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TESTS FOR AND AGAINST TRENDS AMONG POISSON INTENSITIES1

BY RHONDA MAGEL2 and F. T. WRIGHT

North Dakota State University and University of Missouri-Rolla

Suppose one observes independent Poisson processes with unknown intensities λ,, i
= 1, ... , k, and that apriori it is believed that these intensities satisfy a known ordering.
For preliminary analysis, it might be desirable to test for homogeneity among the intensities
and, of course, one would want a test that utilizes the information in the ordering. Let ί,
denote the length of time for which the ith process was observed. The case in which the
ί, are equal has been studied in the literature. We develop the conditional likelihood ratio
test for arbitrary /,. This test is equivalent to the unconditional likelihood ratio test, but leads
to an interesting multinomial testing situation, ie. testing for homogeneity of /?,//, versus
a trend among the /?,//,, where the pj are the cell probabilities. If the number of trials in
the multinomial setting, or the total number of occurrences in the Poisson processes, is
large, then the test statistic has an approximate chi-bar-squared distribution which has been
studied in the literature. Results of a Monte Carlo study comparing this test with the maxi-
min test developed by Lee (1980) are discussed. Similar results are also obtained for testing
the null hypothesis that the intensities satisfy the prescribed ordering.

1. Introduction. Barlow, Bartholomew, Bremner and Brunk (1972) discuss the prob-

lem of estimating a finite sequence of Poisson intensities which are assumed to be nonin-

creasing. For instance, consider a system which is observed for tλ units of time with Xλ

failures, is then modified in an attempt to improve its performance, is observed for t2 units

of time with X2 failures, is modified again, and this is repeated until it is observed for the

kth time for tk units of time with Xk failures. If it is believed that the modifications will

not harm the system's performance, then one might wish to estimate the vector of inten-

sities, λ = (λ1? ... , λk), subject to λ\ ^ ... ^ \k. It would also be of interest to test for

homogeneity among the intensities with the alternative λι 2* ... ^ λk and λx > λk, or if

the assumption concerning the modification were in question, one could test λj ^ ... ^

kk against λ, < λ, +1 for some i.

Suppose Xu ... ,Xk are independent Poisson variables with means μt = λtif l e t « be

a partial order on {1,2, ... , k}9 let λ ( 0 ) be a fixed vector, let a be an unknown scale parame-

ter and let Ho: λ = a\(0\ Hx: λ, ^ λ, whenever i « j and H2: ~ Hι (that is, λ, > λ, for

some i«j). The hypothesis Hλ stipulates that λ = {\λ, ... , \k) is isotonic (with respect

to « ) and we suppose that λ ( 0 ) is isotonic. We consider the likelihood ratio test (lit) for

HQ versus //, - Ho and Hλ versus H2 conditional on Σ*=1X, = n. While it will be shown

that the conditional test is equivalent to the unconditional lit, it does lead to an interesting

multinomial testing situation. We also know that for k = 2 it is UMP unbiased. (See Fergu-

son (1967, p. 228)).

Robertson and Wegman (1978) consider order restricted tests for members of the expo-

nential family, but their work requires that the sample sizes be equal. Their results can be

applied in the testing situation considered here only if the tt are all equal. Bos well (1966)

1 This research was sponsored by the Office of Naval Research under ONR Contract N00014-80-C-0322.
2 Parts of this work are taken from this author's doctoral dissertation written at the University of Missouri-

Rolla.
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considers a closely related problem and develops the conditional lit for testing that the in-
tensity of a nonhomogeneous Poisson process is constant versus it is nondecreasing.

Lee (1980) developed a maximin test for the multinomial setting arising in the condi-
tional framework. It could be used to provide a test of Ho versus Hλ-H0. The results of
a Monte Carlo study comparing the lit and the maximin test are given in Section 4. It is
found that for small k (k = 3,4,5), the two perform similarly with the power of the maximin
test larger for "regular" alternatives and the power of the lit larger for "nonregular" alterna-
tives. Furthermore, the differences in power are not too large. However, for larger k (k
= 10) the differences are more pronounced and if nonregular alternatives cannot be ruled
out the lit should be used.

2. Estimation. The maximum likelihood estimate (mle) of λ subject to Hi can be ex-
pressed as a projection onto a cone of isotonic functions. We introduce some notation. With
< < a fixed partial order on {1,2, ... , k}9 let3* denote the fc-dimensional reals, let

C = {x e Jtk: x is isotonic with respect to < <},

let w = (w1,w2, ... , wk) be a vector of positive weights, for x,y e CRk let (x,y)w denote

the inner product Σ =̂1w.Jt/y/, and for y e ^ let£w(y|C) denote the projection of y onto C,

that is Eψ(y\C) minimizes

Σf= i wfyr-Xi)2 for x € C.

Theorems 1.4 and 1.5 of Barlow, Bartholomew, Bremner and Brunk( 1972) state that

(2.1) ϊUwiEMc)i = ϊUwiyi

and

(2.2) Σ?=1w/(y-^(y|C)ί )Ew(y|C)/ = 0

The mle of λ subject to Hx is X = Et(X/t\C) where t = (tλ, ... , tk), X = (X,, ... , Xk)

and for x,y e J?k, x/y = (x\ly\, ... , Xk/yk) and xy = (xλVi, ... , x*y*). (See Barlow, Barth-

olomew, Bremner and Brunk( 1972, p. 44)).

Conditioning on Y = Σ^X,. = n, the density of X is that of a multinomial with

parameters n and

(2.3) pi = λA/Σf= ,λ/, fori = 1, ... ,k.

SoH0: λ = tfλ<°> is equivalent to H'o: pt =pf» = ̂ tJΣ^ψtj, 1 < i < k,

Hi'.λis isotonic is equivalent to H\: p/t is isotonic, and

H2: λ is not isotonic is equivalent to H'2: p/t is not isotonic.

The mle of p subject to H\ is also of interest.

THEOREM 1. The mle ofp subject to H\ is given byp = tEt{X/t\C)/n. These pi satisfy

Pi ^ 0 and Σf= φi = 1, and p -> p almost surely provided p/t is isotonic.

Proof. The mle of p under H\ maximizes Π**ifo/f,-)* subject to p/t is isotonic, pt ^

0andΣ?=i/?ι = 1. Applying the result in Barlow, Bartholomew, Bremner and Brunk (1972,

p. 46), we see that p = t£t(X/t|C)/n. Since the projection £"W( |C) is continuous for fixed

C and w, p = t£t(X/(nt|C) -> tEt(p/t\C) almost surely. If p/t is isotonic the right hand side

(rhs) is p and the proof is completed. D

If « is a total order, then the pool-adjacent-violators algorithm can be used to compute

the projection in the formula for p and the lower sets algorithm can be used for an arbitrary

partial order. (See Chapter 2 of Barlow, Bartholomew, Bremner and Brunk (1972)).
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3. Tests of Hypotheses. As was mentioned in the Introduction, we consider the condi-

tional lrts of Ho versus Hλ-H0 and of Hλ versus H2. However, these lead to the lrts of H'o
versus H\-H'o and of H\ versus H'2. Chacko (1966) developed the lit and an asymptotically

equivalent modified χ 2 test for H'o versus H\-H'Q in the totally ordered case with p ( 0 ) and

t constant vectors. Robertson (1978) developed both lrts for partial orders with t a con-

stant vector.

Denoting the conditional likelihood ratios by λ ^ and λ'12, we see that

(3.1) r 0 1 =-2lnλ'oι = 2Σ

and

(3.2) T\2 = - 2 l n λ ' 1 2 = t 1 ^ |

Hence, the test statistic for Ho versus Hi -Ho is obtained by replacing pj0) with

λi0HJΣk

j=ιψtj in (3.1) and for testing Hi versus//2, Tn = Tn:

Remark!. The conditional lrts, Toι and Γ12, are also the unconditional lrts.

Proof. Under Ho, the mle of a is n/ΣJL i λ.j0)ί/ Using (2.1) and straight-forward algebra

and denoting the likelihood ratio for testing Ho versus Hλ - Ho {Hλ versus H2) by λOi (λ.i2),

one can show that -2 In λOi = ?oi and -2 In λ 1 2 = Tλ2>
 D

Next the large sample distributions of these test statistics are determined. The derivations

are like those given in Robertson (1978) and in fact we will make use of several lemmas

proved there.

LEMMA 3. In the multinomial setting, let Zy be independent normal variables with

mean 0 and variance 1//?, and let Z = 2*=1/?.Zr As n-> oo, Vn (β-p)^> (pi(Zi-Z), ... ,

pkZk-Z)). Let q denote a fixed vector of probabilities with q/t isotonic, let D denote the

closed, convex cone

D = {jce^ jc/^jt if / <<y'and <?,/*, = q/tj],

let ri < ... < rh denote the distinct values among tif i = 1, ... ,k> and letM(i) = {j qjtj =

r.} ίor i = 1, ... , h. Robertson (1978) observed that Ew(x\D) can be computed by indepen-

dently computing its values for subscripts in M(i) for i = 1, ... , h. This implies that if y e

9?k has positive entires and is constant on each Λf(/), then

(3.3) £w(x|D) = £ w y (x |D).

(This can be easily seen by considering the lower-sets algorithm.)

LEMMA 4. If x,y e Ήk with y constant on each Af(0, then £w(x-y|Z>) = £w(x|/>) - y.

If in addition, y has nonnegative entries, then Ew(xy|D) = y£w(x|D).

LEMMA 5. If x e ^ with maxyeΛ/(l>xI < minyeM(l +1 ̂  for / = 1, ... , h-1, then 2sw(x| C)

= £w(x|D).

The cone D is determined by < < and q. For a given D, define P^k) to be the probabil-

ity of exactly /distinct values in EW(V\D) where V = (Vi, ... , Vk), with the V, independent

normal variables with mean 0 and variance l/wrlf« is the usual total order on 1, ... , k

and qjt. [s constant, then D = {x:xι < ... < xk} and the Pw(t,k) are discussed in detail

in Barlow, Bartholomew, Bremner and Brunk (1972). Approximations for nonconstant w

are discussed in Siskind (1976) and Robertson and Wright (1983). If < < is the same total

order, but qjti is not constant, then the results mentioned above can be used to determine

these probabilities for each M(ϊ) and the Λ-fold convolution gives the desired Pw(fyk). (Cf.
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Barlow, Bartholomew, Bremner and Brunk (1972)). The latter reference also discusses the
the P^yk) for some partial orders. Let χ2

e denote a chi-squared variable with / degrees of
freedom (χ? = 0).

THEOREM 6. If in the Poisson setting, the vector of intensities is a λ ( 0 ) and q = p ( 0 )

(cf. (2.3)), or in the multinomial setting, if the probability vector is q = p ( 0 ) and ifD is

determined by q, then for t ^ 0,

(3.4) liπv_P[Γ01 >t\Y=n] = liπv^P[Γ0 1»] = Σk,=ϊPq^fk)P[χl^t].

If in the Poisson setting, the vector of intensities is of the form av with v isotonic and q is

determined by (2.3) with λ(0) replaced by v, or if in the multinomial setting the vector of

probabilities, q, is such that q/t is isotonic, and ifD is determined by q, then for t > 0,

(3.5) lim^/>[Γ 1 2>f|y=,i] = l i n w P t r ; ^ / ] = Σ*,= 1/>^,*)/>[χL^],

(3.6) lim_00/>[Γ12>/|y=Λ] < lim_0 0/ )JΓ y 2>ί|y=n], and

(3.7) Ihn^ir^t] < l i π v ^ Λ [ Γ / 2 » ] ,

where in the Poisson setting Pe[ ] denotes the probability under λ = (1,1, ..., 1) and in

the multinomial setting, Pδ[ ] denotes the probability under pi = tJΣk

j=xtjf i =

1,2, . . . , * .

Comments. In the Poisson setting, if one wishes to test Ho versus Hλ - Ho, then q

is set equal to p ( 0 ) determined by (2.3). The vector q determines D which in turn determines

the Pq(£,k) and so large sample p-values can be calculated for the conditional test from (3.4).

In testing //, versus H2, (3.6 indicates that the asymptotically least favorable configuration

in Hx is λ = (1,1, ... , 1) and so with qt = tjt)=xtj9 D = C and approximate p-values

can be computed from (3.5).

In the multinomial setting, in testing H'o versus H\ - H'o, set q = p(0) and use (3.4) to

determine large sample p-values. In testing H versus H'2, the asymptotically least favorable

configuration in Hλ is qέ = tJΣkj=\tj in which case D = C and approximate p-values can

be computed from (3.5).

In either case, one might not want to use the asymptotically least favorable configuration

when testing Hi versus H2 or H[ versus H'2, so one could use the restricted mles of λ or

p rather thane or δ.

Proof ΓQI is defined to be T'oι with /^0) replaced by λ}°V/Σ^jλf >/, and Γ1 2 = Γ12.

Furthermore, conditional o n F = n , (Xi, ... , Xk) is multinomial with parameters n and

Pi = M/£)=iλ/, and Hi = Hf

it i = 0,1,2. So we need only consider the multinomial situa-

tion. We first consider the distribution of T'Oi under //Q. Setting pt = XJn, expressing T'Qλ

as

and expanding In Et(p/t\C)i and In (j/PVti) aboutpjtit we write T'Qλ as

(3.8)

where a^) is between/?,//; and^ίp/tlQ (p/0)/ζ). Under//;, both£t(p/t|Q and^/ζ converge
almost surely topjO)/tr Recall, (2.1) implies that the first term in (3.8) vanishes.

Since p/t is consistent for p(0)/t under//ό, there is for almost all ω in the underlying prob-
ability space an N, possibly depending on ω, for which p/t satisfies the hypothesis of
Lemma 5 for n ^ N. Hence, for such ω and n, Lemmas 4 and 5 can be applied to the second
term in (3.8) to obtain
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which converges in distribution to

Σf-.(^{((ΛXZ-Z)) 2 -(Et((p<°Vt)(Z-Z)|Z»(-

Applying Lemma 4 and (3.3), this can be written as

The second term in the rhs of (3.9) can be shown to be zero using (2.1) and (2.2), and

Theorem 3.1 of Barlow, Bartholomew, Bremner and Brunk (1972) shows that the first term

on the rhs has the desired distribution.

Next we consider the distribution of T\2 with q a fixed probability vector for which q/t

is isotonic. Writing Γ12 as 2ri2Mpt Inφjψ - In £t(p/t|C), , expanding //^(p/tlQ about

ti and applying (2.1), T\2 can be written as

where γ, is between £t(p/t|C). and pjtt and hence converges almost surely to qjtr As

in the proof of the first part of the theorem, for almost all ω and n sufficiently large

V7Ϊ (£t(p/t|C) - q/t) = £ t (Vή (p - q)/t|D).

Hence, T\2 converges in distribution to

(3.10) ^ ^

Applying (3.3) this becomes

and this has the desired distribution (cf. Theorem 2.5 of Robertson and Wegman (1978)).

We establish (3.7) to conclude the proof. The variables t/, = V^//, Z.are independent

normal variables with means zero and varίt/,) = l/ίf. Using (3.3), the rhs of (3.10) can

be written as Σf= ,*,(£, (U|Z)) - Uf, which is the distance from Et(Vp) to U. Since C C D,

by the definition of projection this is maximized for D = C, which occurs if q/t is constant,

ie. qr= tilXk

i=λtj. D

In the multinomial setting, Lee (1980) developed a maximin test forpλltλ = p2ft2 = ...

= pijtk versus p I + 1 /ί l + 1 ^ dpjtit i = 1,2, ... , k-l, with d > 1. The test statistic is SOi

= Σ^zX/, which has an approximate normal distribution and under this null hypothesis

its mean and variance are

r&UiUKUti and npSf. ,ft/Σί-.', - Gί- nVΣ?-1'.)2}>
respectively. The tests 5Oi and T'oι are compared in the next section.

4. Comparison of the lrt and Maximin Tests. The maximin test is a contrast test

and Section 4.2 of Barlow, Bartholomew, Bremner and Brunk (1972) contains a discussion

of the use of the likelihood ratio and contrast approaches in testing for trends among normal

means. They concluded that, while the contrast test is typically much easier to use, the

lrt provides the most satisfactory general way of incorporating prior information about or-

dering. In the case of a total order and small k, the contrast statistic provides a suitable

alternative. If additional information is available about the spacing of the parameters, then

a contrast test based on this additional information may be preferred.

To give some idea of the differences in the power for the two tests a Monte Carlo study

was conducted. In particular, if one were testing
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Pi = tilXf=λtp l^i^K versus/?!/^ ^p2/t2^ ... ^/V/* with/?,/*!</?*/**,

then Tόu with p\0) replaced by t^XjL\tjt and SOi could be used. Because the distribution

of 7o! under H\ is quite complex, Monte Carlo experiments were conducted. With k =

3 , 4 , 5 , 1 0 , n = 25, 80, nominal levels of. 1, .05, and various choices of tandp, the powers

of 7cπ and SOi were approximated based on 5000 repetitions. Some of these values are given

in Tables 1 and 2. To assess the accuracy of the approximations for the distributions under

the null hypothesis, the estimates of the power under the null hypothesis are included. For

n = 80 and the cases presented in these tables the largest discrepancy in the α level for

T^(SOί) and a nominal level of .1 is .016 (.009) and for α = .05 it is .005 (.007). For

n = 25 the maximum discrepancies were larger but both approximations seem to be useful

for k in this range. However, for k = 10 and n = 25 the approximation for the distribution

of 7QI seems to give a test that is quite conservative. Its estimated α level is .065 (.031)

when the nominal level was .1 (.05). The approximation for SOί seemed quite adequate

even with n = 25 and k — 10. Its estimated α levels are . 100 (.046), respectively.

It is clear from Tables 1 and 2 that neither test is uniformly better than the other. In fact,

when the pjtt increase regularly, such as in the cases p/t = (.25, .30, .45), p/t = (.20,

.25, .35), p/t = (.15, .20, .30, .35), p/t = (.10, .15, .20, .25, .30), etc., then the maximin

test outperforms TOλ, but for irregular increases in p/t, such as in the cases p/t = (.25, .25,

.50), p/t = (.2, .3, .3), p/t = (.052, .052, .120), p/t = (.04, .04, .04, .073), p/t = ( . 0 3 ,

.03, .07, .07), p/t = (.15, .2, .2, .25), etc., T'Oλ has greater power than S0\. For k = 3,4,5

the differences in power are not too large and the magnitudes are similar in both directions.

So for small k one could use SOί if the alternative were believed to be "regular" in the sense

described above or T'Oλ could be used if it is desirable to protect againt nonregular alterna-

tives.

It is interesting to note that for k = 3 and 4 the above conclusions held whether the vector

t was constant or not. (Several other choices of p and /, not given in Tables 1 and 2, were

considered and these conclusions were substantiated in those cases, also.) For this reason

only constant ί's were considered for k = 5 and 10. Recall that for k > 5, the Pt(t,k) are

intractable for nonconstant t.

Power comparisons were made for k = 10, but with n = 25 they were not very mean-

ingful because of the conservative nature of the approximation to the null distribution of

Tόi. For n = 80 both approximations were very reasonable and so power comparisons could

be made in that case. Linear alternatives were considered. Forp, = ί/55 both tests have

powers that are essentially one. Sop, = il 110 + .05 was considered. The tests with nominal

level .1 had powers .822 and .861, and the tests with nominal level .05 had powers .712

and .759. Of course, the maximin test performed better for such an alternative. The alterna-

tive Pi = .09, 1 ^ / ^ 9, and/710 = .19 was considered. The estimated powers for the

tests with α = . 1 are .700 and .556 and for the tests with α = .05 they are .578 and .409.

Finally the alternativepλ = .07, p2 = ... = p9 = .1, and/>10 = .13 was considered, and

the approximate powers for the α = .1 tests are .377 and .332. For the α = .05 tests they

are .252 and .199. Of course, the last two alternatives are nonregular and the lit has the larger

power. In these cases, the increase in power may be as large as 40 percent and so the lit should

definitely be considered to guard against nonregular alternatives for larger k.
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TABLE 1. Estimated Powers of the Maximin and LRTs, k=3
k=3

n=25 n=80 n=25 n=80

Nominal Level
.10 .05 .10 .05 .10 .05 .10 .05

t=(l,l,l),p/t=(l/3,l/3,l/3) t=(2,l,l),p/t=(.25,.25,.25)

.101 .047 .085 .052

.081 .049 .100 .044

t=(2,l,l),p/t=(.20,.25,.35)

.459 .315 .771 .664

.423 .337 .802 .677

t=(2,l,l),p/t=(.2,.3,.3)

.346 .220 .624 .509

.304 .230 .633 .473

t=(2,3,5),p/t=(.05,.10,.12)

.571 .332 .891 .803

.504 .386 .889 .778

t=(8,2,8), p/t=(.04,.06,.07)

.527 .351 .832 .754

.452 .368 .855 .763

t=(4Λ6,4), p/t=(.052,.052,.120)

.758 .609 .981 .947

.723 .535 .965 .921

TABLE 2. Estimated Powers of the Maximin and LRTs, &=4,5
k=4

n=25 n=80 n=25 n=S0
Nominal Leγel

10 .05 .10 .05 .10 .05 .10 .05
t=(l,l,l,l),p/t=(.25,.25,,25,.25) t=(4,6,4,6),p/t=(.05,.05,.05,.05)

.055 .097 .051 .099 .054 .095 .055

.050 .101 .050 .086 .042 .103 .049

t=(l,l,l,l),p/t=(.15,.20,.30,.35) t=(4,6,4,6), p/t=(.034,.042,.0495,.069)

.446 .930 .860 .487 .338 .826 .729

.482 .945 .883 .480 .342 .860 .757

(1,1,1,1), p/t=(.10,.25,.25,.40) t=(4,6,4,6), p/t=(.04,.04,.04,.07/3)

.665 .995 .985 .501 .345 .844 .766

.668 .993 .981 .464 .333 .834 .727

t=(l,l,l,l),p/t=(.23,.23,.23,.31) t=(4,6,4,6), p/t=(.O3,.O3,.O7,.O7)

.129 .376 .256 .730 .562 .983 .955

.143 .388 .245 .684 .544 .981 .946

k=5 and t=(l, 1,1,1)

p/t=(.2,.2,.2,.2,.2) p/t=(.10,.15,.20,.25,.30)

.050 .099 .049 .649 .489 .966 .930

.051 .091 .050 .679 .567 .974 .946

p/t=(.15,..15,.15,.15,.4O) p/t=(.15,.2,.2,.2,.25)

.613 .985 .969 .264 .172 .496 .356

.555 .955 .924 .252 .176 .488 .361
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t
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.711

.654
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