
CHAPTER 3. THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS

3.1 INTRODUCTION

The LP deals with situations in which X has a density f
0
(x) (with

respect to some measure v) for all θe<B>. Of crucial importance is the likeli-

hood function for θ given x, given by

(3.1.1) £
χ
(θ) = f

θ
(x),

i.e., the density evaluated at the observed value X = x and considered as a

function of θ. Often we will call £
v
(θ) the likelihood function for θ or sim-
x

ply the likelihood function. The LP, which follows, is stated in a form suit-

able for easy initial understanding; certain implicit qualifications are dis-

cussed at the end of the section.

THE LIKELIHOOD PRINCIPLE. All the information about θ obtainable from an ex-

periment is contained in the likelihood function for θ given x. Two likelihood

functions for θ (from the same or different experiments) contain the same infor-

mation about θ if they are proportional to one another.

It has been known since Fisher (1925, 1934) that the "random" like-

lihood function £
χ
(θ) is a minimal sufficient statistic for θ, and hence con-

tains all information about θ from a classical viewpoint. The LP goes consid-

erably farther, however, maintaining that only £
χ
(θ) for the actual observation

X = x is relevant.

19
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EXAMPLE 9. Suppose Y-,Y
2
,... are i.i.d. Bernoulli (θ) random variables. In

experiment E.., a fixed sample size of 12 observations is decided upon, and the

12
sufficient statistic X. = J Y. turns out to be x, = 9. In experiment E~, it

1
 i=l

 Ί ι

is decided to take observations until a total of 3 zeroes has been observed,

at which point the sufficient statistic X
2
 = £Y. turns out to 9. The distri-

bution of X^ in E. is binomial with density

which for x, = 9 yields the likelihood function

*g(
Q
) = (g

2
)θ

9
(l-θ)

3
-

The distribution of X
2
 in E

2
 is negative binomial with density

f
2

θ
(χ

2
) = (

X
f ) Θ

X 2
( I - Θ )

3
,

which for x2 = 9 yields the likelihood function

φ ) = (1

9

1)θ9(l-θ)3.

In this situation, the LP says that (i) for experiment E. alone,

the information about θ is contained solely in & Q ( Θ ) ; and (ii) since &i(θ) and
2

&(θ) are proportional as functions of θ, the information about θ in experi-

ments E
1
 and E

2
 is identical.

These conclusions are, of course, at odds with frequentist

reasoning. The binomial and negative binomial distributions will tend to give

different frequentist measures. For instance, a one-tailed significance test

of H
Q
: θ = Y will give significance levels of α = .0730 and α = .0338 in the
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binomial and negative binomial cases, respectively, so, if significance at the

α = .05 level was sought, one would either reject or not reject depending on

the model. (See Lindley and Phillips (1976) for further discussion.)

This example also evidences a consequence of the LP that will be

discussed later, namely that the "stopping rule" is irrelevant when drawing

inferences about θ. Here, it does not matter whether the stopping rule was to

sample until the twelfth observation or until 3 zeroes were obtained; the data

that 9 ones and 3 zeroes were obtained is all that should be relevant.

It is interesting that even certain Bayesians would, at least for-

mally, also espouse violation of the LP in this example. For instance, the

noninformative (generalized) priors for θ that are recommended by Jeffreys

(1961) are π ^ θ ) « Θ ~
?
( 1 - Θ ) ~ % in the binomial case, and π

2
(θ) « θ'^(l-θ)"

1
,

in the negative binomial case. These will lead to different posterior distri-

butions and hence (typically) different inferences, even when the likelihood

functions are proportional. (See Hill (1974a) for further discussion.)

EXAMPLE 10. Let X = {1,2,3} and ® = {0,1}, and consider experiments E, and E
2

which consist of observing Xj and X
2
 with the above X and the same θ, but with

probability densities as follows:

f S ( x l }

1

.90

.09

"1

2

.05

.055

3

.05

.855

f 0 ( x 2 }

fξ(χ2)

1

.26

.026

CM
 

C
M

.73

.803

3

.01

.171

If, now, x, = 1 is observed, the LP states that the information

about θ should depend on the experiment only through (f
o
(l), f

1
(1)) = (.9, .09).

Furthermore, since this is proportional to (.26, .026) = (fg(l), f^(l)), it

should be true that x« = 1 provides the same information about θ as does x.. = 1.

Another way of stating the LP for testing simple hypotheses, as here, is that

the experimental information about θ is contained in the likelihood ratio for
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the observed x. Note that the likelihood ratios for the two experiments are

also the same when 2 is observed, and also when 3 is observed. Hence, no

matter which experiment is performed, the same conclusion about θ should be

reached for the given observation. This example clearly indicates the start-

ling nature of the LP. Experiments E
1
 and E

2
 are very different from a

frequentist perspective. For instance, the test which accepts θ = 0 when the

observation is 1 and decides θ = 1 otherwise is a most powerful test with error

probabilities (of Type I and Type II, respectively) .10 and .09 for Ej, and .74

and .026 for E
2
 Thus the classical frequentist would report drastically

different information from the two experiments. (And the conditional frequen-

tist is also likely to report E, and E
2
 differently; indeed, for E

2
 it is hard

to perform any sensible conditional frequentist analysis because of the three

point Z and the widely differing error probabilities.)

This example emphasizes a very important issue. It is clear that

experiment E, is more likely to provide useful information about θ, as

reflected by the overall better error probabilities. The LP in no sense

contradicts this. The LP applies only to the information about θ that is

available from knowledge of the experiment and the observed x. Even though E-

has a much better chance of yielding good information, the LP states that the

conclusion, once x is at hand, should be the same, regardless of whether x came

from E
1
 or E

2
 The conflict of the LP with frequentist justifications seems

inescapable. (See also Birnbaum (1977).)

Hill (1987a,b) discusses a number of important clarifications or

qualifications of the LP. Several of these are discussed in depth later in the

monograph, but it is perhaps pedagocically best to at least mention them here.

The first has to do with the role of θ. As presented up until now,

θ represents only the unknown aspect of the probability distribution of X. For

the bulk of the monograph we will confine attention to this case, it being the
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most familiar statistical situation. Often, however, there are unknowns which

are relevant to a statistical problem but which do not directly affect the dis-

tribution of X. One example is prediction, in which it is desired to predict

an unknown random variable Z, after observing X. Other examples arise in

design and sequential analysis problems, where as-yet-unobserved data can

affect the decision to be made. Examples are given in Section 3.5.

In general, therefore, the LP should be formulated in such a way

that θ consists of all unknown variables and parameters that are relevant to

the statistical problem. (Any attempt to precisely define "relevant to the

statistical problem" would involve both decision theory and model formulation,

and lead us too far astray.) The major difficulty with working in such gener-

ality is that of defining what is then meant by a likelihood function for θ

(cf. Bayarri, DeGroot, and Kadane (1987)). We have opted for discussing this

general situation only in Section 3.5, though we believe that virtually all

issues raised for the special case of θ being the model parameter also apply

to appropriate formulations of the general situation. In any case, it is

important to keep in mind the qualification that θ must contain all unknowns

relevant to the problem for the LP to be valid in its simple form.

A second qualification for the LP is that it only applies for a

fully specified model {f
fl
} If there is uncertainty in the model, and if one

desires to gain information about which model is correct, that uncertainty must

be incorporated into the definition of θ.

A third qualification is that, in applying the LP to two different

experiments, it is imperative that θ be the same unknown quantity in each.

Thus, in Example 9, we assumed that θ represented the same success probability

in either the binomial or negative binomial experiment. In applying the LP to

two different experiments, we also require that the choice of an experiment be

noninformative (e.g. implemented by a chance mechanism not involving θ);
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this might be violated if the experimenter chooses among possible experiments

on the basis of prior beliefs. Informative experimental choices may be handled

by the methods discussed in Section 4.2.7.

Further elaboration and other qualifications will be introduced as

we proceed. Understanding the limitations and the domain of applicability of

the LP is almost as important as understanding its basis and implications.

3.2 HISTORY OF THE LIKELIHOOD PRINCIPLE

For a history of the concept of likelihood, see Edwards (1974).

The name "likelihood" first appeared in Fisher (1921). Fisher made consider-

able use of likelihood and conditioning concepts (cf. Fisher (1925, 1934,

1956a)) and came close to espousing the LP in Fisher (1956a), but refrained

from complete committment to the principle. Versions of the LP were developed

and promoted by Barnard in a series of works (Barnard (1947a, 1947b, 1949)).

Likelihood concepts were also employed by a number of other statisticians,

cf. Bartlett (1936, 1953).

The LP received major notice in 1962, due to Barnard, Jenkins,

and Winsten (1962) and Birnbaum (1962a). Both papers (and the Discussions of

them) contained numerous compelling examples in favor of the LP, and also

provided axiomatic developments of the LP from the simpler (and more

believable) concepts of sufficiency and conditionality. Birnbaum's develop-

ment is more convincing, and wil"1 be given in the next section. The work since

then on the LP and its consequences is considerable, as can be seen from the

references. Noteworthy general discussions can be found in Pratt (1965), Cox

and Hinkley (1974), Dawid (1981), Barnett (1982), and especially Basu (1975).

In fairness, it should be mentioned that Barnard came to support

only a limited version of the LP and Birnbaum ultimately came close to
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rejecting it. The reasons will be discussed in Sections 3.6.4 and 4.1,

respectively.

The above development is a brief history of the LP from a non-

Bayesian perspective. The LP was always implicit in the Bayesian approach to

statistics. This is because, if π(θ) is a prior density for θ, then the

posterior density is

π(θ|x) = π(θH (θ)/m(x)

(assuming m(x) = E
π
£ (θ) > 0), which depends on the experiment only throughx

i (θ) (presuming that selection of π is independent of E and x). Since all

Bayesian inference follows from the posterior, the LP is an immediate conse-

quence of the Bayesian paradigm. Thus Jeffreys (1961) says

"Consequently the whole of the information

contained in the observation that is rele-

vant to the posterior probabilities of

different hypotheses is summed up in the

values that they give to the likelihood."

An important point here is that £
χ
(θ) is all that matters to a

Bayesian, no matter what prior density π is used. It is tempting, therefore,

to say that, if i (θ) contains all the sample information about θ regardless

of the known prior, then i (θ) should contain all the sample information even
x

when the prior is unknown.

The above relationship between the LP and Bayesian analysis should

probably be qualified to some extent, in that it is possible to be a

"frequentist Bayesian." One can believe that only frequentist measures of

procedure performance have validity, and yet, because of various rationality

or admissibility arguments, believe that the only reasonable procedures are

Bayes procedures, and that the best method of choosing a procedure is through

consideration of prior information and application of the Bayesian paradigm.

The posterior distribution would provide a convenient mathematical device

for determining the best procedure, from this viewpoint, but overall
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frequentist Bayes measures of performance, not posterior Bayes measures, would

be the relevant measures of accuracy. The LP directly attacks this view,

arguing that thinking "conditional Bayes,
11
 not "frequentist Bayes," is

important.

As somewhat of an aside here, there are two other reasons why

Bayesians should be very interested in the LP. The first is that, in complica-

ted real problems, Bayesians will often spend much of their time simply looking

at likelihood functions and doing maximum likelihood analyses, due to calcula-

tional complexities of a full Bayesian analysis. Emphasizing the importance of

the observed likelihood function is thus to be encouraged. Finally, there is

the very pragmatic reason that promoting the Bayesian position can often be

most effectively done by first selling the LP, since the latter can be done

without introducing the emotionally charged issue of prior distributions (see

Berger (1984b)).

3.3 BIRNBAUM'S DEVELOPMENT - THE DISCRETE CASE

Birnbaum's (1962a) development of the LP from the intuitively

simpler and more plausible concepts of sufficiency and conditionality is

formally correct only in the case of experiments with discrete densities (see

Section 3.4.1). Since the discrete case is also the easiest to understand

intuit ively, we restrict ourselves in this section to a discrete sample space

X. We carefully outline Birnbaum's argument, to allow easy dissection by those

who find i t hard to believe the conclusion. The mathematical style is kept

f a i r l y informal; rigor poses no problem because of the discreteness.

3.3.1 Evidence, Conditionality, and Sufficiency

By an experiment E, we herein mean the t r i p l e (X, θ, { f n } ) , where
θ

t h e random v a r i a b l e X, t a k i n g v a l u e s ΛX\X and h a v i n g d e n s i t y f n ( x ) f o r some θ
Θ

in Θ , is observed. (Because of the discreteness, the density can be assumed to

exist, and we will take all subsets of % to be measurable.) For simplicity of

notation, x and© will be suppressed in the description of E. Virtually all

statistical methodologies require only the above information concerning an
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experiment. (The "structural theory" of Fraser and the "pivotal theory" of

Barnard deem additional information relating X, θ, and the randomness to be

important, however. This issue will be discussed in Sections 3.6.4 and 3.7.)

The outcome of the experiment is the data X = x, and from E and x

we are to infer or conclude something about θ (or about something related to

θ). Following Birnbaum (1962a), we will call this inference, conclusion, or

report the evidence about θ arising from E and x, and will denote this by

Ev(E,x). We presuppose nothing about what this evidence is; it could (at this

stage) be any standard measure of evidence, or something entirely new. (Since

E is an argument, it could certainly be a frequentist measure.) Also, we do

not preclude the possibility that Ev(E,x) depends on "other information," such

as prior information about θ, or a loss function in a decision problem. The

focus will be on the manner in which the "report" Ev(E,x) should depend on E and

x. (Dawid (1977) prefers to talk about methods of inference based on E and x,

and principles which these methods should satisfy. In a sense, by letting

Ev(E,x) denote whatever conclusion one is going to report, we are also taking

this view, while keeping Birnbaum's notation.) As one final point, Ev(E,x)

could be a collection of "evidences" about Θ, obviating the criticism that the

LP is based on the assumption that a single measure of evidence exists.

The Conditionality Principle essentially says that, if an experi-

ment is selected by some random mechanism independent of θ, then only the

experiment actually performed is relevant. (The selection mechanism is

ancillary, so this is a version of conditioning on an ancillary statistic.)

The general conditionality principle is not needed here. Indeed we need only

the following considerably weaker principle, named by Basu (1975).

WEAK CONDITIONALITY PRINCIPLE (WCPJ. Suppose there are two experiments

1 2

E
Ί
 = (X

Ί
, θ, {f }) and E

9
 = (X

9
, θ, (f

Q
})» where only the unknown parameter θ

need be common to the two experiments. Consider the mixed experiment E*,

whereby J = 1 or 2 is observed, each having probability -^ (independent of θ,

X,, or Xpjj and experiment E, is then performed. Formally, E* = (X*, θ, ίf£}) >
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where X* = (J,Xj) and f*((j,Xj)) = \
 f
θ(

χ
j)

 τhen
>

Ev(E*, (j,χ.)) = Ev(E.,χ.),
j J J

i.e., the evidence about θ from E* is just the evidence from the experiment

actually performed.

The WCP is nothing but a formalization of Example 2, and hence is

essentially due to Cox (1958). It is hard to disbelieve the WCP, yet, as

mentioned after Example 2, even the WCP alone has serious consequences.

Turning finally to the familiar concept of sufficiency, we state

the following weak version (named by Dawid (1977)).

WEAK SUFFICIENCY PRINCIPLE (WSP). Consider an experiment E = (X, θ, {f
θ
)), and

suppose T(X) is a sufficient statistic for θ. Then, if T(x^) = T(x2),

E v t E ^ ) = Ev(E,x
2
).

The LP will be seen to follow directly from the WCP and WSP. A

variety of alternate principles also lead to the LP (cf. Basu (1975), Dawid

(1977), Barndoff-Nielsen (1978), Berger (1984a), Bhave (1984), and Evans,

Fraser, and Monette (1985c, 1986)). The WCP and WSP are the most familiar,

however. Another prominent principle is "Mathematical Equivalence," given in

Birnbaum (1972). This principle is a weak version of the sufficiency principle,

stating that if, in a given experiment E, f
Ω
(x ,) = f

Ω
(x

0
) for all θ, then

Ev(E,Xj) = Ev(E,x
2
). One could base the LP on mathematical equivalence, plus

a minor generalization of the WCP. The weakening of sufficiency is carried to

the ultimate in Evans, Fraser, and Monette (1986), which derives the LP solely

from a generalized version of the conditionality principle.

3.3.2 Axiomatic Development

The formal statement of the LP is as follows.

FORMAL LIKELIHOOD PRINCIPLE. Consider two experiments E, = {X,, θ, {f
1
}) and

E«
 =
 (Xos θ» {fg})> where θ is the same quantity in each experiment. Suppose

that for the particular realizations xί and x| from E, and E2» respectively,
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* x * ( β ) = « * ( θ )x 1 x 2

constant c ( i . e . , f Λ ( x ί ) = c f . (x£) / o r α Π θ ) . T/zerc

E v ( E Γ x * ) = E v ( E 2 , x * ) .

LIKELIHOOD PRINCIPLE COROLLARY. If E = (X, θ, {fQ}) is an experiment, then

Ev(E,x) should depend on E and x only through £ χ ( θ ) .

THEOREM 1 (Birnbaum (1962a)) . The Formal Likelihood Principle follows from the

WCP and the SP. The converse is also true.

Proof. I f E1 and E,, are the two experiments about Θ, consider the mixed

experiment E* as defined in the WCP. From the WCP we know that

(3.3.1) Ev(E*,(j,x..)) = Ev(E j f Xj).

Next, thinking solely of E* with random outcome (J,Xj), consider

the statistic

f
 (l.xf) if J = 2, X

2
 = x*

T(J.Xj) =

(J,Xj) otherwise.

(Thus the two outcomes (l,x^) and (2,x^) result in the same value of T.) T is

a sufficient statistic for θ. This is clear, since

P
Θ
(X* = (j,Xj)|T = t f (l,x|)) =

1 if (j.xJ = t
j

0 otherwise,

and

P
Θ
(X* = (l,xf)|T = 1-P

Θ
(X* = (2,x|)|T = (l.xf))

τ
 f

θ
( x
ΐ

) +
 \

all of which are independent of θ. The WSP thus implies that

(3.3.2) Ev(E*,(l,xf)) = Ev(E*,(2,x*)).
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Combining (3.3.1) and (3.3.2) establishes the result.

To prove that the LP implies the WCP, observe that, for E*,

This is clearly proportional to f?(x,), the likelihood function in E. when x.
θ j j j

is observed, so the LP implies that

Ev(E*,(j,
Xj
)) = EvίEj.Xj).

To prove that the LP implies the WSP, it suffices to note that, if

T(x-j) = T(x
2
) in an experiment for which T is sufficient, then x

1
 and x^ have

proportional likelihood functions. ||

Proof of the LP Corollary. For given x* € X, define

1 if X = x*
Y =

0 if X f x*,

and note that Y has distribution given by

(3.3.3) fj(l) = f
θ
(x*) = l-fj(σ).

For the experiment E* of observing Y, it follows from the LP that

Ev(E,x*) = Ev(E*,l).

But E*, and hence Ev(E*,l), depend only on f.(x*) = λ
v
*(θ) (using (3.3.3)). ||

The above results are worth dwelling upon for a moment. The LP is

extremely radical from the viewpoint of classical statistics, as will be seen

in Chapter 4. Yet to reject the LP, one must logically reject either the WCP

or the WSP. But the WSP is, itself, a cornerstone of classical statistics, and

there is nothing in statistics as "obvious" as the WCP (or Example 2).

3.4 GENERALIZATIONS BEYOND THE DISCRETE CASE

Basu (1975) and others have argued that the sample space x in any

physically realizable experiment must be finite, due to our inability to

measure with infinite precision. This suggests that the Likelihood Principle

for discrete experiments (as in Section 3.3) is all that one needs. We are
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philosophically in agreement with this.

On the other hand, continuous and other more general probability

distributions are enormously useful in simplifying s t a t i s t i c a l computations

and in providing numerical approximations which are often quite accurate. I t

is possible for the likelihood function for a continuous model to d i f f e r

strikingly from that of the discrete model i t is intended to approximate, so

it is not obvious that the validity of the LP in discrete problems extends to

its validity in the approximating continuous problems. In any case, extension

of the LP to more general situations can only strengthen its case. Such an

extension is our task in the present section.

As in Section 3.3, an experiment E = (X, θ, { P J ) w i l l be understood

to involve the observation of the random variable X, having probability d i s t r i -

bution PΩ on X9 θ ζ Θ. ( I t w i l l not be necessary to assume the existence of

a density.) There i s , unavoidably, measure-theoretic mathematics in this

section, but the section can be skipped, i f desired, without any essential

loss of continuity.

The sample space % wi l l be assumed to be a locally-compact

Hausdorff space whose topology admits a countable base (LCCB space, for short),

and the PΛ w i l l be assumed to be Borel measures. Of course, X often arises as
θ

an % - v a l u e d random v a r i a b l e on a p r o b a b i l i t y s p a c e ( Ω , 3 , { μ Ω } ) e q u i p p e d w i t h
u

a family of probability measures indexed by θ 6 Θ. Such underlying structure

will not be relevant in our analysis, however.

3.4.1 Difficulties in the Nondiscrete Case

In an experiment E = (X, θ, {P
Q
}) for which there is an x € X

satisfying P ({x}) = 0 for every θ € Θ, it is difficult to assign any particu-
θ

lar meaning to
 n
Ev(E,x)". For example, Basu (1975) and Joshi (1976) have

observed that a naive application of Birnbaum's (1962a) sufficiency principle

would suggest for such an x that Ev(E,x) = Ev(E,y) for every y € X> since the

map T: x -• % which takes x onto y and leaves all other points (including y)

fixed is sufficient for Θ. This is particularly disturbing for continous
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d i s t r i b u t i o n s , since then P Q ({x})=0 f o r every x e % and every θ e Θ; Birnbaum's

s u f f i c i e n c y p r i n c i p l e then suggests that a l l possible observations lend

precisely the same evidence (and therefore none) about θ.

The unique s p e c i f i c a t i o n of a l i k e l i h o o d funct ion causes s i m i l a r

problems. I f there is no s ingle σ - f i n i t e measure v on z whose n u l l sets

coincide wi th those Borel sets N f o r which P.(N) = 0 f o r a l l θ 6 Θ, then no

l i k e l i h o o d funct ion e x i s t s . This is the usual s tate of a f f a i r s i n nonpara-

metr ic problems ( r e c a l l that Θ could be an a r b i t r a r y index set) and can even

ar ise i n simple parametric examples; f o r example, PQ(A) = j //\dx + j U ( θ ) >

Θ = X = [ 0 , 1 ] , describes an experiment i n which X= θ with p r o b a b i l i t y j and

is otherwise uniformly d i s t r i b u t e d over the u n i t i n t e r v a l ; no σ - f i n i t e measure

v dominates {P } , and no l i k e l i h o o d funct ion e x i s t s . ( I n c i d e n t a l l y , t h i s seems

to be a source of confusion i n c e r t a i n "counterexamples" to the LP such as the

second example i n Section 2.5 of Birnbaum (1969).)

Even i n problems where there is a measure v w i t h the indicated

p r o p e r t i e s , the Radon-Nikodym der ivat ives

U θ ) = f f l(x) = P fl(dx)/v(dx)

are determined only up to sets of v-measure zero; these functions of Θ could be

specified in an entirely arbitrary manner for al l x in any set N c z with

v(N) = 0. One way to salvage a likelihood principle in the face of such

ambiguity is to specify a particular version of P (dx)/v(dx) for each Θ; for
θ

example, in case a (v-almost everywhere) continuous density exists we could

set Ωχ = {open neighborhoods of x ζ %} and put

U θ ) = inf sup (P_(U)/v(U))
veΩ χU€Ω χ

 θ

UcV

for x in the support of v, i (θ) = 0 otherwise.

By restricting our attention to (v-almost everywhere) continuous

densities, continuous sufficient stat ist ics, etc. we could develop versions of

the conditionality, sufficiency, and likelihood principles very similar to

those in the discrete setting.
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Instead we will develop versions of these principles applicable

for all experiments, including those with discontinuous density functions and

even those for which no likelihood function exists. The price we pay for such

generality is that our conclusions will all be weakened by the qualification

"for all x € X outside a fixed set N with P
Λ
(N) = 0 for all 6", which we shall

θ

abbreviate " f o r { P > a.e. x". I t i s important to note that N w i l l be unknown

to the s t a t i s t i c i a n , and hence the only assurance that the actual observation

x is not in N is the f a i t h that events of probabi l i ty zero do not happen. This

i s , of course, a statement in the classical f requent ist framework, but estab-

l ish ing a version of the LP wi th in th is framework should, at least , be con-

vincing to f requent ists.

3.4.2. Evidence, C o n d i t i o n a l l y , and Sufficiency

As before, denote by Ev(E,x) the (undefined) evident ial content of

an observation x in an experiment E = (X, θ, { P Q } ) . The fol lowing are the

appropriate generalizations of the WCP and suff ic iency p r i n c i p l e f o r non-

discrete experiments.

WEAK CONDITIONALITY PRINCIPLE. Consider the mixture, E*, of two experiments

E l = ( X Γ θ > { P θ } ) a n d E 2 = ( X 2 9 θ ί { P θ } ) > d e f i n e d a s E * = ( X * , θ , { P * } ) ,

where X* = (J ,X j ) , J = 1 or 2 {as E, is performed) with probability y each

{independent of θ ) , and

P*(A) = \ P J ( { X I : ( l , χ . , ) € A}) + \ P^ ( {x 2 : ( 2 , x 2 ) € A } ) .

Then,

Ev(E* > ( j , x j ) ) = Ev(E j fx..) for {?*} - a.e. ( j . X j ) .

I f the sample spaces in E, and E2 are countable, we could delete

"impossible" outcomes ( i . e . , x. fo r which PΛΛxλ) = 0 for a l l θ € θ) and dis-

pense with the "{P*} - a.e." q u a l i f i c a t i o n above, thus recovering the discrete
θ

WCP.

A formal definition of sufficiency is as follows. Let

E = (X, θ, {P
Q
}) be an experiment and T: z -> J a measurable map from X to
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another LCCB spacer. The s t a t i s t i c T determines a family {P } of Borel

measures on j by

P I ( A ) = P Ω ( Γ Ί ( A ) ) ,

and hence an experiment E = (T, j, {P
Ω
}) Unless T is 1-1 we expect (in

general) that E will tell us less about θ than E, since different outcomes

x € X with possibly different evidential import can be mapped onto the same

T(x) e x . The exceptional case is that in which T is sufficient.

DEFINITION. For the experiment E , suppose there exists a family {g. : t € J"}

of Borel probability measures on X satisfying

P
θ
(A)=/g

t
(A)pJ(dt)=/g

τ ( χ )
(A)P

θ
(dx)

for all Borel sets A c t Then T is called "sufficient11 (or sometimes

11 sufficient for Θ ").

Note that g. is not permitted to depend upon Θ; otherwise g. = PQ

would always work. Any one-to-one measurable mapping T is s u f f i c i e n t ; just

l e t g t be a point mass at T ( t ) € X.

The Sufficiency Principle makes precise the notion that T(x) in j

t e l l s as much about Θ as x in E;

SUFFICIENCY PRINCIPLE (SP). If T: X + J is sufficient, then

Ev(E,x) = Ev(ET,T(x)) for {Pθ} - a . e . x € X.

Again we may delete the impossible outcomes when x is countable to

remove the "{PQ} - a.e." qual i f icat ion and conclude that Ev(E,x) = Ev(E,y)
θ

whenever a sufficient statistic T satisfies T(x) = T(y), and so recover the

discrete WSP of Section 3.3.1.

3.4.3. The Relative Likelihood Principle

Let E ] = (X.|, Θ, {P'}) and Ep = (X
2
, Θ, {P }) be two experiments

and suppose (for motivational purposes) that each admits a likelihood function,



THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 33

i . e . a σ - f i n i t e measure v. on the sample space Z and a family { f l ( ) } of
1 I υ

integrable functions satisfying

PQ(A) = /fj(x)v.(dx), A c z . .

The Likelihood Principle (were it to hold here) would assert that

Ev(E
1
,x

1
) = Ev(E

2
,x

2
)

whenever f
n
(x

Ί
) = cf

Q
(x

o
) for all θ € Θ and some constant c = c(x,,x

0
) not

1 2
depending on θ, i.e. whenever the relative likelihood c = f

Q
(x

Ί
)/f

Q
(x

o
) does

σ I D C

not depend on θ. Our freedom to specify ^ Q ( X ^ ) arbitrar i ly whenever

v ^ ί x ^ } ) = 0 makes i t clear that this principle needs reformulation before i t is

suitable for experiments with uncountable sample spaces. (However, at points

x, and x« which are atoms of v, and v«> respectively, the LP is reasonable, and

can be shown to follow from the WCP and SP as in Section 3.3.)

To develop a suitable general principle, we generalize the concept

that the relative likelihood of x j and x2 is independent of θ. Basically, i f

a mapping exists between two subsets of χ^ and X^ for which the Radon-Nikodym

derivative of the induced measure with respect to the existing measure (on, say,

Z,) is independent of θ, then we can establish an equivalence of evidence

between the corresponding observations in the subsets. The reasons for

generalizing the LP in this direction are: ( i ) I t can be stated in great

generality, without requiring models or densities; ( i i ) I t wi l l be shown to

follow from the WCP and SP, as did the LP; and ( i i i ) I t , in turn, can be shown

to imply ( in substantial generality) the Stopping Rule Principle and Censoring

Principle, besides having directly important implications of i ts own. The

major limitation of the RLP (compared to the LP) is that i t does not provide

any such convenient summarization of evidence as the likelihood function (which

need not exist in the general case).

RELATIVE LIKELIHOOD PRINCIPLE (RLP). Let φ: U-j + l^ be a Borel bimeasurable

one-to-one mapping from U, c %.. onto IL <= χ^9 and suppose there exists a

strictly positive function c on U-, such that for all θ € %>
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(3.4.1) PQ(A) = / Π / c ^ Π P ^ d x . , ) , A c U 2 .

φ"Ί(A)

Then Ev(E
r
x

1
) = Ev(E

2
, φίx^) for {?]} - a.e. x

]
 € U].

Note that the RLP does not say anything for particular x^. Indeed,

if x, has zero probability for all θ, then φ could be defined arbitrarily at

x, and still satisfy (3.4.1). Thus the RLP can only be interpreted in a

pre-experimental sense: if φ satisfies (3.4.1), evidentiary equivalence holds

with probability one on U-.. Where φ or U . come from is irrelevant. The

following theorem shows that the RLP is indeed a generalization of the LP.

THEOREM 2. For two experiments E
]
 = (X^ θ, {P^}) and E

2
 = (X

2
, θ, {P^}) with

countable sample spaces devoid of outcomes impossible under all θ, the LP and

the RLP are equivalent.

Proof. Without loss of generality, we take the dominating measures v , and v
2

to be counting measure on z, and Zo> respectively, so the likelihood functions

are f\[x.) = P^ίx.}). First, assume the validity of the LP, and let
θ 1 θ 1

P?(A) = / [l/c(x)]P.j(dx)
φ"'(A)

for some φ: U, ->• U2 and a l l A c \] Fix any x. € U-i and set x2 = φ(x-i),

A = { x 2 } . Then f g ( x 2 ) = t l / c t x ^ Λ x , ) for a l l Θ, SO the LP asserts that

Ev(E1,x1) = Ev(E2, φ ί x ^ ) .

1 2
Conversely, assume the RLP holds, and suppose that f'(x

Ί
) = cf^(x

0
)

θ I θ L

for some x j € Z-j, x2 € Z 2 > c > 0, and a l l θ € Θ. Put Û  = {x j } , U2 = { x 2 } ,

and define φ: U1 -> U2 by φ(x-j) = x2- (Note that we are free to choose U-j, U2 >

and φ in any fashion compatible with the conditions in the RLP, but evidentiary

equivalence need not hold on any null set.) Regard c as the constant value of

a s t r i c t l y positive function on U,. Then the RLP asserts that

E v t E ^ x ^ = Ev(E2, φ t x ^ ) for {P^} - a.e. x ] € U ] ,

i . e . that Ev(E,,x^) = Ev(E2tXo) (by hypothesis X, contains no point at which
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f (x,) vanishes for all θ, so the "{P
Ω
} - a.e." qualification is

U I σ

unnecessary). ||

THEOREM 3. The WCP and the SP together imply the RLP.

Proof. Let E, and Ep be two experiments, φ a bimeasurable mapping from a Borel

set U^ e %
1
 onto U ^ ^ , and c: U^ -> (0,°°) a measurable function satisfying

P
θ<

A
) = /.] CVc(x)]pJ(dx)

φ (A)

for al l Borel A c IL, al l θ € Θ. Let E* be the mixture of E, and E2, and

define a mapping T: X* -+ X* by

) i f i = 1 and x]

T(i,x
Ί
.) =

]

else.

This determines a new experiment E*
T
= (T, X*, { P ! } ) , where PI(A) =

θ Ό θ

First we show that T is sufficient. For each t = (i,x ) 6 X*

define a measure g. on z* by

ε
χ
 (A.) = e

t
(A) if i = 1 or x.

g
t
(A) =

(cε
χ
 (A,) + ε

χ
 (A

2
))/(l+c) if 1 = 2, , and x., = φ"

]
(x

2
).

Here c = c(x) and e ,ε ,ε. denote the unit point masses at x-j € Z- , x2 € Zo>

t € X* respectively; A. denotes {x. € X^: (l^x^) € A}. It is straightforward

to verify that

P*(A) = /gt(A)pJ(dt)

for each Borel A c ^ * , so T is sufficient.

By the SP we can conclude that

Ev(E*,(l,Xl)) = Ev(E*
T,(2, φ(χ.,))) and

Ev(E*,(2,x2)) = Ev(E*T,(2,x2))

^ 6 Xλ and {P^} - a.e. x2 € Xr In particular, forfor - a.e.
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({P*} - a.e.) x χ G Uχ and X2 = ^ x ^ we have

E v ( E * , ( l , x 1 ) ) = Ev(E* T , ( 2 , x 2 ) ) = E v ( E * , ( 2 , x 2 ) ) .

By the WCP we have

E v U M l . X j ) ) = E v ί E ^ X j ) and E v ( E * , ( 2 , x 2 ) ) = E v ( E 2 > x 2 ) ,

so we can conclude t h a t

EvίEj.Xj) = Ev(E2, φλ))

for {?h - a.e. x , E U Γ ||

The RLP will be used in Chapter 4 to establish general versions of

important consequences of the LP. Theorem 3 demonstrates that rejection of

these consequences (and several are quite unpalatable from the frequentist

viewpoint) implies rejection of the WCP or the SP.

3.5 PREDICTION, DESIGN, NUISANCE PARAMETERS, AND THE LP

3.5.1 Introduction

The LP as stated above has the wery important qualification that it

does not apply if θ does not include all unknown quantities germane to the ex-

periment or problem. For instance, in design or prediction problems the un-

known future observation is obviously relevant, and yet is not necessarily a

part of θ - the parameter defining the distribution of the observable X. A

related difficulty is that, often, only a part of θ is really of interest, the

remainder being a "nuisance" parameter. These issues are explored in this

section.

We begin by expanding the definition of θ to include unobserved and

nuisance variables. Define

θ = (z ω) = (y,w;ξ,η),

where z = (y,w) is the value of an unobserved variable Z, with y being of in-

terest and w being a nuisance variable, and where ω = (ξ,n) is the parameter
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that determines the distributions of both X and Z, with ξ being of interest and

η being a nuisance parameter. (We will purposefully remain vague on the defi-

nition of "nuisance variable" and "nuisance parameter"; formal definitions could

be attempted along decision-theoretic lines, but would take us too far afield.)

To indicate that evidence about ξ and y is desired from E we will write

E
V

?

 (E
'
X)

for the evidence about ξ and y from the observation of x in an experiment E.

Two difficulties arise in attempting to apply the LP in this more

general context. The first is that this generalized θ is no longer just the

parameter defining the distribution of X. Thus the definition in (3.1.1) of

i (θ) as the density of X given θ may no longer be a suitable definition. In-

deed, if Z is conditionally independent of X given ω, then (by the definition

of conditional independence) it can be shown that (3.1.1) becomes

I (θ)
 Ξ
f (x) = f (x),

x z ,01 ω

which does not even involve z. The second difficulty is that the nuisance

parameter, η, will appear in this likelihood function even though it is not

of interest.

To resolve these difficulties and indicate the role of the LP, we

will discuss alternative definitions of the likelihood function which bring out

the role of important unobserved variables and suppress the role of nuisance

parameters, and we will indicate under what circumstances these forms of the

likelihood function may be substituted for the simple (3.1.1).

3.5.2 Unobserved Variables: Prediction and Design

The following example shows that a naive application of the LP can

be misleading if future observations are of interest.

EXAMPLE 11. We have available a sequence of observations X. = (U., V.)

(i = 1,2,...) where
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P ( v i + 1 = i | v . = l ) = 1 / 2 , p ( v . + 1 = o | v . = l ) = 1/2

P ( v i + 1 = i | v . = o ) = o , P ( V . + 1 = o | v . = o ) = l .

(Define V
Q
 = 1). When V. = 1, U.

+ 1
 will be independent of the previous U.

with a 7ϊ(ξ,l) distribution. When V. = 0, on the other hand, U.
+
, will be zero.

(This would correspond to a situation in which a measuring instrument is used

to obtain the important observation U., while V. tells whether the equipment

will work the next time (V. = 1) or has irreparably broken (V = 0)).

Imagine that x.,... ,x̂  have been observed, and that v. = 1 for

i = l,...,n-l. The likelihood function for ξ is then given by

n ,
K U ) = π f

Γ
 (u.) - a 7?(u ,n~ ) density.

The LP thus says that the evidence about ξ is contained in I (ξ), and if we are

stopping the experiment nothing else is needed. However, in deciding whether

or not to take another observation, it is obvious that knowledge of v is

crucial. If v = 1 it may be desirable to take another observation, but if

v = 0 it would be a waste of time (since the measuring instrument is broken).

This example is related to a limitation of sufficiency (cf. Bahadur (1954)).

The apparent failure of the LP in'Example 11 is really the failure

to include all unknowns in the specification of θ; only ξ is included. For

this problem the next observation, X - (and perhaps further observations), are

also important unknowns. And the likelihood function for this future obser-

vation and ξ does depend on v . Examples such as this have often been touted

as counterexamples to the LP. There are at least two possible replies.

The first possible response is to simply exclude problems involving

such unobserved Z from consideration. This was essentially the tack we took

earlier in the monograph, motivated by a desire for simplicity of exposition.

This response is clearly not very satisfying.
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A second possible response is to redefine the likelihood function

so as to incorporate Z. In the first edition of this monoqraph it was essen-

tially suggested that one define the likelihood function for θ = (z,ω) =

(y, w; ξ, η) to be

(3.5.1) £
χ
(θ) = f

( ξ j η )
 (x,y,w);

this is, of course, just the joint density of (X,Z) given the parameter

ω = (ξ
5
n), but here it is to be considered a function of the unknown θ = (z,ω)

when the observed value X = x is inserted. Such redefinition of £
χ
(θ) indeed

works, in the sense that the LP will still then apply and be derivable from

appropriate versions of the Conditionality Principle and Sufficiency Principle.

We have not carefully investigated this, however. (It should be emphasized

that (3.5.1) is not the density of X, given θ, so that this likelihood function

is quite different from (3.1.1). For Bayesians, the distinction is whether to

include the unobserved variable Z as part of the model parameter or as part of

the observation; we will argue in the next section that it makes no difference.)

While (3.5.1) can be used to establish the LP in this more general

context, it has certain practical limitations as a definition of likelihood.

The most serious limitation is that it must be utilized very cautiously.

Common techniques such as maxirrrtm likelihood can often be disastrous if

applied directly to this a (θ). For examples, see Bayarri, DeGroot and Kadane

(1987); henceforth, BDK.

A related objection to (3.5.1) is that its definition is, in a

sense, quite arbitrary. Extensive discussion of this point can also be found

in BDK, with many examples. It is a point with which we essentially agree but,

following Berliner (1987), view as tangential to the LP. The LP leaps into

action after X, Z, ω, and f
ω
(x>z) have been defined, and X = x observed. The

process of getting to this point is inherently vague and rather arbitrary;

but that doesn't alter the fact that, having reached this point and assuming

that the model is correct, all information about θ = (z,ω) is contained in

(3.5.1) for the given data.
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While (3.5.1) is thus formally satisfactory for use in the LP, the

practical difficulties surrounding its use and definition suggest looking for

an alternative "likelihood function." A wery appealing possibility is present-

ed in Butler (1987), discussion of which we defer to the next section. Among

the many other references discussing likelihood for unobserved variables

(typically in prediction) are Geisser (1971), Kalbfleisch (1971), Lauritzen

(1974), Aitchison and Dunsmore (1975), Hinkley (1979), and Butler (1986).

Design problems deserve special emphasis. Before the experiment is

conducted, X itself is the unobserved variable, and should hence be identified

with Z in the above formulation. (In sequential or multistage experiments, at

each step or stage the previously taken observations are x, while the future

observations are Z.) The LP does not forbid averaging over unobserved vari-

ables, and so does not formally contraindicate use of many classical design

criteria. For instance, the LP does not say that it is wrong to choose the

sample size in a testing problem by consideration of type I and type II error

probabilities. (Of course, after the data have been taken, the LP would

argue against use of these pre-experimental error probabilities as measures of

evidence for or against the hypotheses.)

While not disallowing the use of classical design criteria, the

LP can have a substantial practical effect on design; a proponent of the LP

(i.e. a conditionalist) would want to design an experiment so as to have a

high probability of obtaining accurate conditional (post-experimental) conclu-

sions, rather than mere pre-experimental frequentist assurances of accuracy.

The difference in viewpoint can be significant in that the conditionalist can

be more flexible in his approach to design, often simply sampling data until

enough (conditional) evidence has been accumulated. By the Stopping Rule

Principle (discussed in Section 4.2 and shown to be a consequence of the LP) it

is quite valid for the conditionalist to employ such stopping rules of conven-

ience. A frequentist analysis, on the other hand, requires that the probabili-

ties of stopping for each possible reason be known at the outset, and that all

these stopping probabilities be incorporated in the analysis.



THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 41

Similarly the LP gives little guidance in assessing the overall

performance of a decision procedure δ. Such an assessment might be desired in

quality control and other situations where a particular procedure will be used

repeatedly. Thus suppose one faces a sequence of problems X. ^ P , on each of

i θ.

which a certain procedure δ will be used. Evaluation of the procedure 6 will

typically involve some type of average over the sample space because future

observations X. are unknown; as with design problems, however, this in no way

contradicts the LP. (The LP does, of course, say that it is wrong to report

such procedure performance assessments as the evidence about a particular θ.

upon observing a particular χ.) See Section 4.1 for further discussion.

3.5.3 Nuisance Variables and Parameters

When θ = (ξ,η) with η a nuisance variable, the LP says that all

evidence about θ is contained in the likelihood function i (θ); it seems
x

reasonable to interpret this broadly enough to infer that i (θ) should also
x

contain all evidence about the part ξ of θ. This can be made formal throuqh the
NUISANCE VARIABLE LIKELIHOOD PRINCIPLE. Since evidence about θ depends on E
and X only through I (θ)

3
 Ev (E,x) also depends on E and X only throughx ξ

I (θ). More generally when θ = (y,w;ζ,η)j where y and ξ are the important
x

unobserved variables and unknown parameters while w and η are nuisance vari-

ables and parameters, Ev (E,x) depends on E and X only through I (θ)
y JS x

as defined in (3.5.1).

With this amendment, the LP says that Ev (E,x) (or more generally

Ev
 r

(E,x)) involves E and x only through ι (θ) = a (ξ,n) (or more generally
y jζ x x

A (θ) = l (y,w;ξ,η)), but does not say what to do about η (or (w,η)); the LP
X X

does not say how to interpret Λ
γ
(θ) so as to isolate the evidence about y and
x

ξ. While this formally falls in the domain of "utilization of the likelihood

function," a topic that we are avoiding,a brief discussion of certain methods

of dealing with such nuisance quantities is desirable.
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The first key observation is a formalization of the suggestion in

Butler (1987) for dealing with nuisance variables or parameters that have known

distributions:

MARGINALIZATION PRINCIPLE: If the distribution of an unobserved nuisance vari-

able or -parameter is given, form a marginal likelihood function from the joint

density of X and the nuisance variable or parameter by simply integrating

out the nuisance variable or parameter in this joint density.

The first step in this marginalization process can always be done;

w can be immediately eliminated (if present) because i (θ) = f# \(x,y
5
w)

x lξ jTi /

specifies its distribution. Thus I (θ) can be reduced to
x

,ξ,η) = f f/
Γ
 χ(χ,y,w) dw.

A further marginalization step can be taken when the distribution
Λ O p

of η (or part of η) is given. Thus if η = (η ,η ), and it is given that η has
2 1

density π(η |ξ,η ), the likelihood function can be further marginalized to

(3.5.2) Λjίy.ξ.n
1
) = /

 f
(

ξ
,

η
)(

χ
>y>

w
) ^ l e . n

1
) dw dη

2
.

EXAMPLE 11.1. Consider the random effects problem where

= η
i

r\ 0 0

the ε.. being i.i.d. ^(θ,σ ) and the η. being i.i.d. 7?(μ,τ ) ; here σ , y, and
I J I

2
τ are unknown. Suppose that interest centers on the "hyperparameters"
ξ = (y,τ ). Then the parameters η = σ and η = (η., ηp,..., η,) are nuisance

2 2
parameters, and the distribution of η is given. Indeed π(η |ξ) is

2 t

77j(yl.,τ I), where ^ = (1,...,1) and ^ is the identity matrix. A standard cal-

culation (cf. Berger (1985)) then yields for (3.5.2) (note that (y,w) is not

present here)
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U,n

I
 ? ?

 2 ? ?
exp{- I (x.-v) /[2(τ + ^-)]} exp{-s*7(2σ )}

J
 2 - 2

where x. = I χ../J and s = Σ Σ (X.. - x.) .
"ί — 1 "i "ΐ

The suggestion to use (3.5.2) as the likelihood was made in Butler

(1987) to answer the criticisms in Bayarri, DeGroot, and Kadane (1987) concern-

ing the arbitrariness and difficulty in use of the likelihood defined in

(3.5.1); use of (3.5.2) seems to be quite successful in this regard. We

support using (3.5.2) as the "practical" definition of likelihood, noting that

it is fully consistent with our preferred (see Chapter 4) Bayesian approach to

utilization of l (θ). Most non-Bayesians would also probably approve of

(3.5.2) as the definition of likelihood; failure to do so leaves one open to

the serious criticisms in Bayarri, DeGroot, and Kadane (1987). It is also

probably true that a version of the LP based on (3.5.2) could be shown to

follow (with certain qualifications - cf. the comments at the end of the

section) from versions of the Conditionality Principle and Sufficiency Princi-

ple. We have not looked into the matter, however.

Use of (3.5.2) does not completely solve the nuisance parameter

problem, of course, because £*(y,ξ,n ) still depends on the nuisance parameter

η . There is, unfortunately, no "consensus" approach to elimination of η . In

the remainder of the section, a brief introduction to some of the proposed

methods for elimination of η will be given.

The Bayesian approach to the problem is conceptually straightfor-

ward. One simply determines π(η |ξ), the conditional prior density of η given

ξ, and calculates the reduced likelihood function

D 1 1 1
( o c o N ί ί v f ) = f*(v f n Ί lϊί Ί k ) dn

The product of this and the marginal prior density, π ( ξ ) , will be proportional
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D

to the posterior distribution of (y,ξ) given x, so that i (y,ξ) clearly suffices

for the Bayesian. A strong case can be made that even the non-Bayesian condi-

tionalist should operate by using (3.5.3), with π(η |ξ) chosen to be some

"noninformative" prior density for η given ξ. Presentation of this case would,

unfortunately,take us too far afield.

The most common non-Bayesian approach to elimination of n is

through maximization: i.e., consideration of

A
y
(y,ξ»

 = s υ p

n
1

The dangers in use of £
χ
 have been well-documented and have resulted in a

search for alternative methods (see Section 5.2 for references).

Alternative non-Bayesian methods typically approach the problem of

eliminating η through ideas of partial or conditional likelihood. The idea of

partial likelihood (cf. Kalbfleisch (1974), Sprott (1975), Cox (1975), Dawid

(1975, 1980), Barndorff-Nielsen (1978, 1980), Hinkley (1980), and Kay (1985))

is to factor the likelihood as (ignoring, for simplicity, future observations

Z = (y,w) and the possibility that part of η has a known distribution)

(3.5.4) I (θ) = Λ ξ ) Λ ξ , η ) ,
Λ Λ Λ

1 2and then to work with i (ξ) exclusively. This is successful when a does not
X X

contain much information about ξ, or when the information is very hard to

extract because of high variation due to η. It is particularly attractive in

the special case (to which we return in Chapter 4) in which £ contains no

information about ξ, i.e. in which

(3.5.5) l (θ) = £^(ξ) ι
2
U ) .

λ λ Λ

This arises when an ancillary statistic T exists for ξ, ancillary in the strong

sense that

f
θ
(x) = 9

ζ
(x|T) h

η
(T);
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(3.5.5) is then immediate. (Other, broader, definitions of ancillarity also

appear in the literature, but lead to expressions as in (3.5.4) rather than

(3.5.5). Also, attempts have been made to find approximate decompositions of

the form (3.5.5); cf. Hinde and Aitkin (1986).)

EXAMPLE 12. Suppose E consists of observing

X = ((Y
1
,Z

1
),...,(Y

n
,Z

n
)),

where the (Y
1
 >Z

i
) are i.i.d. pairs having a common bivariate normal distribu-

tion with unknown mean (μ
γ
,μ

z
) and covariance matrix

Λll
 σ

12\

\
σ
1 2

 σ
2 2 / .

p
Of interest is the regression of Y on Z; thus interest centers on ξ = (α,3,τ ),

where

α = μ
γ
 - 3μ

7
, β = -

i A
, τ = σ

n
(l -

 lά
 ),

Y L V? 11 99

2

since E(Y.|Z.) = α+3Z. and τ is the conditional variance of Y. given Z..

Letting θ = (μ
γ
, μ^, σ,,, σ.

2
, σ

2 2
) , n = (σ

2 2
, μ O , and

T = (Z
19
...,Z ), a standard calculation gives

1 ?
i = l U ΛΛ Cm C- I X

Ξ g
ξ
(χ|τ)h

η
(τ).

Thus (3.5.5) is satisfied (and, indeed, T is ancillary for ξ).

It seems natural, when (3.5.5) holds, to state that all evidence

about ξ available from E and x is summarized in £
v
(ξ). Thus, in Example 12,
x

it seems natural to base the regression analysis on g
£
(x|T), the conditional

distribution of the Y. given the observed z.. This is, indeed, virtually

always done in regression; the z
Ί
 are treated as nonrandom, i.e., are
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conditioned upon.

Basing the analysis only upon Jr(ξ) is not always justified. If

knowledge of η would communicate information about ξ, then £ (η) cannot,

theoretically, be ignored. (For practical reasons, however, one miqht

frequently ignore such information - see Section 4.5.4) The most natural

way to rigorously state this is in terms of Bayesian analysis: if ξ and η

2
are apriori independent, then i (η) contains no information about ξ. This is

x

clear, since then (3.5.3) becomes (iqnoring y)

l\U) = / *J(ξ) l\M π
2
(η) dη ex *J(ξ).

The standard conditioning on the z. in Example 12 is thus rigorously

justifiable only when y^ and a
2 2
 are felt to be apriori independent of α, β,

2
and τ , a reasonable assumption in many situations.

Although Bayesian reasoning provides the intuitive basis for

stating that a nuisance parameter carries no information about ξ, we will

sidestep the issue and simply give an operational definition compatible with

the LP.

DEFINITION. Suppose E is such that (3.5.5) is satisfied. Let E
η
 be the

"thought" experiment in which> in addition to X., η is observed. Then η is a

noninformative nuisance parameter if Ev (E ,(x,n)) is independent of η.

NONINFORMATIVE NUISANCE PARAMETER PRINCIPLE (NNPP). If E is as in (3.5.5) and

η is a nonin formative nuisance parameter^ then

EV
ξ
(E,x) = Ev

ξ
(E\(x,η)).

The NNPP states the "obvious," that if one were to reach the

identical conclusion for every η, were η known, then that same conclusion

should be reached even if η is unknown. This principle will be used in the

discussion of random stopping rules and random censoring in Chapter 4.
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As a final qualification, it should be noted that each of these

methods for suppressing the role of nuisance parameters is only applicable when

a decision or action is to be taken on the basis of evidence already recorded,

and no further taking of evidence is contemplated. For example, the Likelihood

Principle does not imply that the Bayesian's reduced likelihood function,
D

£
v
(y>ξ)> summarizes all evidence from an experiment E about a parameter of

interest ξ and an unobserved variable of interest y, if that evidence must

later be combined with other evidence from further trials also governed by the

same nuisance parameter η. Future observations may offer new evidence about

the joint distribution of ξ and η; by integrating away (or by maximizing away)

the nuisance parameter η we would lose the chance to use that new evidence to

transform present evidence about η into evidence about ξ. Thus, in Example 11.1,

it would not suffice to carry along only z*(y,τ ,σ ) if additional replications

x.. (for i = 1 1) were to be obtained at a later time. Even if future
p

observations will not be taken, a Bayesian could not report £ (ξ) as a complete
x

summary of the evidence to another Bayesian who might use a different condition-

al prior π(η |ξ); despite the nuisance, the entire likelihood function

£*(ξ,η ) must be reported in order to convey all information.

3.6 CRITICISMS OF BIRNBAUM'S AXIOMATIC DEVELOPMENT

Birnbaum's axiomatic development of the LP has been subjected to

considerable scrutiny. Errors in Birnbaum's arguments did exist, as was men-

tioned in Section 3.4.1 (see also Birnbaum (1972), Basu (1975), Joshi (1976),

and Godambe (1979)), but these errors were correctable and did not affect the

basic truth of the arguments. Also easily handled are certain criticisms of

the LP arising from its misapplication or misinterpretation. Several such

misapplications and misinterpretations have already been mentioned; for

completeness we restate them here.
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(i) The LP applies only when θ includes all unknowns relevant to

the problem. For design, prediction, sequential analysis, meta-analysis, and

in many scenarios, the important unknowns often include more than just θ,

the unknown parameter of the probability model. But the LP can be reformu-

lated to include such unknowns; see Section 3.5.

(ii) Sometimes a frequentist measure of the performance of a pro-

cedure - such as a sampling inspection plan or a diagnostic test - is specified,

by contract or law, to be of primary interest. Then, of course, the LP (when

stated for θ alone) does not apply.

(iii) There can be ambiguities in the definition of the likelihood

function. The problem can usually be resolved, however, by the approaches

discussed in Sections 3.4 and 3.5.

(iv) There can be situations in which the choice of experiment

conveys information about θ. For instance, one might judge that the experimen-

ter never would have chosen the given experiment unless he suspected that, say,

θ was small. The LP will still then apply, in the sense that the experimental

evidence is still contained in £ (θ); it is just that one will then have addi-

tional evidence provided by the choice of experiment. (In a sense, the choice

of experiment should be treated as additional data.)

(v) There are periodically attempts to prove the LP wrong by ar-

guing, in a given example, that a particular likelihood-based method (e.g.,

maximum likelihood estimation) gives a bad result. But the LP prescribes no

particular method for utilization of £ (θ). This issue is extensively discussed

in Chapter 5.

(vi) The LP does not apply to the information conveyed about dif-

ferent parameters from different experiments. It may be tempting to say that,

if E^ is binomial (n,θ,) and Ep is binomial (n,θp) and 10 successes (or ones)

are observed in each of the experiments, then since the likelihood functions
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for the two situations are the same (as functions), one should reach the same

conclusions about θ-j and θ^ But the LP does not say this; it applies only

when θj and θ
2
 are the same parameter, i.e., are physically or conceptually

the same quantity.

There have been a number of criticisms directed at the explicit and

implicit principles used in Birnbaum's development of the LP. We address these

criticisms in this and the following sections.

3.6.1 The Model Assumption

The most frequently expressed criticism of the LP is that it is

supposedly yery dependent on assuming a particular parametric model with a

density for X; since models are almost never known exactly, it is felt that

the LP is only rarely applicable. It is, of course, easy to criticize almost

any statistical theory for being model dependent, but let us examine the

issue seriously anyway.

The first point to note is that, even if there are various

possible models under consideration, the LP still says that the information

in the data, for any possible model, is contained in the likelihood function

for that model. The evidence conveyed by the data certainly changes as

different models are considered, but the likelihood functions should still be

considered the vehicles of this evidence.

To be more formal about this, we need only recall that θ need not

be restricted to being a typical parameter, and indeed can represent various

models. The situation of discrete X is easiest to see: thus, if

X = (Xi»x
2
» }»

 w e
 could simply let θ = (θ^θg . .) denote a point on the

infinite dimensional simplex

ί θ : 0 <_ θ. <_ 1 and IB. = 1 } ,

and define

Then {P } is the class of all probability distributions on χ
9
 and the LP

θ

applies to t h i s completely nonparametric setup, as well as to any s i t u a t i o n
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where a restricted class of models (corresponding to some subset of Θ ) is

considered. Of course, we will usually only be interested in some function

ψ(θ), but if all the evidence about θ is contained in the likelihood function,

then the same should be true of ψ(θ). The argument in Section 3.4 in favor of

considering only discrete situations (in foundations) thus indicates that the

LP always applies.

Even in continuous situations, there is no need to tie the LP

to restrictive parametric models. For instance, consider the following example.

EXAMPLE 13. Suppose X
lf
...,X are i.i.d. observations from some distribution,

known to have a density (with respect to a given measure v ) , but otherwise

unknown. Let Θ be the set of all such densities, so that the density of

X = (X
Γ
...,X

n
) is

n
f (x) = π θ(x.).
θ
 i = l

 Ί

For instance, this would be the situation i f the x. were known to have a

distribution with a continuous density with respect to Lebesgue measure on a

Euclidean space. Thus a likelihood function does exist in such nonparametric

situations, and the LP (more properly the heuristic LP discussed in Section

3.4.1) would apply. "Robustness" problems typically f a l l into the setting

where a subset of Θ (say, a l l densities close to some prescribed parametric

family of densities) is under consideration. Again, the LP wi l l usually apply.

I t can be argued, of course, that one may be dealing with a

general non-dominated family {P> or, alternatively, that the LP does not
Θ

really apply to the nondiscrete case, but there is still the RLP to contend

with. Again, Θ could just be used to index the distribution, so the RLP will

essentially always be applicable, yet it is inconsistent with frequentist

reasoning and will be seen to yield strong conclusions such as the Stopping

Rule and Censoring Principles. In conclusion, therefore, although the LP is

usually stated in terms of a particular parametric model with densities, it

(or its generalizations) are essentially always applicable. (Implementing the
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LP can, of course, be much more difficult in nonparametric situations, as will

be discussed in Chapter 5.)

3.6.2 The Evidence Assumption

A less common criticism of Birnbaum's development is the question-

ing of the existence or meaning of Ev(E,x). As noted in Section 3.3.1, however,

this can have essentially any interpretation (initially) and need not consist

of any single measure, so it is hard to see the force of this objection.

3.6.3 The Weak Conditionaiity Principle

A possible point of criticism is the Weak Conditionality Principle.

Indeed, a committed frequentist might well reject this principal, saying it is

based on the erroneous belief that one can obtain evidence (in the intuitive

sense) about a particular θ from a particular experiment (c.f., Neyman (1957,

1977)). Instead, the argument goes, one can only state the performance of a

procedure that will be used repeatedly, and this should (or at least could)

involve averaging over both E-. and ϊ.^ *
n a

 sense, this position is logically

viable. Its scientific desirability is yery questionable, however, as Example

2 in Section 2.1 illustrates. This issue will be discussed further in Section

4.1.

Durbin (1970) raises the point that if the Weak Conditionality

Principle is allowed to apply only to conditioning variables which depend

solely on a minimal sufficient statistic, then the LP does not follow. (This

is because, in the proof of Theorem 1, the conditioning statistic, J, is not

part of the minimal sufficient statistic when the two likelihood functions are

proportional. Sufficiency says "discard J," after which it is clearly

impossible to condition on J.) No plausible reason has been advanced for so

restricting the Weak Conditionality Principle, however, and the idea seems

unreasonable as a reexamination of Example 2 shows.

EXAMPLE 2 (continued). Let x~ denote the outcome of the California experiment,

and suppose that there was some possible outcome x^ of the New York experiment
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for which i (θ) would have been proportional to i (θ). Then, in the mixed
X C X N

e x p e r i m e n t E*, t h e outcomes x~ and x*. would be i d e n t i f i e d by a minimal s u f f i -

cient s t a t i s t i c , precluding application of the restricted WCP. I f , however,

there was no xN, then conditioning on the California experiment would be

allowed. Thus, by Durbin's argument, whether or not onechooses tocondition on

the actually performed California experiment with observation x~ would depend

on the existence, or lack thereof, of an observation x*., in the unperformed

New York experiment, having a likelihood function proportional to that of x c

Such dependence of conditioning on the incidental structure of an unperformed

experiment would be rather bizarre.

Other rejoinders to Durbin's criticism can be found in Birnbaum

(1970) and Savage (1970). Savage invokes a "continuity" argument, showing

that following Durbin's restricted WCP can involve drawing substantially

different conclusions when a problem is changed in an insignificant way (such

as slightly perturbing the likelihood function of xN above).

3.6.4. The Sufficiency Principle

Surprisingly, the most common and serious axiomatic criticisms of

the LP are those directed at the Sufficiency Principle. This may seem strange,

sufficiency being such a central part of classical stat ist ics, but issues can

be raised.

The f i r s t issue is a valid limitation of the SP: i f one faces a

decision in which the consequences (or loss) depend on x, and not just on the

action taken and unknown θ, then the SP need not be valid. Such situations

are relatively rare, however, and could be handled with a reformulation of the

LP to the effect that Ev(E,x) should depend on i (θ) and x.
x

A second issue, raised by Kalbfleisch (1974, 1975), is that the LP

does not follow from the WCP and SP i f sufficiency is not allowed to apply to

simple mixture experiments. The problems with such a restriction of sufficiency

are that ( i ) I t seems a r t i f i c i a l , there being no intuitive reason to restrict

sufficiency to certain types of experiments; ( i i ) I t is d i f f i c u l t and perhaps
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impossible to clearly distinguish between mixture and non-mixture experiments

(cf. the discussion in Kalbfleisch (1975)); (iii) Mixture experiments can of-

ten be shown to be equivalent to non-mixture experiments (cf. Birnbaum (1962a)),

making the distinction seem unreasonable; and (iv) In almost any situation,

behavior in violation of sufficiency can be shown to be inferior (see Section

3.7). Evans, Fraser, and Monette (1986) contains further discussion.

The most serious criticism of the SP comes from ideas of Barnard

(cf. Barnard, Jenkins, and Winsten (1962), Barnard (1980, 1981), Barnard

and Godambe (1982), and the discussions in Birnbaum (1962a), Basu (1975), and

Wilkinson (1977)) and Fraser (cf. Fraser (1963, 1968, 1972, and 1979)). They

question the "sufficiency" of representing the experimental structure solely

in terms of probability distributions on the sample space indexed by the

unknown θ; Dawid (1977) called this the Distribution Principle (DP). The

criticism of the DP (and hence the SP) is that there may be important infor-

mation lost concerning the relationship between X, θ, and the "randomness" in

the problem. (An important observation is that, while relevant to the LP,

this criticism is not relevant to certain of the most controversial relatives

of the LP, such as the Stopping Rule Principle; cf. Dawid (1986).)

This criticism turns out to be quite difficult to answer, striking

at the core of virtually all approaches to statistics. One response is to

attempt an axiomatic development of the LP which incorporates "structural"

information. Such a development can be found in Berger (1984a), but is some-

thing of a failure, containing a suspect axiom from the above viewpoint. Also

in Berger (1984a), therefore, the issue is addressed from the viewpoint of

coherency and admissibility; it is shown that incorporating "structural" in-

formation in violation of sufficiency results in inferior behavior. These

arguments are familiar, but because of the importance of the issue and the

bearing these arguments have on any proposed violation of the LP, they are

reviewed in Section 3.7. (Evans, Fraser, and Monette (1986) also contains

relevant discussion.) Incidentally, the need to resort to coherency and

admissibility bears out I. J. Good's discussion of Birnbaum (1962a), that
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derivation of the LP via the WCP and SP is mainly a sociological contribution

to statistics, since Bayesian coherency axiomatics would give the LP directly.

While agreeing, we feel that the sociological contribution is yery substan-

tial; many people will (for whatever reasons) accept the WCP and SP, yet

resist the LP.

In the remainder of this section, we briefly outline the objection

to the SP that is raised in the theories of Pivotal Inference (cf. Barnard

(1980, 1982) and Barnard and Sprott (1983)) and Structural Inference (cf.

Fraser (1968, 1972, 1979)). The key idea is that it may be known that

X = h(θ,ω),

where ω is an unknown random quantity taking values in Ω according to a known

distribution Q, and h is a known function from Θ x Ω -> χ. (Often in

Structural and Pivotal inference, Q is known only to belong to some class Ώ. .

For simplicity, we assume Q is known.) This is actually more or less the

"structural" formulation of the problem. The formulation in Pivotal Inference

is based on "pivotals" ω = g(X,θ) having known distributions. Typically g

will be an appropriate inverse function of h, so the two approaches are very

related. We will, for the most part, consider the structural formulation,

although comments about differences for the pivotal model will be made. The

structural model is sometimes called a functional model (cf. Bunke (1975) and

Dawid and Stone (1982)), but we will stick with Fraser's original term. The

following example, from Fraser (1968) (and related to an example in Mauldon

(1955)), illustrates the key issue.

EXAMPLE 14. Suppose X = ( X ^ X ^ , θ = (σ
1 5
τ,φ), and P

Q
 is bivariate normal

with mean zero and covariance matrix

2

This could arise from either of the following two Δtn.actuAaJί models:



THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 49

(i) ω = (ω
1 >
ω

2
) is bivariate normal, mean zero and identity covariance matrix,

and

(3.6.1) X = h(θ,ω) = (σ-jω-i, τω- +φωp);

(ii) ω is the same but

(3.6.2) X = h*(θ,ω) = (τ
l
ω

1
+φ

l
ω

2
, σ ^ ) ,

where σ
2
 = Λ +ψ , τ' = σ-|τ/σ

2
,
 anc
* Φ

1 =
 σ-iΦ/σo

 In
 Pivotal Inference, one

would write (3.6.1) and (3.6.2) as

(3.6.1)' ω = (ω-jίU^) = (X-|/σ-|, (X
2
-τX-|/σ | )/φ),

(3.6.2)
1
 ω = ( ω

r
ω

2
) = ( X ^ , (Xj-τ'Xg/σgJ/φ

1
).

and ω . and ω
2
 would be the pivotals with known distribution upon which the

inference would be based. In pursuing this example later we will assume that

independent observations X ,...,X
n
 from the model are taken, giving the

"sufficient" statistic S = \ (X
Ί
)

t
(X

1
), which has a Wishart (n, \) distribu-

i = l
tion.

In the above type of situation, which we will call a P-S (for

Pivotal-Structural) situation, an experiment is specified by

E = (X, θ, h,
 ω
, Q). As in Example 14, one could have a single probability-

modeled experiment, E = (X, Θ, { P
Ω
} ) , arising from more than one P-S experiment.

In such situations there is a definite loss of structure in reduction to a

probability model. The question that will be addressed in the next section is

whether this structure contains any useful information. Of course, the point

is moot unless P-S theory actually recommends differing actions or conclusions

for differing P-S models which have the same probability model. An example

where this is the case for Pivotal theory can be found in the discussion by

Barnard in Berger (1984a). A possible example for Structural theory is

Example 14.

EXAMPLE 14 (continued). A part of Structural Inference is the construction of

"structural distributions" for θ. These can presumably be used, in the same
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manner as posterior or fiducial distributions, to make inferences or probability

statements about θ. The structural densities, based on S, for θ = (σ^, τ, ψ)

are given for the two models (3.6.1) and (3.6.2), respectively, by (see

Fraser (1968))

(3.6.3) IΓ
1
(Θ|S) = K^sjysjσξφ"

1
,

and

(3.6.4) π
2
(θ|s) = K

2
(s)f

θ
(s)(Aφ

2
rV

Ί
.

(These happen to correspond to the posterior distributions with respect to the

right invariant Haar measures on the lower and upper triangular group decompo-

sitions of $.) Examples will be given in the next section which show that use

of these differing structural distributions can lead to differing conclusions.

3.7 VIOLATION OF THE LIKELIHOOD PRINCIPLE: INADMISSIBILITY AND INCOHERENCY

3.7.1 Introduction

The alternative to justification of the LP from "first principles"

is to show that behavior in violation of the LP is inferior. The only convinc-

ing method of demonstrating such inferiority is to show that such behavior can

be improved upon in repeated use. We thus turn to measures of long run per-

formance of statistical procedures or methods. We will not argue that

measures of long run performance have an important practical role in

statistics (as frequentists would argue), but we will argue that they have the

important theoretical role of providing a test for proposed methodologies: it

cannot be right (philosophically) to recommend repeated use of a method if the

method has "bad" long run properties. Both of the main approaches to long run

evaluation, decision theory and betting coherency, will be discussed. We will

further argue that the decision-theoretic approach is the more satisfactory

of the two (even for "inference" problems), although either approach strongly

contraindicates violation of the LP.

A violation of the LP will occur (in the discrete case) when there

are two experiments E^ and E
2
, with x^ ε X^ and x£ e X~ satisfying (for some
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positive constant c)

(3.7.1) fj(x') = c f*(x£) for all θ,

and for which

(3.7.2) Ev(E
Γ
xj) f Ev(E

2
,x').

Consider now the mixed experiment E*, in which J = 1 or 2, with probability ~

each, is observed (independent of all elements of the E.), and experiment E, is

then performend. According to the WCP,

Ev(E*,(j
f
Xj)) = EvίEj.Xj),

which combined with (3.7.2) yields the conclusion

(3.7.3) Ev(E*,(l,xp) f Ev(E*,(2,x£)).

It will be behavior according to (3.7.3) that is shown to be inferior in

repeated use.

In the nondiscrete case, we can consider violation of the RLP (see

Section 3.4.1). Thus suppose that, in the situation of the RLP, there exists a

set A c U , , with Pg(A) > 0 for all θ, and such that

(3.7.4) Ev(E
1
,x

1
) t Ev(E

2
, φίx-,)).

Again considering the mixed experiment E* and applying the WCP, one obtains

that, for x
1
 € A,

(3.7.5) EvίEMl.x,)) f Ev(E*,(2, φtx,))),

behavior which will be shown to also have bad long run properties.

The experiment E* will preserve all "structural" features of E-j and

E
2
, so the only objection that could be raised concerning the above line of

reasoning is the use of the WCP. Although some frequentists will reject the

WCP (and are then exempt from the conclusions of this section) most will find

such rejection difficult. Virtually all other theories accept the WCP, and

are hence subject to evaluation through E*. Among the theories which seem to

accept the WCP, and yet sometimes advocate violation of the LP, are (the

already discussed) Pivotal Inference and Structural Inference, Fiducial
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Inference, Plausibility Inference (see Barndorff-Nielsen (1976)), and certain

noninformative prior Bayesian theories (see Example 9 in Section 3.1). It

should be noted that it is actually rather rare for these theories to conflict

with the LP. Indeed the conflict would not be worth making an issue of, were it

not for the purported refutations of the LP that seem to arise from these

theories. The "refutations" are always of the form - "following theory A

conflicts with the LP, so the LP must be wrong." We will argue (via long run

evaluation) that the reverse is true.

3.7.2 Decision Theoretic Evaluation

The decision-theoretic approach supposes that the result of the

statistical investigation is to take an action a e G (which could conceivably

be the action to take a particular "inference"), the consequence of which, for

given data x and when Θ obtains, is the loss L(a,θ). It is also supposed that

the statistical method being evaluated provides an action to take for each

possible x, thus defining a statistical procedure δ( ): Z + G. (For the

most part we will stick to nonrandomized procedures for simplicity.) As usual

in frequentist decision theory, we define the frequentist risk and the Bayes

risk (with respect to a prior distribution π on Θ ) as, respectively,

R(θ,δ) = E L(δ(X),θ), and r(π,ό) = E
π
R(θ,ό).

Following Hill (1974b) and Berger (1984a), and in a similar manner

to many betting scenarios, we consider the following game.

1 2

EVALUATION GAME. Player 1 proposes use of 6 and Player 2 proposes 6 . A

master of ceremonies will choose a sequence θ = (θ pθpί ) € C {a class of

relevant sequences), and for each θ. the experiment E will be independently

performed yielding an observation X. (from the distribution P. ). Player j
i

will use δ
J
(x

i
 )> paying to the other player his "loss" L(ό

J
(x

i
) , θ

i
) . After n

plays
3
 Player 2 will have won

n

n
 = X [Lίδ^x.hθ,.
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If, for any θ € C,

(3.7.6) P (lim inf ̂ S n > 0) = 1,

2 1
then 6 will be called C-better than 6 .

Although there are a number of reasonable choices for c in the

Evaluation Game, a particularly attractive choice is

Zn = { θ : t h e r e e x i s t s a compact s e t K c @ f o r w h i c h θ . € K f o r e v e r y i } .

This choice is attractive because reality is bounded, but the bound is often

unknown (and, hence, we entertain unbounded models). With such a C, the

Evaluation Game seems to be a fair way of testing the performance of a proce-

dure. If δ is certain to lose an arbitrarily large amount in comparison with

2 1

6 , it would certainly seem unwise to call δ fundamentally sound. The follow-

ing theorem is useful in dealing with c^.

THEOREM 4. Suppose R(θ,δ
2
) < R(θ,δ

Ί
) for all θ, that [R(θ,δ

]
)-R(θ,δ

2
)]

is continuous in θ
3
 and that the random variables

X.J.Θ.JUδ^X.J.Θ.)]

have uniformly bounded variances (which is trivially satisfied if L is

2 1

bounded). Then δ is C^-better than δ in the Evaluation Game.

Proof. Define

Ψ(Θ
Ί
.) = E

θ β
(Z

i
) = R(θ

Γ
δ

Ί
)-R(θ.,δ

2
).

By the strong law of large numbers,

1
 n

y [Z.-ψ(θ.)J -> 0 almost surely,
n
 i = l

 Ί 1

so that, for any Θ,

(3.7.7) P (lim inf 1 S > 0) = P (11m inf 1 J ψ(θ.) > 0 ) .
K n-κ» ^ n-χ» i = l

im inf 1 S > 0) = P (11m inf 1

But since the θ. lie in some compact set and ψ(θ) is continuous and
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positive,

inf ψ(θ.) > 0.
i <»

The conclusion is immediate from ( 3 . 7 . 7 ) . ||

2 Ί

The condition "R(θ,ό ) < R(θ,ό ) for a l l θ" in Theorem 4 implies

that 6 is inadmissible in a frequentist decision-theoretic sense. This is

really the key condition in the failure of 6 in the Evaluation Game. Indeed

we can, in a loose sense, equate such failure with inadmissibility. The

exact relationship depends on the choice of C in the Evaluation Game, so we

wi l l sometimes use the term "inadmissibility" to encompass the whole idea.

Adopting a decision-theoretic viewpoint for evaluation can be

crit icized, especially for inference problems in which losses ( i f they exist

at a l l ) are vague or hard to formulate. This is not the place to argue the

case for a decision-theoretic outlook, and indeed a justif ication of decision

theory is not needed for our purpose here. Our goal is to judge the claim in

P-S analysis (and other approaches) that the LP is invalid, because i t ignores

important features of the experiment. We wi l l essentially try to argue that,

in any decision problem, repeated violation of the LP wi l l result in long run

loss. Most statisticians would probably have qualms about trying to argue

that, even i f the LP should be followed in any decision problem, i t need not be

followed in inference problems. Essentially such an argument would be of the

variety - "I know Γm right, but wi l l not allow any quantifiable evaluation

of my methods."

We wil l avoid the "unfair" possibility of taking an inference

procedure and evaluating i t with respect to a particular loss function. I t is

somewhat more f a i r to evaluate i t with respect to a very wide range of loss

functions, and inferior performance for a wide range of reasonable losses

should be a serious concern. More commonly, however, we wi l l consider

particular losses as given, and see where the following of P-S (or other)

reasoning might lead us. Criticizing P-S reasoning ( in particular, possible
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violation of the LP) in decision settings for which it was never intended is,

of course, an uncertain undertaking, especially since it is not clear what

P-S reasoning in decision contexts would be. Of relevance here is the

following comment of Hill (1974b):

"But no matter what is meant by inference,

if it is to be of any value, then somehow

it must be used, or acted upon, and this

does indeed lead back to the decision-

theoretic framework. I suspect that for

some 'inference' is used as a shield to

discovery that their actions are incoherent."

As an example of a reasonable "inference" loss, imagine that a

given "confidence" set C is to be used, and that the desired inference is a

measure, δ(x), of the "chance" or "confidence" with which we wish to assert

that C contains θ. No matter what interpretation is attached to ό(x), it

seems reasonable to measure its performance via a loss function which reflects

whether or not 6 does a good job of indicating the presence of θ in C. One

such loss function is

(3.7.8) L(δ(x),θ) = (I
c
(θ)-δ(x))

2
,

essentially the quadratic scoring function of deFinetti (1962). (Any other

proper scoring function would also be reasonable - c.f. Lindley (1982).) Note

that for any "posterior" distribution, π(θ|x), for θ, the optimal choice of

δ(x) in (3.7.8) is

(3.7.9) δ
π
(x) = E

π ( θ
l

x )
l

c
(θ) = P

π ( θ
l

x )
( θ € C),

i.e., the posterior probability of C. Thus, to test the inferences

provided by Structural Inference in Example 14, it seems reasonable to use

the structural distributions provided by (3.6.3) and (3.6.4) to determine

π-i Ho

δ (s) and δ (s) via (3.7.9), and then test the implied procedure in the

Evaluation Game for the mixed experiment E* (see Section 3.7.1). We will
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return to this example later.

The simplest s i t u a t i o n , in which v i o l a t i o n of the LP (or RLP)

results in f a i l i n g the Evaluation Game for E*, is when L is s t r i c t l y convex

i n V f o r a l l θ. (For some other s i t u a t i o n s , see Berger (1984a).) Consider

f i r s t the discrete case in Section 3 . 7 . 1 . A v i o l a t i o n of the LP (see (3.7.3))

would imply use of a δ in E* for which

(3.7.10) δ Ί ( ( l , x ' ) ) f δ ] ( ( 2 , x p ) .

Consider, however, the procedure

^ 1 l 1 ( ( 2 , x p ) f o r

(3.7.11) 6 2 ( ( j , X j ) ) =

X j
 = x\ or x

2

6 Ί ( ( j , χ . ) ) otherwise,
J

where c is from (3.7.1) . Using the s t r i c t convexity of L, one obtains that

(3.7.12) L ( δ 2 ( ( j , x . j ) ) , θ ) < -φ^ L ( δ ] ( ( l , x p ) , θ )

+ -
( Έ
|

T
yL(δ

1
((2,x')),θ).

An easy calculation, using (3.7.1), then shows that

(3.7.13) R(θ,δ
Ί
)-R(θ,δ

2
) = ̂ - fJ(xpΔ(θ),

where Δ(Θ) is the difference between the right and left hand sides of (3.7.12).

Under the additional easily satisfiable conditions of Theorem 4, it is

immediate that δ fails the Evaluation Game for all θ 6 C~, (This is all, of

course, a form of the Rao-Blackwell Theorem.)

EXAMPLE 9 (continued - see Section 3.1). Suppose it is desired to estimate θ

under the loss L = (e-a) (or any other strictly convex loss), and that δ,

would be recommended for E^ and δ
2
 for E

2 >
 where δi(9) f δ

2
(9); thus a

violation of the LP will have occurred. (Neither Pivotal nor Structural

inference would necessarily recommend different actions here, but the

Jeffreys noninformative prior Bayes theory and also Akaike (1982) would seem to

so recommend.) The situation meshes exactly with the discrete setting discussed
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above, and so i f one (following the WCP) used

( 3 . 7 . 1 4 ) δ ^ U . X j ) ) = δj ίx j)

for the mixed experiment E*, (3.7.13) would hold. I t follows from Theorem 4

that ό1 fa i ls the Evaluation Game for § € C^ Note that δ1 would not f a i l the

Evaluation Game for any θ which converged to zero or one. The failure of 6 for

any θ e C ,̂, or even more generally for any θ which lies within a compact subset

of Θ some positive fraction of the time, strikes us, however, as strong enough

evidence to rule out using δ .

The non-discrete version of the above argument for convex loss

would assume (see the discussion around (3.7.4)) that, in violation of the

RLP for E*f

(3.7.15) δ^O.x,)) 7^
]
((2, φfxj)), for x , € A.

The analog of (3.7.11) is now

(3.7.16) 62((j,xj)) = E[δ
1
((J,X

J
))|T(j,x

J
)3,

the conditional expectation of 6 given T, where T is the sufficient

statistic (in E*)

( 2 , φ t x j ) ) i f j = 1 and x ] € ϋ ]

( j , x . ) otherwise,
j

The appropriate versions of (3.7.12) and (3.7.13) can easily be established

and under reasonable conditions, failure of δ in the Evaluation Game follows.

EXAMPLE 14 (continued). Suppose i t is desired to estimate J (which is

equivalent to θ) under the s t r i c t l y convex loss

(3.7.17) L(δ,J) = t r U I ' V l o g όet{δ^)-2.

-1 2
(The loss L ( δ 4 ) = tr(ό$~ - I ) would work similarly - see James and Stein

(1961) and Selliah (1964).) If one treats π,(θ|s) and π
9
(θ|s) in (3.6.3) and

(3.6.4) as posteriors and calculates the optimal estimators with respect to
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(3.7.17), one obtains

(3.7.18) δ
Ί
(s) = s

n-1)-1

0

0

(n+i:

\

1 s u -

where s = s.s* = SySy, s. and Sy being lower and upper triangular, respectively.

If these estimators would be used in E-j and E,,, the WCP would lead to using the

estimator 6 ((j,s)) = δ.(s) in the mixed experiment E*.
J

To establish failure of 6 in the Evaluation Game, let

A = {s: δ^(s) f 6
2
(s)} and note that A has probability one for all θ. This

situation satisfies the conditions of the RLP with U-j and U
2
 being the entire

sample space, c( ) = 1, and φ being the identity map (since the probability

space is identical for E, and E
2
) , and also satisfies (3.7.15). The estimator

p
6 in (3.7.16) is simply

δ
2
((j,s)) = ̂ ( ( l . s ) ) +}δ

2
((2,s))

\ δ
2
(s),

and, from the strict convexity of the loss, it follows easily that (for E*)

R(θ,ό
2
) < R(θ,ό

Ί
) for all θ.

Furthermore, the conditions of Theorem 4 can easily be verified in this

2 1

situation, and so the conclusion of the theorem applies: δ is better than δ

in the Evaluation Game for all bounded sequences £.

Of course, this same analysis would hold for any estimators that

differ for E
]
 and E

2
, not just for δ

]
 and δ

2
 in (3.7.18). Thus violating the

RLP by using different estimators in the two cases seems definitely contra-

indicated.

The same kind of conclusion follows in the "inference" situation of

giving the "confidence" to be attached to a set C, using a loss such as (3.7.8).

If π,(θ|s) and π
2
(θ|s) are used as posteriors to produce probabilities that θ

is in C (via (3.7.9)) and these probabilities differ (as will usually be the
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case), an analysis virtually identical to that above shows that the violation

of the RLP results in an inference for E* which fails the Evaluation Game for

all bounded θ. Again, one could object to evaluating inferences via (3.7.8),

but use of any reasonable measure of the performance of inferences would lead

to the same conclusion.

3.7.3 Betting Evaluation

Studying coherence in betting has a long tradition in statistics,

especially Bayesian statistics. The typical scenario deals with evaluation

of methods (usually inference methods) which produce, for each x, either a

probability distribution for θ, say q
v
(θ) (which could be a posterior distribu-

x

tion, a fiducial distribution, a structural distribution, etc.), or a system of

confidence statements {C(x), ό(x)} with the interpretation that θ is felt to be

in C(x) with probability ό(x). For simplicity, we will restrict ourselves to

the confidence statement framework; any ίq
χ
(θ)} can be at least partially

evaluated through confidence statements by choosing {C(x)} and letting δ(x) be

the probability (with respect to q ) that θ is in C(x).

The assumption is then made (more on this later) that, since ό(x) is

thought to be the probability that θ is in C(x), the proposer of {C(x), δ(x)}

should be equally willing to accept either the bet that θ is in C(x), at odds of

(l-δ(x)) to δ(x), or the bet that θ is not in C(x), at odds of ό(x) to

(l-δ(x)). An evaluations game, as in Section 3.7.2, is then proposed, in

which the master of ceremonies again generates θ^ and X^
t
 Player 1 stands ready

to accept bets on {C(x), δ(x)}, and Player 2 bets s(x) at odds determined by

δ(x). Here, s(x) = 0 means no bet is offered; s(x) > 0 means that an amount

s(x) is bet that θ € C(x); and s(x) < 0 means that the amount |s(x)| is bet

that Θ $ C(x). (As discussed in Robinson (1979a), restricting s(x) to satisfy

Is(x) I <_ 1 is also sensible.) The winnings of Player 2 at the ith play are
W
i • "cίx^ i ^ i ^ V

1 n

and of interest is again the limiting behavior of ± I WΊ . I f , for some e > 0,
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(3.7.19) PJl im inf J- [ W. > e) = 1

for all sequences θ = (θ
]
 ,.θ

2
,. . . ) , then {C(x), ό(x)} will be called incoherent,

or alternatively s(x) will be said to be a super relevant betting strategy. If

it is merely the case that (3.7.19) holds for any θ 6 C^ with ε = 0, then

ίC(x), δ(x)} will be called weakly incoherent or s(x) will be said to be weakly

relevant. (These concepts can be found in different, but closely related, forms

in such works as Buehler (1959, 1976), Wallace (1959), Freedman and Purves

(1969), Cornfield (1969), Pierce (1973), Bondar (1977), Heath and Sudderth

(1978), Robinson (1979a, 1979b), Levi (1980), and Lane and Sudderth (1983).)

If {C(x), δ(x)} is incoherent or weakly incoherent, then Player 1

will for sure lose money in the appropriate evaluations game, which certainly

casts doubt on the validity of the probabilities ό(x). A number of objections

to the scenario can, and have, been raised, however, and careful examination

of these objections is worthwhile.

Objection 1. Player 1 will have no incentive to bet unless he perceives the

odds as slightly favorable. This turns out to be no problem if incoherence is

present, since the odds can be adjusted by ε/2 in Player l's favor, and

Player 2 will still win. If only weak incoherence is present, it is still

often possible to adjust the odds by a function g(x) so that Player 1 perceives

that the game is in his favor, yet will lose in the long run, but this is not

clearly always the case.

Objection 2. Weak incoherence has been deemed not very meaningful, since a

sequence θ = (θ^
f
θ2> .-) could be chosen so that Player 1 is not a sure loser.

However, the fact that Player 1 is a sure loser for any θ e Q,
n
 seems quite

serious.

Objection 3. Of course, frequentists who quote a confidence level δ for

{C(x)} remove themselves from the game, since they do not claim that ό is the

probability that Θ is in C(x), and hence would find the betting scenario

totally irrelevant.
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Objection 4. The game is unfair to Player 1, since Player 2 gets to choose

when, how much, and which way to bet. Various proposals have been made to

"even things up." The possibility mentioned in Objection 1 is one such, but

doesn't change the conclusions much. A more radical possibility, suggested

by Fraser (1977), is to allow Player 1 to decline bets. This can have a

drastic effect, but strikes us as too radical, in that it gives Player 1

license to state completely silly ό(x) for some x. It is after all {δ(x)}

that is being tested, and testing should be allowed for all x.

Objection 5. The most serious objection we perceive to the betting game is

that {ό(x)} is generally not selected for use in the game, but rather to

communicate information about θ. It may be that there is no better choice of

{6(x)} for communicating the desired information. Consider the following

example, which can be found in Buehler (1971), and is essentially successive

modifications by Buehler and H. Rubin of an earlier example of D. Blackwell.

EXAMPLE 15. Suppose z and Θ are the integers, and that P
θ
(X=θ+l) =

P.(X=θ-1) = Q . We are to evaluate the confidence we attach to the sets

C(x) = {x+1} (the point (x+Ί)), and a natural choice is ό(x) = j (since Θ is

either x-1 or x+1, and in the absence of fairly strong prior information about

θ, either choice seems equally plausible). This choice can be beaten in the

betting game, however, by betting that θ is not in C(x) with probability g(x),

where 0 < g(x) < 1 is an increasing function. (Allowing Player 2 to have a

randomized betting strategy does not seem unreasonable.) Indeed, the expected

gain per bet of one unit, for any fixed Θ, is y [g(θ+l)-g(θ-l)] > 0, from

which it is easy to check that δ(x) = ^
 is
 weakly incoherent. (A continuous

version of this example, mentioned in Robinson (1979a), has X ^T^(θJ),

Θ = IR
Ί
, C(X) = (-co, x), and δ(x) = |.)

In this and other examples where (ό(x)} loses in betting, one can

ask the crucial question - Is there a better δ that could be used? The

question has no clear answer, because the purpose of δ is not clearly defined.

One possible justification for δ(x) = j
 Ίn
 the above example is that it is the
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unique limiting probability of C(x) for sequences of what could be called

increasingly vague prior distributions. (A more formal Bayesian justification

along these lines would be a robust Bayesian justification, to the effect that

the class of possible priors is so large that the range of possible posterior

probabilities for C(x) will include 1/2 for all x.) An alternative justifica-

tion can be found by retreating to decision theory, and attempting to quantify

how well δ(x) performs using a loss such as (3.7.8). One can then ask if

there is a better 6 in terms, say, of the decision-theoretic Evaluation Game

for bounded θ. The answer in the case of Example 15 is - no! A standard

limiting Bayes argument can be used to show that ό(x) = j is decision -

theoretically admissible for this loss, from which it follows that, for any

other <S*, a bounded (indeed constant) sequence θ can be found such that 6 is

better than 6* in the Evaluation Game.

The Evaluation Game (or decision-theoretic inadmissibility) with

respect to losses such as (3.7.8) can be related to incoherency, and seems to

be a criterion somewhere between weak incoherency and incoherency (c.f.

Robinson (1979a)). This supports the feeling that it may be a more valid

criterion than the betting criterion. This is not to say that the betting

scenarios are not important. Buehler, in discussion of Fraser (1977), makes

the important point that, at the very least, betting scenarios show when

quantities such as δ(x) "behave differently from ordinary probabilities." And

as Hill (1974b) says

"...the desire for coherence...is not

primarily because he fears being made

a sure loser by an intelligent opponent

who chooses a judicious sequence of

gambles...but rather because he feels

that incoherence is symptomatic of some-

thing basically unsound in his attitudes."

To show that violation of the LP (or RLP) leads to some form of

incoherence, it is again necessary to consider the setup in Section 3.7.1.
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Taking the discrete case f i r s t , suppose a fixed set C c Θ is assigned

"confidence" c^ in E-j when xj is observed, but "confidence" aΛf α,) in E2

when xL is observed. I f the WCP is followed for the mixed experiment E*, the

confidence function δ employed satisfies

) ) ) = α1 t α2

the appropriate version of ( 3 . 7 . 3 ) . Consider now the betting strategy (see the

beginning of the section for interpretation)

if x. f x̂  or x£

if j = k and x. = xή or

-c (l-α.) if j f k and x. = xJ or
J J J '

where c-j = 1, c
2
 = c (from (3.7.1)), and k = 1 or 2 as α-j < α

2
 or c^ > α

2 >

respectively. If this strategy is used with odds corresponding to α. when
j

(j,x' ) is observed, the expected gain can be easily calculated to be
j

If f (xp is bounded away from zero for all bounded sequences θ, it follows

easily that δ is weakly incoherent.

In the nondiscrete case, one replaces α. above by α.(x.) (the

j J J

"confidence" in C if x is observed in E.), and assumes that, for some
j j

A c UΊ with P^(A) > 0 for a l l θ,

α^X^ t α
2

for A.

The corresponding confidence function in the mixed experiment E* is

δ ( ( j , x )) = α.(χ.)> which again violates the RLP. Consider, now, the betting
J j J

strategy

0 if (j.Xj) 4 A*

c
j

( x
j

) c ι
j

( x
j

) i f
 ^"

k
tίJ

 x
j ^

 a n d

-CJ(XJ)(1-OJ(XJ)) if and

A*

A*,

where
-1

= 1, c
2
(x

2
) = c(φ"'(x

2
)) (see (3.4.1)),
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A* = A} U A},

and

or1 if j = l and α^X-j) < α ^ φ U ^ )

j
=
2 and α- (φ (x^

2 otherwise.

The expected gain for this betting strategy can easily be calculated to be

/ \ |α
]
(x

1
)-α

2
(

φ
(x

1
))|pj(dx

1
).

Weak incoherency wil l again follow under reasonable conditions.

For general theorems on coherence, consult Heath and Sudderth

(1978) and Lane and Sudderth (1983) and the references therein. These theorems

indicate that, unless δ for E* is compatible with some posterior distribution,

incoherency wi l l result. A coherent 6 wi l l not violate the LP (or RLP), and so

incoherence of violation of the LP is quite general. Again, however, this may

not be as convincing as the decision-theoretic refutation of violation of the

LP which was discussed in Section 3.7.2.




