Lecture Vi. SUMS OF INDEPENDENT RANDOM VARIABLES WITH DENSITIES

An identity is derived in Lemma 2 for sums of independent random variables having a probability density function. This is similar to the appropriate specialization of Lemma I. 3 in the argument leading to the simplest normal approximation theorem in Corollary III.1, but has the advantage that terms involving a difference $f\left(W^{\prime}\right)-f(W)$ are replaced by terms involving a derivative $f^{\prime}(W)$. This should make it possible to derive better approximation theorems in this case. I have not had any real success with this approach but it looks promising. Some auxiliary results such as Lemmas 1 and 3 should be useful in discussing approximation by distributions other than normal. The work is also related to Pearson's family of densities. Finally I should mention that this is a limiting case of an approach to the discrete case that I hope to discuss in a separate paper.

Lemma 1: Let X be a real random variable distributed according to a probability density function p with

$$
\begin{equation*}
E X=\int_{-\infty}^{\infty} x p(x) d x=0, \tag{1}
\end{equation*}
$$

and let $\tau: R \rightarrow R$ be defined by

$$
\begin{equation*}
\tau(x)=\frac{\int_{x}^{\infty} y p(y) d y}{p(x)}=-\frac{\int_{-\infty}^{x} y p(y) d y}{p(x)} . \tag{2}
\end{equation*}
$$

Then for any continuous and piecewise continuously differentiable function $f: R \rightarrow R$ for which

$$
\begin{equation*}
E\left|f^{\prime}(x)\right| \tau(X)<\infty, \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
E\left[\tau(X) f^{\prime}(X)-X f(X)\right]=0 . \tag{4}
\end{equation*}
$$

Proof:
(5)

$$
E f^{\prime}(X) \tau(X)
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} f^{\prime}(x) \frac{\int_{x}^{\infty} y p(y) d y}{p(x)} p(x) d x-\int_{-\infty}^{0} f^{\prime}(x) \frac{\int_{-\infty}^{x} y p(y) d y}{p(x)} p(x) d x \\
& =\int_{0}^{\infty} y p(y)\left(\int_{0}^{y} f^{\prime}(x) d x\right) d y-\int_{-\infty}^{0} y p(y)\left(\int_{y}^{0} f^{\prime}(x) d x\right) d y \\
& =\int_{\infty}^{\infty} y[f(y)-f(0)] p(y) d y=E X f(X) .
\end{aligned}
$$

Lemma 2: Let X_{1}, \ldots, X_{n} be independent real random variables having probability density functions p_{1}, \ldots, p_{n} respectively with

$$
\begin{equation*}
E X_{i}=\int x p_{i}(x) d x=0, \tag{6}
\end{equation*}
$$

and let $\tau_{i}: R \rightarrow R$ be defined by

$$
\begin{equation*}
\tau_{\mathfrak{i}}(x)=\frac{\int_{x}^{\infty} y p_{i}(y) d y}{p_{i}(x)}=-\frac{\int_{-\infty}^{x} y p_{i}(y) d y}{p_{i}(x)} \tag{7}
\end{equation*}
$$

Then, for any continuous and piecewise continuously differentiable function f such that, for all $i \in\{1, \ldots, n\}$,

$$
\begin{equation*}
E\left|f^{\prime}(W)\right| \tau_{i}\left(X_{i}\right)<\infty, \tag{8}
\end{equation*}
$$

where
(9)

$$
w=\sum_{i=1}^{n} x_{i},
$$

we have

$$
\begin{equation*}
E\left[\left(\sum_{i=1}^{n} E^{W} \tau_{i}\left(X_{i}\right)\right) f^{\prime}(W)-W f(W)\right]=0 . \tag{10}
\end{equation*}
$$

Proof: For each $i \in\{1, \ldots, n\}$, let $x^{(i)}$ denote the collection of random
variables $\left\{X_{j}\right\}_{j \neq i}$. Because X_{i} is independent of $X^{(i)}$ we can apply Lemma 1 to x_{i} conditionally given $x^{(i)}$ to conclude that

$$
\begin{equation*}
E^{x^{(i)}}\left[\tau_{i}\left(x_{i}\right) f^{\prime}(W)-x_{i} f(W)\right]=0 . \tag{וו}
\end{equation*}
$$

In (4) I have replaced f by the function

$$
\begin{equation*}
x \mapsto f\left(x+\sum_{j \neq i} x_{j}\right) . \tag{12}
\end{equation*}
$$

Taking unconditional expectation of (11), summing over i, and inserting E^{W} appropriately, we obtain (10).

Next we need to reformulate this lemma in order to emphasize its relevance to the normal approximation problem. This will be similar to the transition from Lemma I. 3 to Lemma III.1. I shall need two preliminary lemmas.

Lemma 3: Let τ be a continuous and strictly positive valued function on an open interval (a, b) with

$$
\begin{equation*}
a<0<b, \tag{13}
\end{equation*}
$$

where we may have $\mathrm{a}=-\infty$ or $\mathrm{b}=+\infty$ or both, and suppose

$$
\begin{equation*}
\int_{0}^{b} \frac{y d y}{\tau(y)}=\int_{0}^{-a} \frac{y d y}{\tau(-y)}=\infty . \tag{14}
\end{equation*}
$$

Then there exists a unique probability density function p on (a, b) having mean 0 such that, for all $x \in(a, b)$

$$
\begin{equation*}
\tau(x)=\frac{\int_{x}^{b} y p(y) d y}{p(x)} \tag{15}
\end{equation*}
$$

This density p is given by

$$
\begin{equation*}
p(x)=\frac{1}{C} \cdot \frac{e^{-\int_{0}^{x} \frac{y d y}{\tau(y)}}}{\tau(x)}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\int_{a}^{b} e^{-\int_{0}^{z} \frac{y d y}{\tau(y)}} \frac{d z}{\tau(z)} \tag{17}
\end{equation*}
$$

Proof: Multiplying (15) through by $p(x)$ and differentiating, we obtain

$$
\begin{equation*}
\tau(x) p^{\prime}(x)+\left(x+\tau^{\prime}(x)\right) p(x)=0 \tag{18}
\end{equation*}
$$

Dividing by $p(x) \tau(x)$ and integrating, we find

$$
\begin{align*}
& \log p(x)-\log p(0)=-\int_{0}^{x} \frac{y+\tau^{\prime}(y)}{\tau(y)} d y \tag{19}\\
& =-\int_{0}^{x} \frac{y d y}{\tau(y)}-[\log \tau(x)-\log \tau(0)]
\end{align*}
$$

which is (16). Thus there is at most one probability density function p satisfying (15). It remains to verify that, subject to (14), this p does actually satisfy (15). We have
(20)

$$
\begin{aligned}
& \frac{\int_{x}^{b} z p(z) d z}{p(x)}=\frac{\int_{x}^{b} e^{-\int_{0}^{z} \frac{y d y}{\tau(y)} \frac{z d z}{\tau(z)}}}{x}=\tau(x) \frac{\int_{x}^{b} d\left(-e^{-\int_{0}^{z} \frac{y d y}{\tau(y)}}\right)}{x \frac{y d y}{x}} \\
& \frac{-\int_{0}^{-\frac{y d y}{\tau(y)}}}{\tau(x)} e^{-\frac{1}{\tau(y)}} \\
&=\tau(x) .
\end{aligned}
$$

One can verify similarly that

$$
\begin{equation*}
\int_{a}^{b} x p(x) d x=0 . \tag{21}
\end{equation*}
$$

Lemma 4: Suppose $\tau: R \rightarrow R$ satisfies the conditions of Lemma 3. Then, for given bounded piecewise continuous $h:(a, b) \rightarrow R$, the differential equation

$$
\begin{equation*}
\tau(w) f^{\prime}(w)-w f(w)=h(w) \tag{22}
\end{equation*}
$$

has a bounded continuous and piecewise continuously differentiable solution $f:(a, b) \rightarrow R$ if and only if

$$
\begin{equation*}
E_{(\tau)} h=0 \tag{23}
\end{equation*}
$$

where $E_{(\tau)}$ is expectation under the density p defined in (16), that is

$$
\begin{equation*}
E_{(\tau)}^{h}=\frac{\int_{a}^{b} h(s) e^{-\int_{0}^{x} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)}}{\int_{a}^{b} e^{-\int_{0}^{x} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)}} \tag{24}
\end{equation*}
$$

When (23) is satisfied, the unique bounded solution f of (22) is given by

$$
\begin{align*}
f(w) & =\int_{a}^{w} h(x) e^{\int^{w} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)} \tag{25}\\
& =-\int_{w}^{b} h(x) e^{-\int \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)} .
\end{align*}
$$

Proof: It follows from the elementary theory of first order linear differential equations that the differential equation (22) has a one-parameter family of solutions given by

$$
\begin{equation*}
f(w)=e^{\int_{0}^{w} \frac{y d y}{\tau(y)}}\left[C^{\prime}+\int_{a}^{w} h(x) e^{-\int_{0}^{x} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)}\right] \tag{26}
\end{equation*}
$$

and no other solution. Because of (14) the first factor in (26) approaches ∞ as w approaches a or b. Letting w approach a we see that in order for f to be bounded we must have

$$
\begin{equation*}
C^{\prime}=0 . \tag{27}
\end{equation*}
$$

Letting w approach b we see that in order for f to be bounded we must also have

$$
\begin{equation*}
C^{\prime}=-\int_{a}^{b} h(x) e^{-\int_{0}^{x} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)} \tag{28}
\end{equation*}
$$

The necessity of (23) follows from (27) and (28). Substituting (27) in (26) we obtain (25). Here and in Lemma 3 I have used the convention that

$$
\begin{equation*}
\int_{\alpha}^{\beta} g(x) d x=-\int_{\beta}^{\alpha} g(x) d x . \tag{29}
\end{equation*}
$$

It will be useful to fit these results into the abstract framework of the lower line of Diagram (I.28). With the present specializations I shall formulate this as

$$
\begin{equation*}
z_{0} \underset{U_{(\tau)}}{\stackrel{T}{ }(\tau)} x_{0} \underset{{ }^{\mathrm{l}} 0}{\stackrel{\mathrm{E}}{(\tau)}} \underset{\rightleftarrows}{\rightleftarrows} \tag{30}
\end{equation*}
$$

Here x_{0} is the linear space of all bounded piecewise continuous $h:(a, b) \rightarrow R$ and $E_{(\tau)}: x_{0} \rightarrow R$ is defined by (24). Also F_{0} is the linear space of all continuous and piecewise continuously differentiable $f:(a, b) \rightarrow R$ for which the function

$$
\begin{equation*}
w \mapsto|w f(w)|+\left|\tau(w) f^{\prime}(w)\right| \tag{31}
\end{equation*}
$$

is bounded. The linear mapping $T_{(\tau)}: \mathcal{F}_{0} \rightarrow x_{0}$ is defined by

$$
\begin{equation*}
\left(T_{(\tau)} f\right)(w)=\tau(w) f^{\prime}(w)-w f(w) \tag{32}
\end{equation*}
$$

and the linear mapping $U_{(\tau)}: x_{0} \rightarrow \mathcal{F}_{0}$ by

$$
\begin{align*}
& \left(U(\tau)^{h}\right)(w)=\int_{a}^{W}\left[h(x)-E_{(\tau)} h^{\int_{x^{x}}^{W} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)}\right. \tag{33}\\
& =-\int_{W}^{b}\left[h(x)-E(\tau)^{h] e^{-\int_{W} \frac{y d y}{\tau(y)}} \frac{d x}{\tau(x)} .}\right.
\end{align*}
$$

We must verify that these formulas define linear mappings between the appropriate spaces. The linearity is obvious as is the fact that $T_{(\tau)}$ is a mapping on \mathscr{F}_{0} to x_{0} because of the rather artificial definition of \mathcal{F}_{0}. It follows from Lemma 4 that $U_{(\tau)}$ h satisfies the differential equation

$$
\begin{equation*}
\tau(w)\left(U_{(\tau)^{h}}\right)^{\prime}(w)-w\left(U_{(\tau)^{h}} h(w)=h(w)-E_{(\tau)^{h}} .\right. \tag{34}
\end{equation*}
$$

Thus, to prove that, for $h \in X_{0}, U_{(\tau)} h \in F_{0}$ we need only show that the function $w \mapsto w\left(U(\tau)^{h}\right)(w)$ is bounded. From the second form of (33) we have, for $w \geq 0$

$$
\begin{align*}
& w \mid(U(\tau) \tag{35}\\
&h)(w) \mid \leq 2(\sup |h|) w \int_{W}^{b} e^{w} \frac{y d y}{\tau(y)}-\int_{0}^{x} \frac{y d y}{\tau(y)} \\
& \frac{d x}{\tau(x)} \\
& \leq 2 \sup |h|
\end{align*}
$$

since, with

$$
\begin{equation*}
u(x)=\int_{0}^{x} \frac{y d y}{\tau(y)} \tag{36}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{w}^{b} e^{w} \frac{y d y}{t(y)}-\int_{0}^{x} \frac{y d y}{t(y)} \frac{d x}{\tau(x)}=\int_{w}^{b} e^{u(w)-u(x) \frac{d u(x)}{x}<\frac{1}{w} . ~ . ~} \tag{37}
\end{equation*}
$$

A similar result for $w \leq 0$ follows from the first form of (33). Thus $U_{(\tau)} h \in \mathcal{F}_{0}$. The identity (I.30), in this case

$$
\begin{equation*}
T_{(\tau)} \circ U_{(\tau)}=I_{x_{0}}-I_{0} \circ E_{(\tau)} \tag{38}
\end{equation*}
$$

was proved in Lemma 4. Thus the diagram (30) satisfies all the conditions imposed on the lower row of Diagram (1.28).

The function τ, related to the density p by (2), takes a very simple form when p is one of Pearson's family of probability density functions (with mean 0).

Theorem 1: Let p be a probability density function on an onen interval (a, b) and let τ be related to p by (2). Then in order that the function τ have the form

$$
\begin{equation*}
\tau(x)=\alpha x^{2}+\beta x+\gamma \tag{39}
\end{equation*}
$$

with α, β, and γ constant, it is necessary and sufficient that p satisfy the differential equation

$$
\begin{equation*}
p^{\prime}(x)=-\frac{(2 \alpha+1) x+\beta}{\alpha x^{2}+\beta x+\gamma} p(x) . \tag{40}
\end{equation*}
$$

Proof: Because of (2), (39) is equivalent to

$$
\begin{equation*}
\int_{x}^{b} y p(y) d y-\left(\alpha x^{2}+\beta x+\gamma\right) p(x)=0 \tag{41}
\end{equation*}
$$

By differentiation this implies that

$$
\begin{equation*}
-x p(x)-(2 \alpha x+\beta) p(x)-\left(\alpha x^{2}+\beta x+\gamma\right) p^{\prime}(x)=0, \tag{42}
\end{equation*}
$$

which is (40). Of course we must have

$$
\begin{equation*}
\tau(a)=0 \tag{43}
\end{equation*}
$$

if a is finite and

$$
\begin{equation*}
\tau(b)=0 \tag{44}
\end{equation*}
$$

if b is finite. Then the argument from (41) to (40) by way of (42) can be reversed. If b is finite we use (44) and if b is infinite we use the existence of the expectation to go from (42) to (41) by integration. For a discussion of Pearson's curves see for example Kendall and Stuart (1963), Vol. I, pp. 148-154.

We can apply these considerations to the approximation of the distribution of a sum of independent random variables with densities by a nearly arbitrary distribution having a density.

Theorem 2: Let p_{1}, \ldots, p_{n} be probability density functions with

$$
\begin{equation*}
\int x p_{\mathfrak{j}}(x) d x=0 \tag{45}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$ and let X_{1}, \ldots, X_{n} be independent random variables with densities p_{1}, \ldots, p_{n}. Also let p be a probability density function with mean 0 on an open interval (a, b), continuous and nonvanishing, and let the $\left\{\boldsymbol{\tau}_{\boldsymbol{i}}\right\}$ and τ be related to the $\left\{p_{i}\right\}$ and p as in (2). Then, for any bounded piecewise continuous $h:(a, b) \rightarrow R$,

$$
\begin{equation*}
E h(W)=E_{(\tau)^{h}}+E\left[\tau(W)-\sum_{i=1}^{n} \tau_{i}\left(X_{i}\right)\right]\left(U_{(\tau)^{h}}\right)^{\prime}(W), \tag{46}
\end{equation*}
$$

where $E_{(\tau)}$ is defined by (24) and $U_{(\tau)}$ by (33) and

$$
\begin{equation*}
w=\sum_{i=1}^{n} x_{i} . \tag{47}
\end{equation*}
$$

Proof: By Lemma 2 and the definition of $E_{(\tau)}$ and $U_{(\tau)}$ we have
(48)

$$
\begin{aligned}
0 & =E\left[(\sum _ { i = 1 } ^ { n } \tau _ { i } (x _ { i })) \left(U_{\left.(\tau)^{h}\right)}(W)-W\left(U_{\left.\left.(\tau)^{h}\right)(W)\right]}\right.\right.\right. \\
& =E\left[\sum_{i=1}^{n} \tau_{i}\left(x_{i}\right)-\tau(W)\right]\left(U_{\left.(\tau)^{h}\right)} \cdot(W)\right. \\
& +E\left[\tau(W)\left(U_{\left.(\tau)^{h}\right)}\right)^{\prime}(W)-W\left(U_{\left.\left.(\tau)^{h}\right)(W)\right]}\right.\right.
\end{aligned}
$$

$$
=E\left[\sum_{i=1}^{n} \tau_{i}\left(X_{i}\right)-\tau(W)\right]\left(U_{(\tau)^{h}}\right)^{\prime}(W)+E h(W)-E_{(\tau)^{h}} .
$$

I had originally intended this lecture as preparation for the detailed study of the normal approximation problem in the continuous case. When it became clear that such a study would not be made, I decided to include this lecture anyway because it is reasonably simple and seems likely to be useful eventually. Lemma 1 gives a characterization of an arbitrary random variable having a density function (and mean 0) that is analogous to the characterization of a standard normal variable by $E\left[f^{\prime}(W)-W f(W)\right]=0$. Lemma 2 suggests a possible way of applying this to the study of sums of independent random variables. Lemmas 3 and 4 are preliminary to the specialization, below (30), of the lower row of the fundamental diagram (I.28) to the present situation. Theorem 2 continues the development of Lemma 2 in the light of the basic formalism.

A mildly surprising relation of these ideas to Pearson's curves is expressed by Theorem 1. This was discovered by accident. After defining the function τ associated with a density function p by (2), I decided to compute it in a number of special cases: normal, uniform, x^{2}, and Student's t, and was surprised to find that, in every case, τ was a polynomial of degree at most two. I eventually realized that these densities were all special cases of Pearson's curves.

The ideas of this lecture originated as a limiting case of an approach to discrete problems that fits more naturally into the basic abstract formalism. Unfortunately I cannot include a detailed treatment in these lectures because the results are fragmentary although promising. For a brief description let us look at the case of a sum of independent random variables. In the development starting with (I.51), instead of replacing X_{I} by an independent X_{I}^{*}, we replace X_{I} by an adjacent value or itself (which I shall still call X_{I}^{*}) in such a way that (W, W^{\prime}) with W^{\prime} defined by (I.52) is an exchangeable pair and, for some $\lambda, E^{W} W^{\prime}=(1-\lambda) W$. It turns out that there is
a unique way of doing this. In this way $\left|W^{\prime}-W\right|$ is made smaller, sometimes at the cost of substantial increase in complication.

