that Θ (or X) lies in a convenient position in R . One application

of this process wi l l be discussed at some length in Section 3.11, and such

transformations wi l l be used wherever convenient.

MARGINAL DISTRIBUTIONS

The proof of Proposition 1.6 yields a statement about marginal

distributions generated under linear projections by standard exponential

families. The result is important in its own right, and useful in the proof

of Theorem 1.8, as well.

Some preliminary remarks will be helpful. Let M- : R -». R
m
 be a

linear map. M, is represented by an (mxk) matrix, M-., of rank m. There is then

a linear map M
2
 : R -* R "

m
 which is orthogonally complementary to M

1
 --

that is, the rows of the corresponding ((k-m)χk) matrix, Mp, of rank (k-m)

are orthogonal to those of M- . (The rows of M
2
 can be chosen to be orthonormal,

but that is not necessary here.) Let M denote the (kxk) nonsingular matrix

M
l k

 Z
l m

M = (*) . If x e R
κ
 then Z = Mx can be written as (/) with 1

Λ
 € Rm ,M2 Z 2 1

Z ς- pIΠ~K
Q V_ Γ\ .

M
Let M = ( M ) as defined above. Then M exists and can be

M

written as

(1) M"
1
 = (M~, M")

where M" is (kxm), M^ is (kχ(k-m)) and
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(2) (M")
1
 M^ = 0

since M
1
 and M

2
 are orthogonally complementary.

Let θ € Rk and φ = ( M " 1
) ^ = ( * )θ = Γ

1
) . Then

/M"\ Φo
(M

2
)
 Y

2

(3) θ'x = θ'M^Mx

"
 φ

i
Z
l

+ φ
2

Z
2

by (2). For typographical reasons let M!" = (NT)
1
 .

The special case where M
1
(x

1 >
...,x

k
) = (*i» ••»*,„)

 is w o r t h

noting. Here

<
4
>
 M

l " < W °mχ(k-
m
))=

 M
Γ

M
2 = <

0
(k-m)χm ^ k - m M k - m ) *

 = M
2 ~

Somewhat more generally, if the rows of M. and M
2
 are orthonormal then

M
l
 = M

Γ

M
2
 = M

2
~

1.7 Theorem:

Consider a standard exponential family. Let M, : R •% R
m
 and

Φ Ί I

θ = M'( ) as described above. Fix φ° e M^"(W) c R
k
"

m
 . Consider the

family of distributions of Z^ = M-X over the parameter space

Φ.o = M'"({θ € Θ : M'"θ = φϊ}) . These form an m dimensional standard

Φp * ^ ^

exponential family generated by the marginal measure defined by

(5) v 0(A) = / , exp(φϊ M x)v(dx) .

Φ M i Δ ^ t c

Z 1
The natural parameter space for this family is W = M'"({θ e N : Mi θ = φi}

Φo

The statistic 1, is sufficient for the family of densities

{p
θ
(x) : M

2

-
e = φ°} .
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Proof: A direct proof is as easy as an appeal to Proposition 1.6. The density

of Z relative to the appropriate dominating measure v(M~ •) is

( 6 ) e x p ( θ ' x - ψ ( θ ) ) = e x p ( φ χ z χ + Φ 2 z 2 - ψ ( M ' φ ) ) .

When Φ2 = Φ2 the factor exp(φ° z2) can be absorbed into the dominating

measure, y ie ld ing v (•) as defined in (5) . The resul t ing family of densities
Φ2

is the standard exponential family claimed in the statement of the theorem.

(Note that (6) also provides a formula for the cumulant generating function of

th is fami ly.)

The assertions concerning W,o and suff ic iency follow from ( 6 ) ,
Φ2

with Φ2 = Φp > and the Neyman factor izat ion theorem. ||

For the special case where IIL is as described in ( 4 ) , one sees

that for f ixed θ u + i » ' θ

m

 t l Ί e d is t r ibut ions of Z, = (X 1 5 . . . ,X ιJ form an

exponential family.

Note that the theorem does not say that the family of d is t r ibut ions

of 1. = HΛ form a standard exponential family with natural parameter φ,

i f the parameter θ ranges over all of 0 . In fact such a claim is generally

false unless Θ is of dimension <m and s a t i s f i e s

(7) Θ c {θ : M^'θ = φ°} for some φ° € Rk~m ,

as w i l l be the case in Theorem 1.9; or

(8) Z, and Z2 are independent for some θ € Θ .

( I t w i l l be seen in the next chapter that (8) implies independence of Z, and

Z2 for a l l θ € Θ .)

(8) Remark. The preceding theorem may be given an a l ternat ive i n t e r p r e t a t i o n .

Let L be a l inear variety i n R -- that is L = xQ + V for some m dimensional

k k
l inear subspace V c R . Let P : R -> L be any af f ine project ion onto L --

2
that i s , P is a f f i n e , P = P, and P is the i d e n t i t y on L. Let Q denote the

orthogonal project ion onto V = {w € R : v'w = 0 v v € V} . Let
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θ ( 2 ) € V" ' T h e n t h e f a m l l y o f d is t r ibut ions of P(X) as θ ranges over

{θ € N : Qθ = θ/o\ί forms an exponential family.

To v e r i f y the above, note that there are l inear isometries

Sχ : Rm £1 L Sz : Rk'm ^ V1 .

onto onto

The theorem applies to the maps M. = S" ° P , ϊlL = S i ° Q , and y ie lds a

statement concerning the d i s t r i b u t i o n s of M.,(X) . This converts d i r e c t l y to

the above statement about the d i s t r i b u t i o n s of P(X) = S ^ M ^ X ) ) over the

appropriate parameter space since S, is a l inear isometry, and S-. and S«

are orthogonal, e tc.

1.8 EXAMPLE (Log-linear models): Consider a multinomial (N, π) variable as

described in Example 1.3. Consider the family of d i s t r i b u t i o n s for which the

natural parameter 1.3(3) s a t i s f i e s

(1) θ = BB + ΘQ , 3 e Rm

where B is a specif ied kxm matrix of rank m. Assume, in a d d i t i o n , that

(2) B = ( l k , B ( 2 ) )

where 1/ = ( 1 , . . . , 1 ) and B/2\ is k x (m-1) of rank (m-1). This is a log-linear

multinomial model. The name derives from the fact that the l inear constraint

(1) can also be w r i t t e n in the form log π = B$ where ( log π). = log π. ,

i = l , . . . , k . Condition (2) is imposed because PQ = P f t . a 1 , as noted in 1.3(6).

Ό u+a i

Because of (2) for every $\^\ = ^ 2 " " ' e r J t h e r e i s d u n i c 1 u e ^ = ^ 1 ^ ( 2 ) ^

such that
k k θ ,

(3) Σ π. = Σ e Ί = 1 .
Ί

Let NL = B1 and l e t M = ( M ) as in 1.7. Theorem 1.7 y ie lds that
1 Np

Z ( l ) = M 1 X = B ' X i s a s u f f Ί c i e n t s t a t i s t i c . The d i s t r i b u t i o n s of Z , ^ form an

m-dimensional exponential family with corresponding natural parameter
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Mj'θ = β + B"ΘQ. This family is not minimal since U ^ N ^ = N w.p. 1 .

As in Example 1.3 one may reduce to an equivalent minimal family having dimension

(m-1) and canonical s t a t i s t i c Z*-x = B/o\X = (^/,\ o9'"9^(l) m^' '

Here is a famous log-linear model arising in genetics. Suppose a

parent population contains a l l e l e s G,g at a certain locus, with frequency

p,q = 1-p , respectively. Under the assumptions of random mating and no

selection a generation of N offspring w i l l have genotypes GG, Gg, gg according

to a multinomial d istr ibut ion with π given by

(4) TΓj = p , π2 = 2pq , π3 = q 2 .

Such a multinomial distr ibution is called a Hardy-Weinberg distribution.

This corresponds to a log-linear model with

l 2\ { ° \
1 1 θ = log 2) .

(5) B =

N
Thus, Z/.x = ( 2 + ) is a sufficient stat ist ic for the distributions of this

log-linear family, and z?,x = 2x, + x ? is a minimal sufficient s t a t i s t i c .

(This log-linear family can be imbedded in a useful way in the

original multinomial family as follows:

Let

(6)

Then

/5/12 -1/12 -l/2\

M"1 = I 1/6 1/6 1 ) = (M~, M") .

\-l/12 5/12 -1/2/

Let ΦQ = (0,0, -In2) and z^ = (0,0, !j). According to Proposition 1.6

Z = MX + z 0 is the canonical stat ist ic for an exponential family with

corresponding canonical parameter φ = (M~ )'θ + φQ . In terms of the original
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variables z 1 = 2x^ + x 2 , z 2 = 2x3 + x^9 z^ = x 2 , and Φ3 = (^)log(π|/4π-π3) f

etc. The log-linear family described above is therefore the family of marginal

distributions of ( z . , z«) under the restr ict ion φ~ = 0 . The family of

distributions corresponding to the restr ict ion Φ3 = φ° t 0 also has a natural

genetic interpretation as the distribution of a population after variable

selection of genotypes. See Barndorff-Nielsen (1978, p.123); the

generalization of this model to a m u l t i a l l e l i c locus is also described there.)

REDUCTION TO A MINIMAL FAMILY

Any exponential family which is not minimal can be reduced ϊo a

minimal standard family through sufficiency, reparametrization, and proper

choice of v. This involves only a minor extension of the process used above in

Proposition 1.5 and Theorem 1.7. This reduction is unique up to the appearance

of linked affine transformations as in Proposition 1.6. Here are the details.

1.9 Theorem

Any k dimensional exponential family can be reduced by sufficiency,

reparametrization, and proper choice of v to an m dimensional minimal standard

exponential family, for some m<k. Let X,θ and Z,φ denote the canonical

s t a t i s t i c and parameter for two such reductions to an m. and an m2 dimensional

minimal family, respectively. Then m, = m2 and ( X , θ ) , (Z,φ) are related as in

1.6(1).

Proof. The reduction to a minimal standard family w i l l be performed in three

steps. F irst, one may apply Proposition 1.5 to reduce to a standard k

dimensional family.

Suppose for this family that dim Θ = m1 < k. Thus θ c θ Q + V

where V is an m'-dimensional l inear subspace. One may l e t P be the orthogonal

projection on V and M,, M2 the corresponding orthonormal matrices described

above in Theorem 1.7. Then M2Θ = φ£ , a constant vector. By Theorem 1.7,

Z1 = M-X is s u f f i c i e n t , and i t s distributions form a standard exponential

family, whose parameter space has dimension m1.
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Thus it now suffices to consider the case of a standard m
1
 dimension-

al exponential family whose parameter space also has dimension m
1
 . Suppose

for this family that dim K = m < m' . Then K c x + V , similar to the

previous situation. Let P be the orthogonal projection on V, and NL, NL

as above. Observe that

(1) θ x = Θ'MJ M
χ
x + Θ'M£ M

2
x

a.e.v

I t follows that Z. = NLX is a sufficient stat ist ic whose distributions form a

standard exponential family with natural parameter M,θ. (Actually Z is not

merely suff icient, but is actually equivalent to X under v.) Since

dim (M..K) = dim (M-Θ) = m this family is the desired minimal family formed

from the original family through reduction by sufficiency and reparametrization.

Suppose {p : ω € Ω} is a standard k dimensional exponential family

relative to v, and (X,θ), (Z,φ) denote the canonical statist ics and parameters

for two reductions of {p } to a minimal standard exponential family. For the

next step let P̂  ' , P; ' denote their respective probability distributions
σ ψ

with dimensions m, and nu respectively, etc.. Let ω
Q
 € Ω. Since X and Z

are each sufficient

dP 9\
^ Jtf Jf a e (v)

p
θϊ

o
)

Now,

HD(D

= exp(((θ(ω) - θ(ω
Q
)) x -

and similarly for p' ' . Hence (4) yields



BASIC PROPERTIES 15

(5) (θ(ω) - θ(ω
Q
J) x(y) - U

(1)
(θ(ω))

= (Φ(ω) - φ(ω
Q
)) z(y) - U

(2)
(φ(ω)) a.e. (v)

for all ω € Ω.

Suppose m = m
1
 < m,,. Since dim {φ(ω) : ω e Ω} = m

2
 > m there

m+1
exist values α. € R, ω. e Ω, i = l,...,m+l, such that 0 = Σ α.(θ(ω ) - θ(ω

n
))

m+1
and φ* = Σ α.(φ(ω.) - Φ(ω

Q
)) f 0. It follows from (5) that

(6) φ* z(y) = const a.e. (v)

But, (6) implies /C c {z : φ* z = const} so that dim K^ < m^. This

contradicts the fact that the d i s t r i b u t i o n s of Z form a minimal standard

family of dimension nip. Hence πu = πu = m.

Now choose ω 1 , . . . ,ω m so that {θ(ω.j) - θ(ωQ) : i = l , . . . , m } span

Rm. The preceding argument shows that {φ(ω.j) - φ(ωQ) : i = l , . . . , m } must

also span Rm. Let M, non-singular, be chosen so that

φ ί ω ^ - φ(ωQ) = ( M ' J ' ^ θ ί ω ^ - θ(ωQ)) i = l , . . . , m .

Then, as i n 1.6(3),

(7) (θ(ω.) - θ(ωQ)) x(y) - U ( θ ( ω i ) )

= (Φ(ω.) - φ(ωQ)) Mx(y) - U(φ(ω-))

= (Φ(ω.) - φ(ωQ)) z(y) - U(φ(ω.)) a.e. (v)

Let y
Q
 e K be a value for which (7) is valid for i=l,...,m. Then (7)

yields
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(8) (φ(ω.) - φ(ω
Q
)) M(x(y) - x(y

Q
))

= (φ(ω
Ί
.) - φ(ω

Q
)) (z(y) - z(y

Q
)) a.e. (v) i = l,...,m

This implies M(x(y) - x(yQ)) = z(y) - z(y Q ); which verifies 1.6(1) with

z o = z ( y Q ) . ||

1.10 Definition

Let {p_} be a k-dimensional exponential family. Theorem 1.9
u

shows that there is a unique value, m, such that {pθ> can be reduced to a

minimal exponential family of dimension m. This value is called the order

of the family p.

I f {pΩ} is a standard family i t is clear that i ts order m
Ό

satisfies

(1) m <_ min(dim Θ, dim K)

In most cases equality holds in (1); however, i t is possible to have

inequality, even when {pn} is f u l l .

u

In view of Theorem 1.9 there is no loss of generality in

confining oneself to the study of minimal standard exponential families.

A full minimal standard exponential family is also called a canonical

exponential family.

RANDOM SAMPLES

A nearly trivial but very important application of the first

part of Theorem 1.9 involves independent identically distributed (i.i.d.)

observations from an exponential family.
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1.11 Theorem

Let X l s . . . , X n be i . i . d . observations from some k-dimensional

standard exponential family with natural parameter space M and convex support K.

n
Then S = Σ X. is a s u f f i c i e n t s t a t i s t i c . The distributions of S form a

i = l Ί

standard k-dimensional family with natural parameter space W and convex support

n/( = {s : 3 x e K, s = nx} . The order of the families corresponding to S and

to X. are equal.

Proof: The j o i n t density of X . , . . . , X with respect to vx ... xv is

n
P f l ( X i . - . - . x n ) = exp( Σ (θ x. - ψ ( θ ) ) )ϋ i n . = 1 i

n
= exp( Σ ( θ . x. - ψ ( θ . ) ) ) with θ. M .

i = l Ί Ί Ί Ί

Hence X , , . . . , X are canonical s t a t i s t i c s from an nk-dimensional exponential

nk k

family whose parameter space s a t i s f i e s Θ = { ( θ 1 , . . . , θ n ) € R : θ^ • θ € R } .

Applying Theorem 1.7 yields that S is suf f ic ient and comes from a standard

k-dimensional family with natural parameter space N and convex support nK.

(All this is also obvious from the fact that
n

p β ( x Ί , . . . , x n ) = exp(θ Σ x_. - nψ(θ)) .)
u 1 Π _ i I

It is easily checked that any linear map which transforms the

distributions of X. to a minimal family also transforms those of S to one, and

conversely. This yields the assertion concerning the order of the families

corresponding to S and X. . ||

Note that the cumulant generating function for the exponential

family generated by S is

(1) nψ(θ) .

The sufficient statistic X = n S also has distributions from an

exponential family. (Apply Theorem 1.6.) Here, the natural parameter space
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is nW and the convex support is K. The cumulant generating function for X

corresponding to the point Φ = nθ in its natural parameter space is

(2) nψ(Φ/n) .

(Under appropriate additional conditions a family of distributions

for which there is a nontrivial sufficient statistic based on a sample of

size n must be an exponential family. See Dynkin (1951) and Hipp (1974).)

1.12 Examples

Example 1.2 displays an instance of th is theorem. I f Y is normal

with mean μ and variance σ2 then X = (Y, Y ) is the canonical s t a t i s t i c of a

minimal standard exponential family having canonical parameter

θ = (μ/σ2, - l/2σ 2 ) . Thus i f one has i . i . d . observations Yp Ύη t h e n

n n n p
S = Σ X. = ( Σ Y., Σ YT) is a sufficient statistic; and its distributions

i = l
 Ί
 i = l

 Ί
 i = l

 Ί

form a minimal standard exponential family.

As another example, suppose Y is a member of the gamma family

with unknown index, α, and scale, σ. The density of Y relative to Lebesque

measure on (0, °°) is

(l) f(y) = (^ΓίcOΓV
01
"

11
 e"

y/σ
 , y >o .

We w i l l use the notation Y ~ Γ(α, σ) . Note that Γ(m/2, 2 ) = x * . These

d i s t r i b u t i o n s form a two-dimensional exponential family with canonical

s t a t i s t i c (Y, In Y) and canonical parameters (-1/σ, α ) . I f γ i > > γ

n

 a r e i i d.

n n
wi th density (1) then SΊ = Σ Y and S9 = Σ In Y. form a two-dimensional

1
 1=1

 1 ά
 i=l

 Ί

exponential family. It is interesting to note that the marginal distribution of

Sj/n also has a density of the form (1) with index nα and scale nσ . (Here,

as well as in the preceding normal example, S. is strongly reproductive in the

terminology of Barndorff-Nielsen and Blaesild (1983b). For more details see

Theorem 2.14 and Example 2.15.)

Another example of interest is provided by the Poisson distribution;

where Y has probability function
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(2) Pr{Y = y} = λ y e~ λ /y! y = O , l s . . .

We w i l l use the notation Y ~ P(λ) . Then X = Y comes from a one-dimensional

exponential family with canonical parameter θ = In λ. The d i s t r i b u t i o n of

n
S = Σ Y. is i t s e l f Poisson with natural parameter θ+ In n = In nλ .

i l Ί

CONVEXITY PROPERTY

Here is an important fundamental fact about exponential families.

1.13 Theorem

( i ) N is a convex set and ψ is convex on M.

(ii) ψ is lower semi-continuous on R and is continuous on N°.

(iii) PQ = PΩ i f and only i f
θ l Θ 2

(1) Ψ(αθ1 + (1 - α)θ 2 ) = oίφίθj) + (1 - α)φ(θ 2)

for some 0 < α < 1. In this case (1) is then valid for a l l 0 <_ α <_ 1.

(iv) I f dim K = k (in particular, i f {pQ} is minimal) then ψ is

s t r i c t l y convex on W, and PΩ t V for any θΊ f θ9 € W.
θ l Θ 2 ' ά

Woof: Let θ,, θ2 e W, 0 < α < 1. Then by Holder's inequality

(2) exp(ψ(αθ1 + (1 - α)θ2)) = /expίtαθj + (1 - α)θ2) x)v(dx)

= /(exp Θ. x)α (exp θ 2 x ) ( 1 " α ) v(dx)

1 (/exp(θ1 x)v(dx))α (/exp(θ2 x)v(dx)) ( 1"α )

ί θ ^ + (1 - α)ψ(θ2))

This proves the convexity of ψ, and the convexity of hi follows easily.

There is s t r i c t inequality in (1) unless

(3) θj x = θ2 x + K (a.e. (v))

for some constant K; in which case there is equality. (3) is equivalent to
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e

θ i # x = e

κ

e

θ 2 # x a .e. (v) which is equivalent to the assert ion Pfi = PB .
1 2

If (3) holds for some θ, ί θ
2
 then dim K <_ k - 1. Hence dim K = k

implies P
Q
 t P

Q
 for any Θ

Ί
 + θ

9
 e W.

θ
l
 Θ

2
 1 ά

Finally, for the continuity assertions, note f i r s t that

λ(θ) = /exp(θ x)v(dx) is lower semi-continuous by Fatou's lemma. Hence ψ is

lower semi-continuous. Any convex function defined and f i n i t e on a convex set

W of R must be continuous on W°. (We leave this as an exercise on convex

sets.) ||

Be careful about the above result -- the fact that ψ is s t r i c t l y

convex on hi does not imply that hi is s t r i c t l y convex; for a simple example, see

Example 1.2 which involves a minimal family for which

W = ί(θ
Ί
> θ

9
) : Θ

Ί
 € R, θ

9
 < 0}

XL. X L.

Usually ψ is continuous on all of hi. However examples can be

constructed when k >_ 2 where this is not the case.

This simple theorem has an interesting direct application.

1.14 Example

Let Y be m-variate normal with mean μ and covariance matrix %.

We w i l l use the notation Y - N(μ, t). Also, ό , = 1 i f i = j and = 0 i f i j^ j .
• u

The density of Y with respect to Lebesgue measure is

(1) Φ
y j Z

(y) = (2πΓ
m / 2

|2Γ*exp(tr(-*-
Ί
(y - v){y - y)72))

= (2π)"
m
^

2
|?|"^exp((?"

1
μ) y + tr((-£ /2)(yy')) - μ'jΓ μ/2)

It follows that the distributions of Y form an (m + m(m+l)/2) dimensional

exponential family with canonical statistics Yj, ,Y
m
, {Y

Ί
-Y ./(I + δ..): i <_ j}

and corresponding canonical parameters (?" μ),,...,(?" μ) > ί(-Z" ).
 Ί
 : i £ j} .

For the following it is convenient to label these statistics X..,...,X ,

{X . : i <. j} and the corresponding parameters as (θ,,...,θ , {θ. : i <_ j )}.

Write θ = (θ,,...,θ ), S£= (θ.
Ί
 ). Ignoring the factor (2π)"

m /
'

2
, which can be

x Πl 1J

absorbed into the measure v, the cumulant generating function is
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(2) Ψ( ) = (-^JioglZ"
1
)

 +
 (μ'Z"

1
μ)/2 = (-*s)log( |-£|) - θ'βθ/2 .

Note that M = {(θ, {θ.. : i <_ j}) : -£ is positive definite} . It is easy

to check that N is open, so that this family is regular. By Theorem 1.12

(3) ψ(0, {θ j : i < j}) =

is s t r i c t l y convex in the variables { θ . . : i <_ j } over the set where Q. is

positive definite. To reinterpret this result s l ight ly, let B = -Q.

then (3) yields that

(4) log |B| is s t r i c t l y concave

as a function of the variables {b. . : i <_ j } over the region where B is
* J

positive definite. (4) yields

(5) IB'1] = |BI"1 is s t r i c t l y convex .

((4) can also be proven by directly calculating log|B|, and showing

k+1 k+1

the resu l t ing ( « ) x ( o ) matrix is posi t ive d e f i n i t e . The above proof

is much simpler !)

CONDITIONAL DISTRIBUTIONS

k
Let v be a given σ - f i n i t e measure on the Borel subsets of R , and

P «v a p r o b a b i l i t y measure with density p. Assume (without loss of

general i ty) that 0 € W so that v is f i n i t e . Let Mj : Rk -> Rm be l i near ,

M^x) = M-x. Then the condit ional measure of v given z, = M,(X) ex is ts . I t

w i l l be denoted by v( |NLX = z j or v( | z j . The condit ional d i s t r i bu t ion of P

given M,(X) exists and has density proportional to p( ) re la t i ve to vί l z j )

over the set {x : ΛMX) = z-} . (More generally these facts are true i f Λ̂ 1

is any Borel measurable f u n c t i o n . See, for example, Neveu (1965).)

The above s i t u a t i o n resembles that described in 1.7. Let

M2 : Rk -> Rk"m be an orthogonal complement of My Then

M
2
 : ίx : Mj(x) = z

χ
} -* R

k
"

m
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is 1 - 1.

We will also use the symbol v( |z.) for the equivalent conditional

distribution of M
2
(X) given M

χ
(X) = Zy As before,

Φ = M'-lθ = (
M
Mθ - (

φ
l)

It is always possible to choose M
2
 to be "orthonormal" so that

Ml = M' , and so Mλ" = M« .

To do so simplifies somewhat the resulting formulae.

1.15 Theorem

The d i s t r i b u t i o n of Z? = NLX given Z- = M.X depends only on

φ,p\ = M'"θ . For f ixed Z. = z. these d i s t r i b u t i o n s form the (k-m) dimensional

exponential family generated by the measure defined by v( |z,) .

Let W denote the natural parameter space of th is condit ional
z i

family. Then Φ2 € M«"W implies

( 1 ) Φ 2 € MM X a e ( v )

Furthermore, if {p } is regular then
θ

( 2 ) M^~N c hlM χ a . e . ( v ) .

Proof: The conditional density of Z2 given Z1 = z- is proportional to

' z l + Φ2 ' Z2 "

Hence the density of Zp given Z1 = z, r e l a t i v e to v( |z..) can be w r i t t e n as

(3) p φ (z 2 ) = exp(φ2 z2 - ψz ( φ 2 ) )

where

(4) ψz (Φ2) = ln(/exp(φ 2 z 2 ) v ( d z 2 | z 1 ) ) .

The natural parameter space W is the s e t { φ ? } , for which the
z
i
 ά

integral on the right of (4) is finite. Let Φ
2
 € M2"W . There is thus a θ €
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for which φ 2 = M2~θ . Let v* denote the marginal measure on Rm defined by

v*(A) = v ( M ^ ( A ) ) . Then

°° > /exp(θ x)v(dx) = /{/exptφj z
χ
 + φ

2
 z

2
)v(dz

2
|z

1
)}v*(dz

1
) .

Hence

oo > /exp(φ
2
 z

2
)v(dz

2
|z

1
)

for almost every z..(v*) . This v e r i f i e s ( 1 ) .

Suppose {p Q } is regular. Let { θ i : i = l , . . . , } cW b e a countable

dense subset of W. {M2~ θ Ί : i = l , . . . } is dense i n M'~N . Nl'~ is a l inear map.

Hence M2"M is convex and open since W is convex (by Theorem 1.13) and open

(by assumption). I t follows that

(5) conhull {M£~ θ. : i = l , . . . } = MιfN .

(We leave (5) as an exercise on convex sets.)

Since { θ . } is countable i t follows from (1) that

M2~ θ.. c WM χ for a l l i = l , . . . , a.e.(v) .

Thus

M£"N = conhull ίM£" θ. : i = l , . . . } c ^ χ a.e.(v) ,

since NL χ is convex; which proves ( 2 ) . ||

The above resu l t can be given an al ternate i n t e r p r e t a t i o n under

which the conditional d i s t r i b u t i o n s of X given X ε L form an exponential fami ly,

for L a given l inear variety i n R . See 1.7(8). We omit the d e t a i l s .

Here are two important simple applications of the above ideas.

1.16 Example

Let X1 9...,X. be independent Poisson variables with expectations

λ. . See 1.12(2). Then X = ( X 1 f . . . , X j is the canonical s t a t i s t i c of a

standard exponential family with natural parameter θ: θ Ί = In λ^ i = l , . . . 9 k .

k
The dominating measure has v ( { x } ) = 1/ Π x , ! . Let N > 0 be an integer.

i = l Ί
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k
Then the distributions of X given Σ X. = N form a standard exponential family

i = l
 1

with dominating measure

k n k
( 1 ) v ( { x } | Σ x . = N) = 1 / Π x i !, f o r Σ x . = N .

This measure is proportional to the measure 1.3(1) which generates the multi-

nomial distr ibution. Hence the conditional distribution is multinomial (N,π).

The value of π can be easily computed as follows: orthogonally

project onto {θ: Σθ. = 0} which is the linear subspace parallel to

{x : Σxi = N} . This yields (θ - θl) (where θ = k"1 Σ θ1) as the natural

parameter of the conditional multinomial distr ibution. Thus

with c = ( Σ e Ί'~ ) . Substituting θ. = In λ yields

k
(2) πΊ = λ./ Σ λΊ .

1.17 Example

Let X be k-variate normal with mean μ and covariance %, For t

given the distributions of X form a standard exponential family with

natural parameter θ = ϊ~ μ. (This can easily be checked directly or derived

from Example 1.14 by using Theorem 1.7.) The dominating measure for this

family is proportional to v(dx) = exp(-x'Z~ x/2)dx.

Let z, = (x , , . . . ,x ), z2 = (x + , , . . . , x . ). The conditional

distributions of Zp given Z, = z, form an exponential family. The natural

parameter for this family is just Φ2 = (θ + 1 , . . . , θ . ) ' .

Partition t as

(1) t = Q 1 1

 t

12) with i n ( m x m) , etc.

Then
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, /*11 ' Z12Z:22Z21^ ~Z11Z12^Z'22"Z212:11Z:12^ >
(2) I'1 = ( - l - l -l -i .1 )

-^tZ2-t2ltntl2) tntn (?22" Z 21 Z 11 Z ; 12^

((2) is a general formula for block symmetric positive definite matrices. Note

that I12 = -?ϊ}? 1 2 (2 2 2 " V ' l l 1 ^ ' 1 = "Z22Z21 ( Z11 " Z 1 2 Z 2 2 Ϊ 2 1 ) ^ '] N o t e t h a t

the natural parameter can be written as

where

Consider the case where z. = 0. The conditional dominating measure is

v(dz2|0) = c exp(-z^ 2 2 z2/2)

and is thus a normal density with mean 0, variance-covariance

( Z 2 2 ) " 1 = Z2 2 - ^21^11^12 = Z * ' s a y ' l t f o l 1 o w s t h a t t h e conditional density

of Z2 given Z, = 0 is normal with this covariance matrix and with mean μ*

given by

t*~\* = Φ2 ,

since φ
?
 must be the value of the natural parameter for both the unconditional

and conditional family. Hence

(3) μ* = 2*φ2 = 2 * ( 2 2 1 μ ( l ) + Z 2 2 μ ( 2 ) ) = ^21 Z " l ί μ ( l ) + μ

(2) '

For z1 t 0 i t is convenient to use the locat ion invariance of the

normal fami ly. The condit ional d i s t r i b u t i o n under (μ,Z) of l,^) given l,^ =

^(1) " z f 1 )
is the same as the condit ional d i s t r i b u t i o n under (( ,, h t) of Z mμ ( 2 ) (Z)

given l,,\ = 0. By the preceding this is normal with covariance matrix

Z* = ( Z 2 2 ) " 1 and mean μ ^ - ^ l ^ ϊ l ^ d ) " Z ( l ) ^ '
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EXERCISES

1.1.1 (a) Let C be any closed convex set in R . Show that there
oo

exists a standard exponential family with M = C. [C = n {θ: v. θ < c,}
i = l Ί Ί

with ||v.|| = 1 . Let v. denote Lebesgue measure on the ray {x: x = αv. , α > 0}
1 1

00 . Λ

and l e t v = Σ 2"1 exp(c.v. x)v./(l+||x|I )• The result is also true, but
i = l Ί Ί Ί

harder to prove, i f C is an open convex set . ]

(b) Let C = {(Qv θ 2 ) : ||θ|| 2 < 1} U { ( 0 , 1)} and show there

exists an exponential family with hi = C.

1,2.1 Verify 1.2(5) (including the formula for v which precedes i t ) . Note

that when n = 1 the measure v can be described by the relations x? = x-, and

v(dx2) = dXj/ZZ? .

1.7.1 ( i ) Let Z = MX as in Theorem 1.7. Show that Z1 is independent of

Zp for some θ e Θ i f and only i f 1, is independent of Zp for a l l θ € Θ.

( i i ) Give an example to show that the assertion is false i f Z., 1^

are non-linear transformations of X. [ ( i ) Assume independence at θ = 0.

( i i ) Let X be bivariate normal with mean μ and covariance I , and Z, = ||x||,

Z2 = t a r f ^ x g / x ^ . ]

1.7.2 Consider the s i tuat ion of Theorem 1.7. Suppose the original family

{?'• θ 6 W is f u l l and minimal. Then the family of distr ibutions of 1Λ for

*1 e φ<f)° i s f u l l # l t i s m Ί r Ί Ί m a l i f a n d o n Ί y i f there is a θ e i n t W with

M'φ° = θ. [For a situation where the family of distr ibutions of 1, is not

minimal use Exercise 1.1. l (b), l e t M be as in (4), and l e t φ£ = 1.]

1.7.3 (a) Show that i f 1.7(7) or (8) are sat isf ied then the d i s t r i -

butions of Z, = M-X form a standard exponential family with natural parameter

Φ Γ

(b) Give an example to show that the distr ibut ions of Z. = M-X may

form a standard exponential family with natural parameter d i f ferent from φ-

even when 1.7(7) and (8) f a i l . [Consider the d ist r ibut ion of X. when X is
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multinomial of dimension k :> 3, or equivalent ly, of X* with X* as in Example 1.3.

There are also some other in terest ing instances of th is phenomenon.]

1.8.1 (Contingency table under independence). Consider a 2x2 contingency

table i n which the observations are Y. ., 1 <_ i , j <_ 2, and have a multinomial

(N, p) d i s t r i b u t i o n with p = {p. ., 1 <_ i , j £ 2}. Under the model of

independence p... = p^+ p . where P i + = Σ P Ί j> e t c . . Write th is independence

J

model as a log-linear model in a fashion so that the coordinates of the natural

(minimal) sufficient stat ist ic are independent binomial variables. Generalize

to the model of independence in an r*c contingency table. (For further log-

linear models in contingency tables, see Haberman (1974), (1979).)

1.10.1 Show that in any standard exponential family of dimension k and

order m, m + k >_ dim K + dim Θ . Give an example in which

m < min(dim Θ, dim K). [The simplest example has m = 0, dim Θ = dim K = 1,

k = 2.]

1.12.1 From many points of view the negative binomial distributions are

the discrete analog to the gamma distributions. The negative binomial,

NB(α, p), distribution has probability function

Show that for f ixed α the family N8(α, •) is a one parameter exponential

fami ly, but that -- unlike the Γ(α, σ) s i t u a t i o n -- the family N8(α, p)

α > 0 , 0 < p < 1 i s not an exponential family.

1.12.2 Let v denote counting measure on { ( 0 , 0 ) , ( 1 , 1 ) , ( 2 , 0 ) , (3,1) , ( 4 , 0 ) , . . . }

c R . Show that the exponential family generated by v has the fol lowing

propert ies: XΊ has a geometric distribution, Ge(p,) = M8( l ,p) ; X2

 n a s a

binomial d i s t r i b u t i o n , B ( p 2 ) ; (Xχ - X2)/2 has a geometric d i s t r i b u t i o n

Ge(pJ and (X- - X2)/2 is independent of X2 Write p ^ p 2 , P3 in terms of the

natural parameters θ^, Θ2
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1.12.3 Let Z
1
,...,Z

m
 be i.i.d. N(μ,σ

2
). Let X = Σ Z

2
 . Then X has a

i = l Ί

scaled non-central χ2 distribution with m degrees of freedom, non-centrality

2 2 2
parameter 6 = mμ /σ , and scale parameter σ . Denote this distribution by

2
X2(6, σ ). ( i ) This distribution has density

„ k _ λ (2^)(m/2)+k-l e-x/(2σ2)

(1) g(χ) = Σ ^ Γ - — — k /? , x>0 ,
k=0 k ! σ2Γ(k + ψ 2k + m / 2

where λ = 6/2. (From the form of (1) i t is evident that K = k ~ P(λ) and

X|K ~ Γ(k + m/2, σ 2 ) ; thus (X/σ2) K is central χ2 with k + SJ degrees of freedom.)

( i i ) The d i s t r i b u t i o n s of X can also be represented as the marginal d i s t r i b u t i o n

of X- from a canonical two parameter exponential family generated by a measure

v supported on { ( x ^ x^): x^ > 0, x 2 = 0 , 1 , . . . } . [ ( i ) By change of variables

and series expansion prove (1) for the case m=l. (1) for general m then follows

from facts about sums of Poisson and gamma variables, ( i i ) Let v be the
2

measure generated by (1) with σ = 1 , λ = 1.]

1.13.1 ( i ) Show that when k = 1 then ψ must be continuous on N. [Use

1.13 and convexity of W.]

( i i ) More general ly, l e t ΘQ.Θ- € N and θ = (1 - ρ)θQ + pθ 1 and

show ψ(θ ) is continuous in p for 0 <_ p <_ 1. [Reason as in ( i ) , or use

Theorem 1.7 and ( i ) . ]

( i i i ) Give an example of an exponential family i n which ψ is not

continuous on W. [Exercise 1.1.l(b) provides an example.]

1.13.2 Generalize 1.13.1( i i ) as fo l lows: l e t θ € W and θ. € Λ/, j = l , . . . , J .

Let τ . € conhul l ίθ , θ , , . . . ^ , } , i = l , . . . and τ . •* θ. Then ψ(τ.) •* ψ(θ).
1 1 u 1 I

[Write τ i = Σα. .[(1 - p ^ θ . + p..θ] with α. . >_ 0, Σα. . = 1, and p1 f 1.
J j

Use 1 . 1 3 . 1 ( i i ) a n d t h e f a c t t h a t ψ ( τ . ) < Σ α . . Ψ ( ( l - P Ί ) θ . + p . . θ ) . ]
j

1.13.3 Let Y = (YQ = 1, Y ,...Y n )' be the i n i t i a l state and n fur ther

observations from an S-state Markov chain with t r a n s i t i o n matrix P ( i . e . ,

p ( γ o = J'|Y0 i = Ί') = P. , 1 < i , j < S, £ = l , . . . , n ) . Let N denote the sample
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t r a n s i t i o n matr ix, N = { n . . } ,

(1) n.j = Σ X{Ui}(1^v Y£)

Suppose p., > 0, 1 <_ i,j <_ S. Show that the distributions of Y form an S
2

dimensional exponential family with canonical statistic N = {n..} and

canonical parameters {log p. .} . Show that if n >_ 3 the family has order
p

S - 1. [Let E.. denote the matrix with i,j-th entry 1 and all other entries

0. Show that for given 1 < i, j < K there exist sample points N-, ΓL having

positive probability and that N- + (E.^ - E. ) = N« and (other) points N-, N
?

such that N
1
 + (E^ - E

n
) = N

2
 ]

1.14.1 Univariate General Linear Model (G.L.M.). Let Y be m-variate

normal, Y ~ N(μ, σ I), μ € R , σ > 0. (a) Show that this is an m+1 dimensional

exponential family, (b) In the G.L.M. μ is restricted by

μ = Bβ , β e R
r

with B a known mxr matrix. Assume (for convenience) B has rank r. Show that

this is a full (r+1) dimensional exponential family. [Use Example 1.14 and

Theorem 1.7.]

1.14.2 Matrix normal distribution. Let μ = {μ. .} be an mxq matrix and

let Γ = {γ. .} and % ={σ. .} be mxm and qxq positive definite matrices,

respectively. Let Y = {Y..} be an mxq random matrix whose entries have a

multivariate normal distribution with

This is the matrix normal d i s t r i b u t i o n , denoted by Y ~ N(μ, Γ, Z).

(a) Show that Y has density ( r e l a t i v e to Lebesgue measure on Rmq)

f(y) = (2πΓm q / 2 | r Γ m / 2 e x p t r ( -

[See Arnold (1981, Theorem 17.4).]

(b) Reduce this to an mq +
 m

^
m
*

1
]

(
^

q + 1
^ dimensional minimal exponential

family with canonical parameters θ. . = Γ~ μZ" , 1 <_ i <_ m, 1 £ j £ q, and
' ϋ

θ i i . . . . = γ Ί 1 ' σ j j ' , l < i < i ' < ι n , 1 < j < j ' < q , w h e r e r " 1 = { γ 1 J } ,
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(c) Show t h a t i f m _> 2 and q >̂ 2 t h i s is not a f u l l exponential f a m i l y .

Rather, Θ i s an mq + m(m+l)/2 + q ( q + l ) / 2 - 1 dimensional d i f f e r e n t ! a b l e

manifold ins ide of W.

(An a l t e r n a t e notat ion involves w r i t i n g Y = ( γ ( i \ > > γ ( α \ ) a n c '

d e f i n i n g (vec Y)1 = ( γ ( i ) ' > γ ( α \ ) τ h e n γ ~ N ^ Γ > 2) is the same as

vec Y ~ N(vec μ, I θ Γ) where θ denotes the Kronecker product.

1.14.3 M u l t i v a r i a t e Linear Model (M.L.M.). Here Y ~ N(μ, I , %) w i t h %

positive definite and

μ = Bβ

with B a known mxr matrix and 3 an (rxq) matrix of parameters. Assume (for

convenience) B has rank r. Show that this can be reduced to a f u l l minimal

regular exponential family of dimension rq + q(q+l)/2.

1.14.4 Wishart d istr ibut ion. Let X = (x..) and t = (σ..) be symmetric
l J i J

mxm positive definite matrices. The matrix r (α, t) d istr ibut ion has

density

( l ) p ^(X) = —'

where

Γ m ( α ) = Z 1 ^ - 1 ) / 4

 Π Γ(α - ( i -

Show this is an exponential family, and describe the natural observations,

natural parameters, and cumulant generating function.

( I f Y., i = l , . . . , n , are independent N(0, ϊ) vectors then

n
Σ Y.Yj = X has the Γ(3, 2t) distribution. This is also called the wishart

(n, t) distribution and denoted by W(n, %). See e.g. Arnold (1981). Also

Σ (Y. - Ϋ)(Y. - Ϋ)
1
 ~W(n-l, %) .)

1.15.1 Consider a 2x2 contingency table (see Exercise 1.8.1). Find the

2 2
conditional distribution of Y.. given Y. = Σ Y.. and Y . = Σ Y.. . Show that
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these condit ional d is t r ibut ions depend only on the given values Y.+ , Y+. and on

the odds ratio PiiP22^Pi2^21 a n d ^ o r m a o n e " P a r a m e t e r exponential fami ly.

[Under the independence model the d i s t r i bu t ion is hypergeometric and

independent of p.]




