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AN EXPANSION FOR SYMMETRIC STAΉSTICS

AND THE EFRON-STEIN INEQUALITY

BY RICHARD A. VΓΓALE

Claremont Graduate School

The Efron-Stein inequality and a generalization by Bhargava are derived using a ten-
sor-product basis and bounds for covariances of related symmetric statistics.

1. Introduction. Let S(Xi9 ... , Xn) be a symmetric function of its iid arguments.

Its variance can be estimated by the jackknife technique as follows: assuming an augmented

iid collection Xu ... , Xn,Xn+u form S, = S(XU ... , X,_i, X,+ i, ... , Xn+i)> * =

1, ... , n+1 and 5 = (n+l)-λXn?=\ Sh Then WaxS(Xu ... ,*„)(=Var St) is estimated by

Q = 2n£?i (SrS)2. AS part of an extensive study, Efron and Stein (1981) showed that Q

is necessarily positively biased, an observation that has come to be known as the Efron-

Stein inequality.

THEOREM 1.

(1.1) Var<?(*!, ... 9Xn)^EQ

with equality iff. S is linear in functions of its individual arguments.

Other proofs and extensions have been given by Bhargava (1980) and Karlin and Rinott

(1982), and the inequality has already had interesting applications (Hochbaum and Steele

(1982), Steele (1981), Steele (1982)). Our purpose here is to derive the inequality by using

an idea exploited for other purposes in Rubin and Vitale (1980): expansion of symmetric

statistics in a tensor-product basis. The approach yields attractive, concrete representations

and is particularly well-adapted to proving the E-S inequality by first establishing a univer-

sal bound on the covariance of related symmetric statistics. It is an alternative to the

ANOVA-type expansions used elsewhere.

2. The Efron-Stein Inequality via Covariance Bounds. If eo(Xλ) = 1, eλ{Xλ)9

£2(^1)* form an orthonormal basis for the square integrable functions of Xλ, then prod-

ucts of the type Π?= 1 ev.(X,) form an orthonormal basis for the square integrable functions

of X = (Xί9 ... , Xn). For ease of notation we denote the above product by ev(X)9 v =

(v,, ... ,vn).

THEOREM 2. ForiΦ j,

(2.1) 0 ^ Cov(Si,Sj) ^ ((n-l)/ή) Var 5j

with equality above iff Si is linear in functions of its individual arguments.

Proof. Without loss of generality, assume that the 5, (which are identically distributed)

have zero mean. Accordingly, we consider 2sS1Srt+1 as a surrogate for Cov(S, ,Sy), i Φ j .

Using the basis given above and symmetry considerations yields
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Sι=S(X29 ... ,Xn,Xn+1) = Σcvev(X),whereX = (X2, ... 9XH9Xn+ί)9

and

Sn+1=S(Xu ... ,Xn) = S(X2, ... ,XΛ,X,) = Σ c Λ ( X 0 , where X' = (X2f ... 9XHfXx).

Then

ESλSn+x = EΣcvev(X) Σ cμeμ(Xf) = Σ cvcμEev(X)eμ(X').

The expectation of ev(X)έ?μ(X') is zero unless v = μ with vn = μn = 0, in which case

itisunity. ThusESΊSn+i = ΣV|i=ocv» which displays the asserted positive correlation.

For the upper bound, we symmetrize: note that generally for summands {σv} which are

symmetric in v

where z,, is the number of zero components in v. The {cv} may be assumed symmetric in

v and hence

Now Zyd ̂  (n-l)Cv for every v because of the centering of the Sit which leads to

ί S A + i ^ ((Λ-iyπJΣ^cί = ((n-l)/π) VarS,.

Equality occurs iff zv = n-1 for all non-vanishing cv. This means that

Sn+i = AXύ + . - + /(**) for some/. •
Returning to the Efron-Stein inequality, we note that expanding EQ in (1.1) yields

which, upon rearrangement, is the upper inequality in (2.1).

3. A Higher-Order Construction. A natural question to ask is whether a more ample

supply of randomness can lead to other estimates and inequalities. Specifically, suppose

that S is a symmetric function of n iid, arguments which can now be chosen form

Xi9X2> ~ >XN where n < N (N = /ι+1 in the previous section). Proceeding by analogy,

for A = {v!,v2, ... , vn} with distinct v, € {1,2, ... , #} , define SA = S(XVι9XV2, ... , Xv)

and 5 = ( J ^ W - i A . Then an estimate for Var SA is Q = (Λίr1)"1Σμ|=/l(5Λ-1S)2. This is

the set-up studied by Bhargava (1980), who showed that positive bias obtains here as well.

THEOREM 3. Var SA ^ EQ with equality iff, SA is linear injunctions of its individual

arguments.

In treating this problem, we establish bounds on covariances as before. These generalize

theorem 2 and show that the upper bound is linear in the number of shared arguments (cf.

Bhargava (1980, p. 6)).

THEOREM 4. For \A Π A'\ = K 0 ^ Cov(5A,SA0 ^ (k/n) Var SA with equality above

iff SA is linear in functions of its individual arguments.

Proof. The argument parallels that of theorem 2; assuming zero mean, we compute
ES'S" where

$' = S(Xι, ... ,Xk,Yk+i, ... ,Y n), S" = S(Xι9 ... ,X*,Z*+i, ... ,Zrt)

(the X,Y,Z variables taken together are iid.). This gives ES'S" = Σ'c$ where X' denotes
summation over subscripts v with vanishing final n-k components. This can be symmet-
rized to the form
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where zv is the number of zero components of v.

This is clearly non-negative and noting that zvcl ^ {n-l)cl yields the upper bound with

the condition for equality. D

Theorem 3 follows directly from the upper bound just given. We merely sketch some

important points. In computing EQ, sums of the form ΣAESASA,, intervene and calculate

out to

the bracketed quantity being the exact value of the covariance in theorem 4. This leads to

and a collapse to the lower bound XvCp = Var SA.

Acknowledgments. I thank Mike Steele for suggesting the tensor-product basis ap-

proach to the Efron-Stein inequality.
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