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TESTS FOR AND AGAINST TRENDS AMONG POISSON INTENSITIES!

BY RHONDA MAGEL? and F. T. WRIGHT
North Dakota State University and University of Missouri-Rolla

Suppose one observes independent Poisson processes with unknown intensities \;, i
=1, ..., k, and that apriori it is believed that these intensities satisfy a known ordering.
For preliminary analysis, it might be desirable to test for homogeneity among the intensities
and, of course, one would want a test that utilizes the information in the ordering. Let #;
denote the length of time for which the ith process was observed. The case in which the
t; are equal has been studied in the literature. We develop the conditional likelihood ratio
test for arbitrary ;. This test is equivalent to the unconditional likelihood ratio test, but leads
to an interesting multinomial testing situation, ie. testing for homogeneity of p/t; versus
a trend among the p;/t;, where the p; are the cell probabilities. If the number of trials in
the multinomial setting, or the total number of occurrences in the Poisson processes, is
large, then the test statistic has an approximate chi-bar-squared distribution which has been
studied in the literature. Results of a Monte Carlo study comparing this test with the maxi-
min test developed by Lee (1980) are discussed. Similar results are also obtained for testing
the null hypothesis that the intensities satisfy the prescribed ordering.

1. Introduction. Barlow, Bartholomew, Bremner and Brunk (1972) discuss the prob-
lem of estimating a finite sequence of Poisson intensities which are assumed to be nonin-
creasing. For instance, consider a system which is observed for ¢, units of time with X,
failures, is then modified in an attempt to improve its performance, is observed for #, units
of time with X, failures, is modified again, and this is repeated until it is observed for the
kth time for #; units of time with X, failures. If it is believed that the modifications will
not harm the system’s performance, then one might wish to estimate the vector of inten-
sities, A = (A4, ... , A\y), subject to A\; = ... = \;. It would also be of interest to test for
homogeneity among the intensities with the alternative \; = ... = Ay and \; > \;, or if
the assumption concerning the modification were in question, one could test \; = ... =
A\, against\; <\, ; for some .

Suppose X, ... , X, are independent Poisson variables with means p; = Az, let << be
apartial orderon{1,2, ... , k}, let \‘”’ be a fixed vector, leta be an unknown scale parame-
ter and let Ho: A\ = a\®, Hy: \; < \; whenever i << j and Hy:~ H, (that is, \; > \; for
some i << j). The hypothesis H, stipulates that A = (\y, ... , \g) is isotonic (with respect
to <<) and we suppose that A? is isotonic. We consider the likelihood ratio test (lIrt) for
H, versus H, — Hy and H, versus H, conditional on 3*_ X, = n. While it will be shown
that the conditional test is equivalent to the unconditional Irt, it does lead to an interesting
multinomial testing situation. We also know that for k = 2 itis UMP unbiased. (See Fergu-
son (1967, p. 228)).

Robertson and Wegman (1978) consider order restricted tests for members of the expo-
nential family, but their work requires that the sample sizes be equal. Their results can be
applied in the testing situation considered here only if the #; are all equal. Boswell (1966)
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considers a closely related problem and develops the conditional Irt for testing that the in-
tensity of a nonhomogeneous Poisson process is constant versus it is nondecreasing.

Lee (1980) developed a maximin test for the multinomial setting arising in the condi-
tional framework. It could be used to provide a test of H, versus H, — H,. The results of
a Monte Carlo study comparing the Irt and the maximin test are given in Section 4. It is
found that for small k (k = 3,4,5), the two perform similarly with the power of the maximin
test larger for “regular” alternatives and the power of the Irt larger for “nonregular” alterna-
tives. Furthermore, the differences in power are not too large. However, for larger k (k
= 10) the differences are more pronounced and if nonregular alternatives cannot be ruled
out the Irt should be used.

2. Estimation. The maximum likelihood estimate (mle) of \ subject to H; can be ex-
pressed as a projection onto a cone of isotonic functions. We introduce some notation. With
<< afixed partial orderon{1,2, ... , k}, let %, denote the k-dimensional reals, let

C = {x e &, : xis isotonic with respect to <<},

let w = (wy,w,, ... , W) be a vector of positive weights, for x,y € & let (x,y),, denote
the inner product Zt_,w,x,y,, and for y € %, letE, (y|C) denote the projection of y onto C,
that is E, (y|C) minimizes

Sk wiy~x;)? forxeC.

Theorems 1.4 and 1.5 of Barlow, Bartholomew, Bremner and Brunk (1972) state that

2.1 zf=1WiEw(Y|C)i = E§= Wi
and
(2.2) 2:‘(=Iwi(yx_Ew(y |C)i)Ew()’|C)i =0

The mle of \ subject to H, is X = E(X/t|C) where t = (t;, ... , t;), X = (X}, ... , X))
and for X,y € B, X'y = (x,/yy, ... , X/yi) and Xy = (x,y1, ... , xoy). (See Barlow, Barth-
olomew, Bremner and Brunk (1972, p. 44)).

Conditioning on ¥ = 2*_ X, = n, the density of X is that of amultinomial with
parameters n and
(2.3) pi=Nt/3f_\t; fori=1, ... k.

So Hy: A = a\® is equivalent to H'y: p, = p©@ = NO#/3%_ \V1, 1 =i<k,
H,: \ isisotonic is equivalent to H': p/t is isotonic, and
H,: \ is not isotonic is equivalent to H5: p/t is not isotonic.

The mle of p subject to H', is also of interest.

THEOREM 1.  The mle of p subject to H\ is given by p = tE(X/t|C)/n. These p; satisfy
p;=0and 2% ,p; = 1, and p - p almost surely provided p/t is isotonic.

Proof. The mle of p under H' maximizes T4, (pi/t;y™ subject to p/t is isotonic, p; =
0and 3% ,p; = 1. Applying the result in Barlow, Bartholomew, Bremner and Brunk (1972,
p. 46), we see that p = tE(X/t|C)/n. Since the projection E,(:|C) is continuous for fixed
C and w, p = tE(X/(nt|C) -» tE(p/t|C) almost surely. If p/t is isotonic the right hand side
(rhs) is p and the proof is completed. O

If << is a total order, then the pool-adjacent-violators algorithm can be used to compute
the projection in the formula for p and the lower sets algorithm can be used for an arbitrary
partial order. (See Chapter 2 of Barlow, Bartholomew, Bremner and Brunk (1972)).
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3. Tests of Hypotheses. As was mentioned in the Introduction, we consider the condi-
tional lIrts of Hy versus H,—Hy and of H, versus H,. However, these lead to the Irts of H{
versus H1—Hg and of H} versus H. Chacko (1966) developed the Irt and an asymptotically
equivalent modified x test for H{, versus Hi—H} in the totally ordered case with p and
t constant vectors. Robertson (1978) developed both Irts for partial orders with ¢ a con-
stant vector.

Denoting the conditional likelihood ratios by A 5, and \},, we see that

(3. 1) T6] =2ln )\61 = 22’,; l)(,{l’lEt(X/tIC),— ln(p;(o)/ti}—- 2ninn
and
3.2) T! = 2In\'y, = 23%_ X{In(X,/t) — InE(X/t|C)}.

Hence, the test statistic for Ho versus H1 — Ho is obtained by replacing p©® with
ANO%/Z%_ MOt in (3.1) and for testing H1 versus H2, T12 = T2

Remark2. The conditional Irts, T, and T',,, are also the unconditional Irts.

Proof. Under Hy, the mle of a is n/2%_;\{”1;. Using (2.1) and straight-forward algebra
and denoting the likelihood ratio for testing Hy versus H; — Ho (H; versus Hy) by Ao; (A\12),
one can show that -2 In Ag; = To; and -2 In A, = T),. o

Next the large sample distributions of these test statistics are determined. The derivations
are like those given in Robertson (1978) and in fact we will make use of several lemmas
proved there.

LEMMA 3. In the multinomial setting, let Z be independent normal variables with
mean 0 and variance 1/p, and let Z = 3_,pZ,. As n— ®, \/n (ﬁ-p)-ﬂ Pi(2-2), ...,
p.Z-2)). Let q denote a fixed vector of probabilities with g/t isotonic, let D denote the
closed, convex cone

D = {xe Ry x; < x;if i <<jand q/t; = qjit},

let r1 < ... < r, denote the distinct values among t,, i = 1, ... , k, and let M(Q) = {j:q;/t, =
r;} fori=1, ... , h. Robertson (1978) observed that E..(x|D) canbe computed by indepen-
dently computing its values for subscripts in M(i) for i = 1, ... , h. This implies thatify e
P has positive entires and is constant on each M(i), then

(3.3) Ew(x|D) = E,y(x|D).

(This can be easily seen by considering the lower-sets algorithm.)

LemMa 4. If x,y € ®, with y constant on each M(i), then E,(x=y|D) = E,(x|D) - y.
Ifin addition, y has nonnegative entries, then E,,(xy|D) = yE(x|D).

LEMMA 5. If X € R, with maxemqyt; < i+ 1yxj fori = 1, ..., h-1, then E(x|C)
=E,(x|D).

The cone D is determined by << and q. For a given D, define P, (¢ k) to be the probabil-
ity of exactly £distinct values in E,,(V|D) where V = (V, ... , V,), with the V, independent
normal variables with mean 0 and variance 1/w,. If << is the usual total orderon 1, ... ,k
and 4/t is constant, then D = {xx1 = ... < xk} and the P, (¢,k) are discussed in detail
in Barlow, Bartholomew, Bremner and Brunk (1972). Approximations for nonconstant w
are discussed in Siskind (1976) and Robertson and Wright (1983). If << is the same total
order, but g,/t; is not constant, then the results mentioned above can be used to determine
these probabilities for each M(i) and the h-fold convolution gives the desired P, (£k). (Cf.
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Barlow, Bartholomew, Bremner and Brunk (1972)). The latter reference also discusses the
the P, (¢,k) for some partial orders. Let x3 denote a chi-squared variable with ¢ degrees of
freedom (x5 = 0).

THEOREM 6.  If in the Poisson setting, the vector of intensities is a \® and q = p©
(cf. (2.3)), or in the multinomial setting, if the probability vector is q = p® and if D is
determined by q, then fort=0,

(3.4 lim_, P[T,, =t|Y=n] = lim,_, P[T,,=t] = 34 _ P (¢ 0PX; =1].
If in the Poisson setting, the vector of intensities is of the form av with v isotonic and q is

determined by (2.3) with A replaced by v, or if in the multinomial setting the vector of
probabilities, q, is such that g/t is isotonic, and if D is determined by q, then for = 0,

3.5) lim,_P[T,,=tY=n] = lim,_P[T,,=f] = Z,_ P (¢,k)P[x} ,=1],
(3.6 lim,_, P[T,,=tY=n] < lim_, P, [T,,=t|Y=n], and
(3.7) lim,__P[T},,=1] < lim_ P [T),=1],

where in the Poisson setting P,[ ] denotes the probability under A = (1,1, ..., 1) and in
the multinomial setting, P,[ ] denotes the probability under p, = /3 1, i =
1,2, ... k.

Comments. In the Poisson setting, if one wishes to test Ho versus H, — Hy, then q
is set equal to p® determined by (2.3). The vector q determines D which in turn determines
the Pq(f ,k) and so large sample p-values can be calculated for the conditional test from (3.4).
In testing H, versus H,, (3.6 indicates that the asymptotically least favorable configuration
inH,is\ = (1,1, ... , 1) and so with g; = ti/Ef=,tj, D = C and approximate p-values
can be computed from (3.5).

In the multinomial setting, in testing Hy versus Hi — Hp, set ¢ = p® and use (3.4) to
determine large sample p-values. In testing H} versus H3, the asymptotically least favorable
configuration in H, is ¢; = t;/ Ej?:,tj in which case D = C and approximate p-values can
be computed from (3.5).

In either case, one might not want to use the asymptotically least favorable configuration
when testing H, versus H, or Hj versus H;, so one could use the restricted mles of \ or
prather than e or 3.

Proof. Ty, is defined to be T, with pi” replaced by A¥1/3%_ \t; and T, = Ti,.
Furthermore, conditional on Y = n, (X;, ... , X;) is multinomial with parameters n and
p;i= )\,~t,~/2f= \t;and H; = H}, i = 0,1,2. So we need only consider the multinomial situa-
tion. We first consider the distribution of Tp, under Hp. Setting p; = X,/n, expressing Tg,
as

2n3%_ pAInE (P/[C), - In(p{®/11;)},
and expanding In E,(p/t|C), and in (p*/t;) about p/t;, we write Tp, as
(3.8) 2n3%_ {E(B/ItIC); - 1t}
+ nZ_ 1 p((Bi - Pi2)/1)*1B} — Es(PIY|C)i— pilt)* o},

where a,(8)) is between p,/1, and E,(p/t|C), (p*/1). Under H},, both E,(p/t|C), and p, /1, converge
almost surely to p©/t.. Recall, (2.1) implies that the first term in (3.8) vanishes.

Since p/t is consistent for p”/t under Hy, there is for almost all w in the underlying prob-
ability space an N, possibly depending on w, for which p/t satisfies the hypothesis of
Lemma 5 for n = N. Hence, for such » and n, Lemmas 4 and 5 can be applied to the second
termin (3.8) to obtain
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BV 0 BB - 1GEN 1 (ppOD)i-V rn p~p )t

which converges in distribution to
GOV Z-2)) - E@OmYZ-Z)|D)i- ¢z, -2))).
Applying Lemma 4 and (3.3), this can be written as
3.9 2 POZE ~ B PO, @D)
= 2 PO (E,o\(ZID)-Z) + 25 pO(Z,~E, o (ZID))E, (ZID)-Z).

The second term in the rhs of (3.9) can be shown to be zero using (2.1) and (2.2), and
Theorem 3.1 of Barlow, Bartholomew, Bremner and Brunk (1972) shows that the first term
on the rhs has the desired distribution.

Next we consider the distribution of T, with ¢ a fixed probability vector for which g/t
is isotonic. Writing T", as 2n2_,p, In(p,/t) — In E(p/t|C), , expanding InE,(p/t|C), about
P,/t; and applying (2.1), T', can be written as

B PV EBIIC), P/ Iy
where 7, is between E,(p/t|C);, and p,/t, and hence converges almost surely to g/t. As
in the proof of the first part of the theorem, for almost all @ and n sufficiently large
V1 (E /O - g/t) = E(V1 (p-q)/t|D).

Hence, T, converges in distribution to
(3.10) Sk 1(219)(E,(q/t)(Z-Z)D); - (9/1)Z - 2))* = =*_ q,(E(ZID), - Z)*.
Applying (3.3) this becomes
Elf= lqi(Eq(Z|D)i - Zi)z
and this has the desired distribution (cf. Theorem 2.5 of Robertson and Wegman (1978)).
We establish (3.7) to conclude the proof. The variables U; = V;;:/ti Z, are independent
normal variables with means zero and var(U;) = 1/¢;. Using (3.3), the rhs of (3.10) can
be written as 2¥_,#,(E,(U|D) — U,)?, which is the distance from E,(U|D) to U. Since CC D,
by the definition of projection this is maximized for D = C, which occurs if g/t is constant,
ie. g = t/3%_1;. O
In the multinomial setting, Lee (1980) developed a maximin test for p,/t; = py/t, = ...
= pi/ty versus p; . /t;y = dpit, i = 1,2, ..., k-1, with d > 1. The test statistic is So,
= 3%_,iX;, which has an approximate normal distribution and under this null hypothesis
its mean and variance are

n3k it/ Sk it and n{3k_ /3 - (ke it/ 352 ,0)7,

respectively. The tests So, and T, are compared in the next section.

4. Comparison of the Irt and Maximin Tests. The maximin test is a contrast test
and Section 4.2 of Barlow, Bartholomew, Bremner and Brunk (1972) contains a discussion
of the use of the likelihood ratio and contrast approaches in testing for trends among normal
means. They concluded that, while the contrast test is typically much easier to use, the
Irt provides the most satisfactory general way of incorporating prior information about or-
dering. In the case of a total order and small k, the contrast statistic provides a suitable
alternative. If additional information is available about the spacing of the parameters, then
acontrast test based on this additional information may be preferred.

To give some idea of the differences in the power for the two tests a Monte Carlo study
was conducted. In particular, if one were testing
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pi = t/3f 1), 1Sisk, versus py/t; Spo/t,< ... < pty with pi/t; <py/t;,

then T¢,, with p{® replaced by /3% ,t;, and S, could be used. Because the distribution
of Ty; under H' is quite complex, Monte Carlo experiments were conducted. With k =
3,4,5,10, n =25, 80, nominal levels of . 1, .05, and various choices of tand p, the powers
of T4, and Sp; were approximated based on 5000 repetitions. Some of these values are given
in Tables 1 and 2. To assess the accuracy of the approximations for the distributions under
the null hypothesis, the estimates of the power under the null hypothesis are included. For
n = 80 and the cases presented in these tables the largest discrepancy in the a level for
T4:(So;) and a nominal level of .1 is .016 (.009) and for @ = .05 it is .005 (.007). For
n = 25 the maximum discrepancies were larger but both approximations seem to be useful
for k in this range. However, for k = 10 and n = 25 the approximation for the distribution
of Ty, seems to give a test that is quite conservative. Its estimated a level is .065 (.031)
when the nominal level was .1 (.05). The approximation for Sy; seemed quite adequate
even with n = 25 and k = 10. Its estimated o levels are . 100 (.046), respectively.

It is clear from Tables 1 and 2 that neither test is uniformly better than the other. In fact,
when the p;/t; increase regularly, such as in the cases p/t = (.25, .30, .45), p/t = (.20,
.25, .35), p/t = (.15, .20, .30, .35), p/t = (.10, .15, .20, .25, .30), etc., then the maximin
test outperforms Ty, , but for irregular increases in p/t, such as in the cases p/t = (.25, .25,
.50), p/t = (.2, .3, .3), p/t = (.052, .052, .120), p/t = (.04, .04, .04, 073), p/t=(.03,
.03, .07, .07), p/t = (.15, .2, .2, .25), etc., T, has greater power than Sy, . For k = 3,4,5
the differences in power are not too large and the magnitudes are similar in both directions.
So for small k one could use Sy, if the alternative were believed to be “regular” in the sense
described above or Tj,; could be used if it is desirable to protect againt nonregular alterna-
tives.

It is interesting to note that for k = 3 and 4 the above conclusions held whether the vector
t was constant or not. (Several other choices of p and ¢, not given in Tables 1 and 2, were
considered and these conclusions were substantiated in those cases, also.) For this reason
only constant #’s were considered for k = 5 and 10. Recall that for k = 5, the P,(£,k) are
intractable for nonconstant t.

Power comparisons were made for k = 10, but with n = 25 they were not very mean-
ingful because of the conservative nature of the approximation to the null distribution of
Ty, For n = 80 both approximations were very reasonable and so power comparisons could
be made in that case. Linear alternatives were considered. For p; = i/55 both tests have
powers that are essentially one. So p; = i/110 + .05 was considered. The tests with nominal
level .1 had powers .822 and .861, and the tests with nominal level .05 had powers .712
and .759. Of course, the maximin test performed better for such an alternative. The alterna-
tive p; = .09, 1 <i <9, and p;p = .19 was considered. The estimated powers for the
tests with & = .1 are .700 and .556 and for the tests with a = .05 they are .578 and .409.
Finally the alternative p; = .07, p, = ... = pg = .1, and p,o, = .13 was considered, and
the approximate powers for the a = .1 tests are .377 and .332. For the a = .05 tests they
are .252 and .199. Of course, the last two alternatives are nonregular and the Irt has the larger
power. In these cases, the increase in power may be as large as 40 percent and so the Irt should
definitely be considered to guard against nonregular alternatives for larger k.
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TABLE 1. Estimated Powers of the Maximin and LRTs, k=3

k=3
n=25 n=80 n=25 n=80
Nominal Level
.10 .05 .10 .05 .10 .05 .10 .05
t=(1,1,1), p/t=(1/3,1/3,1/3) t=(2,1,1), p/t=(.25,.25,.25)
T .084 .059 .108 .047 .101 .047 .085 .052
So1 .088 .056 .095 .043 .081 .049 .100 .044
t=(1,1,1), p/t=(.25,.30,.45) t=(2,1,1), p/t=(.20,.25,.35)

T .389 227 718 .565 .459 315 771 .664
So1 .451 .350 812 .689 423 .337 .802 .677
t=(1,1,1), p/t=(.25,.25,.50) t=(2,1,1), p/t=(.2,.3,.3)

Téx .559 .445 .937 871 .346 .220 .624 .509
So1 572 475 917 .843 .304 .230 .633 473

t=(2,3,5), p/t=(.10,.10,.1Q) t=(2,3,5), p/t=(.05,.10,.12)
To .126 .046 .093 .054 .591 .332 .891 .803
So1 .095 .056 .106 .048 .504 .386 .889 778
t=(8,2,8), p/t=(1/18,1/18,1/18) t=(8,2,8), p/t=(.04,.06,.07)
Té 112 .051 .084 .052 .527 .351 .832 754
So1 .080 .053 .100 .051 .452 .368 .855 .763
t=(4,6,4), p/t=(1/14,1/14,1/14) t=(4,6,4), p/t=(.052,.052,.120)
Tox 12 .067 .101 .048 .758 .609 .981 .947
So1 117 .040 .100 .046 723 .535 .965 921

TABLE 2. Estimated Powers of the Maximin and LRTs, k=4,5

k=4
n=25 n=80 n=25 n=80
Nominal Levyel
.10 .05 .10 .05 .10 .05 .10 .05

t=(1,1,1,1),p/t=(.25,.25,,25,.25) t=(4,6,4,6), p/t=(.05,.05,.05,.05)
Tox .089 .055 .097 .051 .099 .054 .095 .055
So1 .105 .050 .101 .050 .086 .042 .103 .049

t=(1,1,1,1), p/t=(.15,.20,.30,.35) t=(4,6,4,6), p/t=(.034,.042,.0495,.069)
Tox .578 .446 .930 .860 .487 .338 .826 729
So1 .634 .482 .945 .883 .480 342 .860 157

t=(1,1,1,1), p/t=(.10,.25,.25,.40) t=(4,6,4,6), p/t=(.04,.04,.04,.07/3)
To 752 .665 995 .985 .501 .345 .844 .766
So1 .804 .668 .993 981 .464 .333 .834 727

t=(1,1,1,1), p/t=(.23,.23,.23,.31) t=(4,6,4,6), p/t=(.03,.03,.07,.07)
Tox .208 129 .376 .256 .730 .562 .983 955
So1 240 .143 .388 .245 .684 544 .981 .946

k=5and t=(1,1,1,1)

pit=(.2,.2,.2,.2,.2)

p/t=(.10,.15,.20,.25,.30)

T .094 .050 .099 049 649 489 966 930

So1 .086 .051 .091 .050 679 567 974 946
p/t=(.15,..15,.15,.15,.40) p/t=(.15,.2,.2,.2,.25)

T 711 613 985 969 264 172 496 356

So1 .654 555 955 .924 252 176 488 361
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