
LECTURE IX, SUMS OF INDEPENDENT IDENTICALLY

DISTRIBUTED RANDOM VARIABLES

Here I shall give an essentially self-contained derivation of the Berry-

Esseen Theorem for sums of independently identically distributed random

variables. Some of the analytic results of the second lecture will be used.

In order to establish the framework for a basic lemma, let X-,,.. *X
n+
i be

independent random variables with common c.d.f. μ such that

(1) EX
i
 = / tdμ(t) = 0

—00

and

(2) EX* = /Vdμ(t) = 1

Also let

t
(3) K(t) = njudμ(u) = -nj udμ(u).

t

Then K is a probability density function. The positivity of K follows

from the first form of (3) when t is positive and from the second form when t

is negative. The integral of K is easily seen to be 1:

oo 0 °°

(4) / K(t)dt = / K(t)dt + JK(t)dt
-oo 0
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oo 0 t

= n[/ dtjudy(u) - / d t j udy(u)]
0 t ~°° ~°°

= n/ u2dμ(u) = 1.

Let Z be a random variable with probability density function K, independent of

X-|,...,X . Also, for given bounded piecewise continuous h: R •> R. Let

(5) Nh = — / h(t)e
 2
 dt,

/2

and let f: R -> R be the unique bounded solution of the differential equation

(6) f'(w) - wf(w) = h(w) - Nh.

Finally let

(7)
 W

?

Lemma 1: Under the conditions of the preceding paragraph

(8) Eh(W+Z
n
) = Nh + EW[f(W+X

n+]
) - f(W+Z

n
)] - EZ

n
f(W+Z

n
).

Proof: We have

n n+1

(9) 0 = E(
i
ϊ

i
 X r n X ^ i f i ^ Xj)

= E[Wf(W+X
n+]
) - n/tf(W+t)dμ(t)]

= E[Wf(W+X
n+1
) - f(W+Z

n
)]

= E[Wf(W+X
n+1
) - (W+Z

n
)f(W+Z

n
) - h(W+Z

n
) + Nh].

At the first equality I have used the exchangeability of the independent

identically distributed random variables X ,,...,X , to conclude that
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n+1
(10) E(X. - X

n + ]
)f( I X,) = 0.

At the second equality the fact that X , is distributed according to μ,

independent of W, implies that

= E/tf(W+t)dμ(t).

For the third equality we use (1) and (3) to conclude that

(12) nE/tf(W+t)dy(t)

= nE/t[f(W+t) - f(W)]dy(t)

co t 0 0
= nE[J t/ f'(W+u)dudy(t) - / t] f'(W+u)dudy(t)]

0 0 -oo t

= E/f'(W+u)K(u)du = Ef
l
(W+Z

n
).

The final equality in (9) is obtained by substituting for f(W+Z ) the

expression given by (6). Of course (8) is an immediate consequence of (9).

Theorem 1: If Y ,,Y
2
,... are independent identically distributed random

variables with

(13) EY. = 0 ,

( 1 4 ) E Y ξ = l ,

and

(ic\ R = F l Y l ^ < o o

then, for all natural numbers n, and all t € R

(16) IP \-± I Y
Ί
 l t J - Φ(t)| < - ^ .

(/ή i=l ) /n

Before going through the details required for a careful treatment of this

result by the present method, I shall briefly indicate the simple basic idea.
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we define the X. of the lemma in terms of the Y. of the theorem by

and of course take μ to be the cumulative distribution function of the X...

Then, by computation similar to (4),

(18) E|Z I = / | t | K ( t ) d t = ^ : .

We specialize the function h of Lemma 1 to h. defined by

1 if x < t

(19) h
t
(x)

0 if x > t .

It was proved in the second lecture that the corresponding bounded solution f.

of the differential equation (6) and its derivative fί are bounded by one in

absolute value. Thus (8) implies that

(20) |P{W+Z
n
 < t} - Φ(t)| = |Eh

t
(W+Z

n
) - Nh{

The final inequality follows from (18) and the fact that W is independent of

X
n + 1

 and Z
n
 and

and

(22) E|W| <

It remains only to apply an unsmoothing lemma to derive (16) from (20) and

(18). Such a lemma was used by Loeve (1977), p. 295 to prove the Berry-Esseen

Theorem using the method of characteristic functions. I shall give a self-

contained treatment of a similar lemma, partly because of the difficulty of
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setting up a correspondence between Loeve's notation and mine and partly because

it may be possible to apply the basic idea of this lemma to other problems.

The present version of this lemma could easily be improved, but it seems

desirable to avoid complications that are not essential for the present

application.

Lemma 2: If F, G, and H are three cumulative distribution functions on the

real line and A, μ real numbers such that

(23) H
1
 < A

(24) |(F-H)*G| < μ

and

(25) γ = J|t|dG(t) < -,

then

(26) |F-H| £ μ+6γA+4/γA(μ+2γA) < 3μ+12γA.

(Of course H is understood to be the indefinite integral of its derivative H
1
,

and (23), (24), and (26) are to be interpreted as pointwise inequalities).

Before proving the lemma, I shall use it to complete the proof of Theorem

1. The distributions H, F, and G of the lemma are identified with Φ, the

distribution of W, and the distribution of Z
p
, respectively. Then (23) holds

with

(27)
 A =

7 = '

and (25) holds with

(28) γ = ^p
2/ή

because of (18). Finally (24) holds with

(29) v

because of (20). Then Lemma 2 with



100 APPROXIMATE COMPUTATION OF EXPECTATIONS

(30) A = - ϊ -
/2T

and

(31)
 Ύ

--^-
2/n

yields

(32) \P{\t < t} - »(t)|

<_ μ + 6γA + 4/γA(μ+2γA)

/n

Proof of Lemma 2: Let

(33) P
0
 = - inf(F-H)

and

(34)
 P ]

 = sup(F-H).

The basic idea of the proof can be seen from Fig. 1 below although the details

are moderately complicated. If, at some point x
Q
, F(x

Q
) - (H(x

Q
)-p

0
) is a

large multiple of y+γA, a similarly large lower bound for (F-H)*G at some x in

the horizontal portion of the graph can be obtained from the lower bound for F

given by the solid portion of the graph and can then be compared with (24).

An analogous argument in the other direction enables us to complete the proof

that p
0
 and p, cannot be too large.

For all x and x
Q
,
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(35)

where

(36)

and

(37)

F(x
0
)

Fig. 1

> J[F(x-y) - H(x-y)]dG(y)

x-x
r

1 - P
0
 + / [F(x

Q
) - (H(x-y)-p

o
)]

+
dG(y)

B+D
> / [F(x

0
) - H(x

Q
) + P

0
 - A(x-x

o
-y)]dG(y)-p

o

B+D
= A f (y-B)dG(y) - p

0 >

B+D
= A / (y-B)dG(y) - p

n
,

B = x - x
0
 -

F(x
o
)-H(x

o
)+p

o

D =
F(x

0
) - H(x

0
)

The first inequality in (35) used (24), the second used the lower bound for F

in Fig. 1 and the third used (23). Now, for some α € (0,1) choose
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(38) x = x
Q
 + I D.

Then (35) yields

B+D
 9

(39) μ + p
0
 > AαD / dG(y) > AαD (1 - ^ f ^ )

= α[F(x
Q
) - H(x

Q
) + p] - 2 ̂  γA.

The second inequality uses Markov's inequality and (25). Consequently

Fix,,) - H ( x
o
) < l [ μ ^

_
 μ + p

0

The upper bound in (40) is minimized by

/v+p
n(41) « - °-

Since x
Q
 was arbitrary

(42) p, <_ (/μ+Pg + /2γA) - PQ

= μ + 2γA + 2/2γA /μ+pQ .

Applying the same argument with F and H replaced by 1-F and 1-H we obtain, by

symmetry,

(43) P
0
 1 y + 2γA + 2 / 2 ^ v^+^" .

Starting with the trivial bound p
Q
 <_ 1 it is easy to prove by induction, using

(42) and (43) and the fact that the r.h.s. of (42) is an increasing function of

P
O
» that

(44) P
O
, P

1
 <_ p*

where p* is the unique solution of the equation

(45) p* = μ + 2γA + 2/2γA /μ+p* = Q j + (^/μ+p* »

say, that is the larger solution of
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(46)

which is

(47)

= μ + 6γA + 4/γA(μ+2γA) £ 3μ + 12γA.

This completes the proof of Lemma 2.

It would be tedious but not really difficult to improve the constant multi-

ple 6 on the right hand side of (16) in Theorem 1. The bound in Lemma 2 could

be substantially improved by imposing the condition that G has a unimodal

density, which is satisfied in our case, and by using a more careful argument

than (39). Also, the crude bound (20) can be improved.

I have given an essentially self-contained proof of the Berry-Esseen

theorem in the special case of a sum of independent identically distributed

random variables. Lemma 1 plays much the same role as Lemma III.I did in a

more general context. The completion of the proof starting from Lemma 1 is

essentially a routine matter using known results. The remainder on the right

hand side is of the order o f — since, with h the indicator function of the
/n

event {W <_ w
Q
} , f is bounded and satisfies a Lipschitz condition with constant

1 (by Lemma II.2) and the random variables X
n + 1

 and Z
p
 have first absolute

moments of the order o f — . This leaves us with an unsmoothing problem, that
/n

of going from Eh(W+Z ) to Eh(W). This task is accomplished by Lemma 2, which

is essentially the same as that used by Loeve in a proof by the method of char-

acteristic functions. It may not be difficult to modify this proof to include

some modern improvements on the theorem in this special case. Some such results

results, proved by traditional methods, are given by Petrov (1975).






