
L E C T U R E V I . SUMS OF INDEPENDENT RANDOM VARIABLES WITH DENSITIES

An identity is derived in Lemma 2 for sums of independent random variables

having a probability density function. This is similar to the appropriate

specialization of Lemma 1.3 in the argument leading to the simplest normal

approximation theorem in Corollary III.l, but has the advantage that terms

involving a difference f(W')-f(W) are replaced by terms involving a derivative

f'(W). This should make it possible to derive better approximation theorems

in this case. I have not had any real success with this approach but it looks

promising. Some auxiliary results such as Lemmas 1 and 3 should be useful in

discussing approximation by distributions other than normal. The work is also

related to Pearson's family of densities. Finally I should mention that this

is a limiting case of an approach to the discrete case that I hope to discuss

in a separate paper.

Lemma 1: Let X be a real random variable distributed according to a

probability density function p with

00

(1) EX = / xp(x)dx = 0,
— 00

and let τ : R -> R be defined by

« x
/ yp(y)dy / yp(y)dy

( 2 ) ( x ) = =

Then for any continuous and piecewise continuously differentiate function

f: R -> R for which

(3) E|f'(X)|τ(X) < «,

59
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we have

(4) E[τ(X)f(X) - Xf(X)] = 0.

Proof:

(5) Ef(X)τ(X)

X

yp(y)dy
 0

 / yp(y)dy
0

= Jf'(χ)
 x

 p ( x )
 P(χ)dχ - /f (x) ~°°

 p ( χ )
 p(χ)dx

= / yp(y)(} f'(x)dx)dy - / yp(y)(J f(x)dx)dy
0 0 y

= / y[f(y)-f(O)]p(y)dy = EXf(X).
oo

Lemma 2: Let X-.,...,X be independent real random variables having

probability density functions p,, ...,p respectively with

(6) EX. = Jxp^xjdx = 0,

and let τ^: R + R be defined by

oo X

/ yp
Ί
 (y)dy /

Then, for any continuous and piecewise continuously differentiate function f

such that, for all i € {!,...,n},

(8) E|f
ι
(W)|τ

i
(X

i
) < »

f

where

(9) WJ^,

we have

(10) E[(j E
W
T.(X.))f'(W) - Wf(W)] = 0.

Proof: For each i € {l,...,n}, let Γ^ denote the collection of random
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variables WiUiy Because X.. is independent of X*
1
' we can apply Lemma 1 to

X. conditionally given X to conclude that

v(i)
(Π) E

X
 [ τ ^ J f ' O O - X.f(W)] = 0.

In (4) I have replaced f by the function

(12) x κf(x + I X.).

W
Taking unconditional expectation of (11), summing over i, and inserting E

appropriately, we obtain (10).

Next we need to reformulate this lemma in order to emphasize its relevance

to the normal approximation problem. This will be similar to the transition

from Lemma 1.3 to Lemma III.l. I shall need two preliminary lemmas.

Lemma 3: Let τ be a continuous and strictly positive valued function on

an open interval (a,b) with

(13) a < 0 < b,

where we may have a = -« or b = +°° or both, and suppose

( 1 4 )
 6 τlyj

 J

Q
 τl-y;

Then there exists a unique probability density function p on (a,b) having mean

0 such that, for all x € (a,b)

b
/ yp(y)dy

05)
 τ { x )

= ^ _
(
_

Γ
- .

This density p is given by

(16)

where

(17)

P(x) =

b

< • /

a

1
C '

e

τ(x)

^ y A
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Proof: Multiplying (15) through by p(x) and differentiating, we obtain

(18) τ(x)p'(x) + (x+τ'(x))p(x) = 0.

Dividing by p(x)τ(x) and integrating, we find

(19) log p(x) - log p(0) = -/ ^ U dy
0

 κyi

= - J ^ y - [log τ(x) - log τ(0)],
0
 τκyί

which is (16). Thus there is at most one probability density function p

satisfying (15). It remains to verify that, subject to (14), this p does

actually satisfy (15). We have

=τ(x).

One can verify similarly that

b
(21) / xp(x)dx = 0.

a

Lemma 4: Suppose τ: R -> R satisfies the conditions of Lemma 3. Then,

for given bounded piecewise continuous h: (a,b) -> R, the differential equation

(22) τ(w)f(w) - wf(w) = h(w)

has a bounded continuous and piecewise continuously differentiate solution

f: (a,b) -* R if and only if

(23) E
( τ )

h = 0,

where E, x is expectation under the density p defined in (16), that is

dx

(24) W = ;r^
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When (23) is satisfied, the unique bounded solution f of (22) is given by

w

(25) f ( j

w V ydy

w) =/h(x)e
x T y

 ^j

b ? ydy

Proof: It follows from the elementary theory of first order linear

differential equations that the differential equation (22) has a one-parameter

family of solutions given by

7 ̂ dy ? %ά
T (y) w T

(26) f(w) = e° [C + / h(x)e °
a

and no other solution. Because of (14) the first factor in (26) approaches °°

as w approaches a or b. Letting w approach a we see that in order for f to

be bounded we must have

(27) C = 0.

Letting w approach b we see that in order for f to be bounded we must also

have

x

r
b

(28) C
1
 = -/ h(x)e

a

The necessity of (23) follows from (27) and (28). Substituting (27) in (26)

we obtain (25). Here and in Lemma 3 I have used the convention that

(29) / g(x)dx = -J g(x)dx.
α 3

It will be useful to fit these results into the abstract framework of the

lower line of Diagram (1.28). With the present specializations I shall

formulate this as



64 APPROXIMATE COMPUTATION OF EXPECTATIONS

(30)

Here %
Q
 is the linear space of all bounded piecewise continuous h: (a,b) •> R

and E, y. %
Q
 -> R is defined by (24). Also 3U is the linear space of all

continuous and piecewise continuously different!able f: (a,b) •* R for which the

function

(31) w«+ |wf(w)| + |τ(w)f'(w)|

is bounded. The linear mapping T/ %: 3Q + %~ is defined by

(32) (T
( τ )
f)(w) = τ(w)f(w) - wf(w)

and the linear mapping U/ \i %
Q
 •* 3

Q
 by

w J
(33) (U

( τ )
h)(w) = / [h(x) " E

( τ )
h]e

x
 '

a

w

We must verify that these formulas define linear mappings between the

appropriate spaces. The linearity is obvious as is the fact that T/ x is a

mapping on 3
Q
 to %

Q
 because of the rather artificial definition of 3Q. It

follows from Lemma 4 that 11/ xh satisfies the differential equation

(34) τ(w)(U
(τ)
h)'(w) - w(U

( τ )
h)(w) = h(w) - E

( τ )
h.

Thus, to prove that, for h € % Q , U#- xh € 3L we need only show that the function

w H- w(U/ χh)(w) is bounded. From the second form of (33) we have, for w >_ 0

(35) w|(U
( τ )

h)(w)| < 2(sup|h|)w

1 2 sup

since, with

b V^dy
 x

(
 ydy

J e° ° ^ j
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(36) u(x) = /

we have

b
 /ydy _ Jydy

 b

(37) fe° ° f
x
, - ί c

u ( w ) u(x) du(x)
 :

 1
 .

w w

A similar result for w _< 0 follows from the first form of (33). Thus

U/xh € 3Q. The identity (1.30), in this case

(38) T
( τ )

O ϋ

(
τ )

=
 V

l
0 °

E
( τ ) '

was proved in Lemma 4. Thus the diagram (30) satisfies all the conditions

imposed on the lower row of Diagram (1.28).

The function τ
9
 related to the density p by (2), takes a very simple

form when p is one of Pearson's family of probability density functions (with

mean 0).

Theorem 1: Let p be a probability density function on an open interval

(a,b) and let τ be related to p by (2). Then in order that the function τ have

the form

(39) τ(x) = αX
2
 + 3X + Ύ

with α, β, and γ constant, it is necessary and sufficient that p satisfy the

differential equation

(40)
 p

. (
x ) =
 . ί ±

ax +3X+Ύ

Proof: Because of (2), (39) is equivalent to

b
 ?

(41) / yp(y)dy - (αχN-3χ+
γ
)p(χ) = 0.

x

By differentiation this implies that

(42) -xp(x) - (2αx+6)p(x) - (αX
2
+βx+γ)p'(x) = 0,

which is (40). Of course we must have
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(43) τ(a) = 0

if a is finite and

(44) τ(b) = 0

if b is finite. Then the argument from (41) to (40) by way of (42) can be

reversed. If b is finite we use (44) and if b is infinite we use the existence

of the expectation to go from (42) to (41) by integration. For a discussion of

Pearson's curves see for example Kendall and Stuart (1963), Vol. I, pp. 148-154.

We can apply these considerations to the approximation of the distribution

of a sum of independent random variables with densities by a nearly arbitrary

distribution having a density.

Theorem 2: Let p |,...,p be probability density functions with

(45) Jxp^xϊdx = 0

for all i € {l,...,n} and let X, ,...,X be independent random variables with

densities Pj». .,p . Also let p be a probability density function with mean 0

on an open interval (a,b), continuous and nonvanishing, and let the {τ } and τ

be related to the { p ^ and p as in (2). Then, for any bounded piecewise

continuous h: (a,b) •* R,

(46) Eh(W) = E
(χ)
h + E[τ(W) - j τ . U ^ K U ^ h ) ' (W),

w h e r e E , x is d e f i n e d by ( 2 4 ) a n d U , x by ( 3 3 ) a n d

(47) W = I X..
i=l

P r o o f : B y L e m m a 2 a n d t h e d e f i n i t i o n o f £/ Λ a n d l h % w e h a v e

(48) 0 = E[(j τ.(X.))(U
(τ)
h) (W) - W(ϋ

(τ)
h)(W)]

= E[j τ.(X.) - τ(W)](ϋ
(τ)
h)'<W)

+ E[τ(W)(U
(τ)
h)'(W) - W(U

(τ)
h)(W)]
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= E [ j τ.(X.) - τ(W)](U
(τ)
h)'(W) + Eh(W) - E

( χ )
h.

I had originally intended this lecture as preparation for the detailed

study of the normal approximation problem in the continuous case. When it

became clear that such a study would not be made, I decided to include this

lecture anyway because it is reasonably simple and seems likely to be useful

eventually. Lemma 1 gives a characterization of an arbitrary random variable

having a density function (and mean 0) that is analogous to the characteriza-

tion of a standard normal variable by E[f'(W)-Wf(W)] = 0. Lemma 2 suggests a

possible way of applying this to the study of sums of independent random

variables. Lemmas 3 and 4 are preliminary to the specialization, below (30),

of the lower row of the fundamental diagram (1.28) to the present situation.

Theorem 2 continues the development of Lemma 2 in the light of the basic

formalism.

A mildly surprising relation of these ideas to Pearson's curves is

expressed by Theorem 1. This was discovered by accident. After defining the

function τ associated with a density function p by (2), I decided to compute it
2

in a number of special cases: normal, uniform, χ , and Student's t, and was

surprised to find that, in every case, τ was a polynomial of degree at most

two. I eventually realized that these densities were all special cases of

Pearson's curves.

The ideas of this lecture originated as a limiting case of an approach

to discrete problems that fits more naturally into the basic abstract

formalism. Unfortunately I cannot include a detailed treatment in these

lectures because the results are fragmentary although promising. For a brief

description let us look at the case of a sum of independent random variables.

In the development starting with (1.51), instead of replacing Xj by an

independent X,, we replace Xj by an adjacent value or itself (which I shall

still call X*) in such a way that (W,W) with W
1
 defined by (1.52) is an

exchangeable pair and, for some λ, E
W
W' = (l-λ)W. It turns out that there is
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a unique way of doing this. In this way |W'-W| is made smaller, sometimes at

the cost of substantial increase in complication.




