
DISCUSSION BY PROFESSOR DAVID A, LANE

(University of Minnesota)

Berger and Wolpert have done the statistics community a service by

calling our attention once again to the likelihood principle (LP) and its

implications. They repeat Birnbaum's(1962a) message, already admirably

recapitulated by Basu (1975) and Dawid (1977): if you work within the

classical (X, Θ, {PQ}) - paradigm, you want to make inferences about "true θ"
θ

on the basis of "observed x," and you wish to respect certain fundamental

principles of inference (for example, the sufficiency and weak conditionality

principles), then your inference had better depend upon the observation x

through the likelihood function that x induces on Θ. In particular, you must

accept the implications of some other principles that many statisticians regard

as false, never mind fundamental, like the stopping time and censoring

principles.

There are several bail-out options for statisticians who choose

neither to follow the LP to fully conditional analysis nor to raise adhockery

to a scientific principle. They can reject the (X, Θ , {P }) - paradigm by
θ

requiring either more structure (as do structuralists, pivoteers, and, perhaps,

some "objective" Bayesians) or less (as do defenders of alternative-free

significance tests and, more drastically, exploratory data analysis); or they

can modify the fundamental pre-principles so that the LP and the objectionable

post-principles f a i l to be derivable from them, as did Durbin (1970) and

Kalbfleisch (1975); or they can claim that other, more fundamental, principles,

l ike the Confidence Principle, conflict with the LP, making an ideological

choice among competing principles necessary.
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176 THE LIKELIHOOD PRINCIPLE

Since Bayesian practice is consistent with the LP, Bayesians have

no need to refute Birnbaum's work. Indeed, to Berger and Wolpert, the LP is a

trump card in the Bayesian salesman's hand. They argue, as did Basu (1975),

that only Bayesian ideas permit the LP to be properly implemented and that

Bayesian considerations unravel the "counterexamples" to the LP produced by

Armitage, Stein, Fraser and others.

But even to Bayesians, consistency with Bayesian ideas should be

no guarantee of foundational cogency. For example, the fact that (essentially)

admissible decision rules are Bayes does not recommend Wald's formulation of

decision theory to most Bayesians. So the question arises: should Bayesians

promote Birnbaum's formulation and derivation of the LP as a cornerstone of

the foundations of statistics? I think not, for two reasons. First, the LP

is embedded in a paradigm which is not directly applicable to many, i f not

most, of the important real problems of stat ist ical inference. Because of the

ambiguity and limitations of this paradigm, the proof of the LP is not

compelling. Second, the LP ignores what I regard as the fundamental tenet of

Bayesianity: the purpose of an inference is to quantify uncertainty. When

this tenet is properly taken into account, foundational arguments can be

adduced that lead directly to Bayesian methods.

The next section elaborates the f i r s t of these reasons in some

detai l . For a development of the second, see Lane (1981) and Lane and

Sudderth (1984).

(X, Θ, {P θ }) and the LP

I shall discuss three problems with the LP. The f i r s t relates to

the meaning, the second to the adequacy, and the third to the relevance of the

(Xj ®> {PQ})-paradigm. Both the f i r s t and the second of these problems call

the derivation of the LP into question.

1. What do the elements of Θ represent? This question is important, since

the proof of the LP requires us. to consider the mixture of two different

experiments with "the same Θ." There at least three possible interpretations
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of the elements of Θ:

a) θ is the distribution P.;

b) Θ is an abstract set and θ merely indexes the distribution P
n
;

θ

c) θ is a possible value for some "real" physical parameter, and P
Ω
 is to
Θ

be regarded as the distribution of the random quantity X should θ be the

true value of that parameter.

Interpretations a) and b) are mathematically precise. They are

defined in terms of the assumed model and do not refer to the physical

reality that model is intended to represent.

Interpretation c) has an entirely different character and raises

difficult philosophical issues. When - and in what sense - do "real" physical

parameters exist? If I opt for interpretation c), must I believe that a coin

has a propensity to come up heads θ x 100% of the time in an (infinitely) long

series of repeated flips? I am inclined to believe that there may be "real"

physical parameters in measurement error problems, although even here a strict

operational 1st construction leads to interpretation a) rather than c) for the

parameter θ: the measuring process, encoded as P., defines the quantity

measured. In few other problems to which statistical inference is applied

are there model-free physical quantities standing behind each model parameter.

To decide whether or not you agree, think about your last regression or time-

series analysis.

Both Berger and Wolpert (pp. 42-3) and Dawid (Ί977, p. 252) seem

to favor interpretation c). For example, Berger and Wolpert say that the LP

applies only when the elements of the two parameter sets are "the same

parameter, i.e. are physically or conceptually the same quantity."

Unfortunately, they neglect to tell us how we are to decide when two different

experiments measure the same quantity or how to deal with model parameters

that lack any natural interpretation in terms of physical quantities. More-

over, in virtually all of their examples, the set Θ is uninterpreted and

merely serves to index the set of distributions {P
0
}, which suggests that in

these cases they are thinking about Θ in the sense of interpretation b).
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It is hard to take the LP seriously as a foundationaΊ instrument if we must

always interpret the elements of© as "real" physical quantities, unless we

are given some guidance on what constitutes reality and how reality is tied

to mathematics by the models we select.

It matters which of the three interpretations we give to the

elements of Θ . They lead to wery different conclusions about the validity of

the derivation of the LP. Interpretation a) gives no scope for the mixture

principle: only experiments whose sampling distributions are identical share

"the same Θ." AS such, the LP is reduced to the sufficiency principle and,

for example, the stopping time principle does not follow from the LP.

Interpretation b), on the other hand, gives tremendous scope for

mixing. Any two experiments with the same index set can be mixed. Consequent-

ly, if there are a pair of observations, one from each experiment, that yield

the same likelihood function on the index set Θ, the LP then declares that the

"evidence" or "inference" derived from the two experiments with these two

observations must be identical. This is a startlingly unBayesian conclusion.

For example, must my predictive inference for the next outcome in any sequence

of Bernoulli trials in which I have so far obtained three successes and one

failure be the same? But what in the mathematics of the LP proof precludes

interpreting Θ purely as an index set and so deriving a version of the LP

that conflicts with Bayesian practice?

The foundational status of the LP cannot be determined until Θ is

interpreted. Depending on whether one adopts interpretation a), b) or c), the

LP is devoid of interesting consequences, wrong, or severely and ambiguously

restricted in its domain of applicability.

2. The proof of the LP is convincing only in so far as the sufficiency and

weak conditionality principles are intuitively compelling. While Bayesian

practice respects both principles, only weak conditionality seems unarguable

on its face. I share I. J. Good's reaction to the sufficiency principle, as

reported in his discussion of Birnbaum (1962a). Despite Fisher's gift for
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suggestive names (what more could you possibly need than something that is

sufficient?), the fact that the distribution of X given the value of a

statistic T is θ-free does not immediately impel me to base my inference only

on the value of T.

Suppose, though, that the observation x is generated by first

generating a value for T according to a distribution indexed by some element

of the parameter set Θ and then an extraneous randomization mechanism is used

to pick an x on the orbit of the observed value of T. In such a case, it is

clear that T is sufficient and that inference about θ should be based only on

T. (The sufficient statistic that appears in the derivation of the LP does

not bear this postrandomization relation to the observation x.)

Now, for any sufficient statistic T defined on a statistical

model (X, Θ, {P
a
})

9
 there is no way to tell from the information encoded in

(X> Θ, { P Q } ) whether the observation x is or is not generated from T by

postrandomization. So, if you do not find the sufficiency principle compel-

ling except in the postrandomization case, you must agree with Barnard and

Fraser that not enough information is encoded in (X, Θ, {P
Λ
}) upon which to

θ

base a general principle of inference. And I believe that this conclusion

is correct. After all, the information in (X, Θ, {P
Q
}) says nothing about how

the model represents reality, and it is hard to see how a principle of

inference can disregard the details of this representation. Though we use

models to guide the way we formulate inferences, the inferences themselves

have value to us only if they yield useful statements about the world.

3. Even though "inference" is undefined in the LP formulation, the validity

of the LP seems to depend on two premises about the nature of inference in

the (X, Θ, {P
θ
» - paradigm:

a) The purpose of inference is to make some statement about the "true" value

of an unobservable parameter θ on the basis of an observed quantity x;

b) θ exists independently of the "experiment" E that produces x, and informa-

tion about θ can be separated into two components, one deriving just from
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E (to which the LP refers) and "other information" presumably preexisting

E.

I believe that these premises are rarely true in real situations to which

stat ist ical inference is applied. I f I am right, the scope of the LP as a

foundational instrument is narrow.

Except for measurement error problems, the real aim of inference

is usually to generate a prediction about the value of some future observables;

see Geisser (1971 and 1984) and Aitchisonand Dunsmore (1975) for extensive

discussion of this proposition and further references. This is especially

true in situations where the model parameters do not represent real physical

quantities, the typical case in regression and time-series analyses. Esti-

mating model parameters is in general a "half-way house" on the way to predict-

ing some relevant future observation, and much can be lost by focusing founda-

tional discussion on the half-way house instead of the ultimate destination.

For example, the relevant uncertainty for a patient with a particular clinical

condition undergoing a particular therapy is not a confidence band for an

estimated survival curve; rather, the patient and his physician should be

concerned with the predictive distribution for that patient's future l ifetime.

The inferential question of interest to the patient is how to generate this

predictive distribution.

The LP does not address this question directly. Berger and Wolpert

claim that prediction can be embedded in the LP framework by including the

future observable as part of the unknown parameter. But then θ appears as a

nuisance parameter that is clearly not "noninformative" in the sense of Berger

and Wolpert. LP ideas provide no guidance on the treatment of informative

nuisance parameters. On the other hand, de Finetti 's subjective Bayesian

theory is directed towards the problem of predicting future observables, and

the notion of coherence derived from that theory provides a foundational basis

for predictive inference; see Lane and Sudderth (1984). In this theory,

models may be used to help generate predictions about the future observable y

based upon observed x, but the models merely provide a convenient structure
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and need carry no metaphysical burden of "reality" for the parameters they

contain.

Premise b) cited above ignores the fact that model parameters are

frequently inseparable from the "experiment" whose possible distributions they

index. Especially in applications arising in nonexperimental sciences like

econometrics or resource management, the model is scupltured either from data

already in hand or perhaps from a realistic view of what data are potentially

obtainable. In such cases, there is no way to separate what (E,x) says about

θ from "prior" information about θ; in fact, θ cannot be said to exist prior to

the formulation of E, even though there may be much prior information about

which x might be observed. In these situations it is hard to criticize

"objective" Bayesians who violate the LP by letting their "priors" depend upon

the structure of the experiment E.




