
Inequalities in Statistics and Probability

IMS Lecture Notes-Monograph Series Vol. 5 (1984), 13-25

ON GROUP INDUCED ORDERINGS, MONOTONE FUNCTIONS,

AND CONVOLUTION THEOREMS1

BY MORRIS L. EATON

University of Minnesota

Orderings defined by compact groups of linear transformations acting on vector spaces
are studied. In some cases, these orderings induce orderings on convex cones similar to
those defined by reflection groups. In these cases the monotone functions can be conve-
niently characterized. Convolution theorems for monotone functions are discussed.

1. Introduction. Majorization, as defined by Hardy, Littlewood and Pόlya (1934),

has been an extremely important notion in the theory and applications of many types of

inequalities. The recent work of Marshall and Olkin (1979) contains an extensive discus-

sion of majorization and its application to many branches of mathematics including proba-

bility and statistics. Although not essential for understanding this paper, the reader may

find it useful to glance through Part I of Marshall and Olkin (1979).

To motivate the situation to be considered here, first recall the permutation group defini-

tion of majorization (see Rado (1952)). Let CPn be the group ofnXn permutation matrices

acting on CR". For x,y e J?1, x is majorized by y (written as x ^ y) means that x is in the

convex hull of the set {gy \ge^Pn} (the ̂ -orbit of y). A careful study of the pre-order =̂  (using

the terminology in Marshall and Olkin (1979), p. 13) has resulted in a useful and important

characterization of the real valued functions/which are decreasing or increasing in the pre-

order of majorization (see Schur (1923), Ostrowski (1952)). A recent result of Marshall

and Olkin (1974), which has had applications in probability and statistics, shows that the

convolution of two decreasing (in the pre-order of majorization) functions is again a de-

creasing function.

In this paper, we begin a systematic study of pre-orderings defined on vector spaces

which arise in much the same way that majorization arises. Let G be any closed group of

n x n orthogonal matrices. Using G, rather than Tni define a pre-order on J? as follows:

x ^ y iff x is in the convex hull of {gy\geG}. The examples in the next section show that

there are a number of groups G which give useful and interesting orderings. Based on the

known majorization results, it seems rather natural to ask for conditions on G for which

(i) it is possible to characterize the class of decreasing real valued functions on 3*. (ii) the

convolution result of Marshall and Olkin (1974) continues to hold.

This paper is mainly concerned with (i), but (ii) is discussed rather incompletely. Here

is a brief outline of the paper. In Section 2, group induced orderings are defined on inner

product spaces. The geometry which prevails in the permutation group case is described

and is shown to hold in a number of interesting cases. It is this geometry which is used

in Section 3 to give a characterization of the decreasing functions. The results of Marshall,

Walkup and Wets (1967) on cone orderings are used extensively in Section 3. In Section

1 This work was supported in part by National Science Foundation Grant MCS 81-00762.
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4, the convolution type results are discussed with special attention being given to a neces-

sary condition for the Marshall and Olkin (1974) result to hold. It is shown that this neces-

sary condition does not hold for any finite rotation group acting on CR2.

2. Group Induced Orderings. To set notation, let (V,( , )) be a finite dimensional

real inner product space and let G be a closed subgroup of the group of orthogonal transfor-

mations O(V), of (V, ( , )). The compact group G defines a pre-order on V as follows:

(2.1) For x,y e V, write x ̂  y to mean x is in the convex hull of {gy\geG}.

Thus, x^y means that x is in the convex hull of the G-orbit of y. To say ̂  is a pre-order

means that for all x, y, ze V, (i) x ^ y and y^z implies x ̂  z and (ii) x ̂  JC.

These two conditions are easily checked. The dependence of ^ on G will usually be

supressed as G will remain fixed through much of our discussion.

Definition 1. A function f:V -> J?λ is decreasing (increasing) if x ^ y implies f(x)

^f(y) (f(χ) ^f(y)) A set B CIV is called monotone if the indicator ofB, say IB, is decreas-

ing.

Our first task is to give an analytic rather than geometric description of = .̂ To this end,

recall the following.

PROPOSITION 1. Let A be a non-empty subset of V and let C be the closed convex set

generated by A. Then, xeC iff. for all uέV,

(2.2) («,x)^sup2eΛ(w,z).

Proof. Without loss of generality, C Φ V since otherwise the right hand side of (2.2)

is +oo and the assertion is trivial. If x = X c^z, with z.eΛ, O ^ α ^ l , and Xαz = 1, then

(u,x) = Xα/(M,Z/) =̂  supZ€Λ(u,z) so (2.2) holds for convex combinations of elements of A.

But, every point in C is the limit of such convex combinations so continuity implies that

(2.2) holds for all xeC. Conversely, assume (2.2) holds and write C as the intersection of

all the closed half spaces which contains it—say C = Π α # α where Ha = {y|(/ια, y)

^ kj with ||Λα|| = 1 and k ^ . Since A C C C //α for all α, we have (/ια, z) ̂  ka for

all zeA. If x satisfies (2.2), then (/iα, x) =SΞ supz€A(ha> z) ^ fcα so jce//α for all α.

Hence xe Π α / / α = C. •

Given yeV, let C(y) denote the convex hull of {gy\geG}. The compactness of G implies

Ciy) is compact. Since x^y means x e C(y), Proposition 1 with A = {gy\g*G} shows that

x^yiff forallweV

(2.3) (μ,x) ̂  supgeG(u,gy).

Forw,yeV, consider

(2.4) rn(u,y) = s\xpgeG(u,gy).

defined on V x V. The following properties of m are easily verified.

(i) m(cιu,c2y) = cιc2rn(u,y)forc]9c2^0

(ii) m(gιufg2y) = m(u,y) forg,,g2eG

(iii) m{u,y) = m(y,u)

(iv) m(M, ) is convex on V

That the pre-order ̂  is completely determined by m is the content of

PROPOSITION 2. Forx,y e V, x ^ y iff.

(2.6) m(u,x) ^ m(ufy) fordllueV.
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Proof. If x ^ y, then (2.3) shows that for all u e V,

(2.7) (ufx)^m(u,y).

Since m(gu,y) = m(u,y), (2.7) implies that for geG,

(2.8) (gu,x)^m(u,y)9

so m(u,x) = supgeG(gu,x) ^ m(u,y). If (2.6) holds, the inequality (u,x) ^ m(u,x) together

with (2.3) shows that x^y. D

In a number of important examples, Proposition 2 can be used to provide a useful analytic

characterization of ^ . First, (2.5) (ii) shows that m is determined by its values on the quo-

tient space WIG. In other words, m is a function of a maximal invariant under the action

of G on V. Let τ be such a maximal invariant (see Lehmann (1959), Ch. 6). Assume that

T(JC) e {gx\geG}, and let 9 C V be the range of τ. Thus, T(JC) = τ(gx) for all x e W, g e G

and τ(jcθ = T(JC2) implies thatxλ = gx2 for some g e G. From (2.5) (ii), we see that

(2.9) m(u,y) = m(τ(u),τ(y))

for all u,yeV. This implies

PROPOSITION 3. Forx,yeV, x^y iff m(τ(w), τ(x)) ^ m(τ(u), τ(y))forall ueV.

Proof: This is immediate from Proposition 2 and (2.9). •

For all of the interesting examples that I know, there is a natural choice for τ which results

in 9 being a convex cone (such 9's are often called fundamental regions—see Benson and

Grove (1971), p. 27). The following assumption is to hold for the remainder of this section:

(A.I) The maximal invariant τ has a range 7 ^ V which is a convex cone, and

τ(x)e{gx\geG}.

The key to analyzing a number of important examples is being able to calculate the restric-

tion of m to 9. Many of these examples are special cases of the following result.

PROPOSITION 4. For β, 7 e 9, suppose that m(β, 7) = (β, y)^-that is, assume m re-

stricted to!7X C? is just the inner product on V x V. Then x^yiff

(2.10) (β, τ(x)) ^ (β, τ(y)) for all β e 9.

Proof. This is an immediate consequence of Proposition 3 and the assumption that

m restricted to 9 x 9 is just the inner product. G

Recall that a subset T of 9 spans 9 positively if every element of 9 can be written as

a positive linear combination of a finite number of elements of T. Further, T is called a

frame if T spans 9 positively, but no proper subset of Tdoes. The following result is clear.

COROLLARY 1. Under the assumption of Proposition 4, if T spans 9 positively, then

(2.11) (ί, T(JC)) ^ (t, τ(y)) forallteT.

Before discussing a characterization of the decreasing functions, we first introduce the

examples alluded to above. At this point it is appropriate to mention the recent work of

Jensen (1984) whose examples coincide with some here. Jensen considers orderings (some-

times pre-orders, lattice orders, etc.) on a set (corresponding to our 9) and then lifts the

ordering to the whole space via an invariance requirement. Aside from applications, Jen-

sen's main concern is the effect of the lifting but he does not attempt to identify general

situations where the lifted ordering is equivalent to the type of group induced ordering dis-

cussed above. However, the overlap of Jensen's and our examples show that closely related
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ideas generated the two works. The important special case treated by Proposition 4 and

Corollary 1 is not discussed in Jensen. Under a rather weak assumption, this case leads

to a complete description of the G-decreasing functions (see Section 3).

The first three examples here are also discussed briefly in Jensen (1984).

Example 2.1. Take V = J?1 with the usual inner product and let Ί)n be the group of

coordinate sign changes. Elements of 2>n can be represented a s « x « diagonal matrices

whose diagonal elements are ± 1. Let 7 = {JC|JC. > 0, i = 1, ... , n} so a frame for 7 is T

= {€], . . . ,€„} where e, is the z'-th unit vector in 7?. A convenient choice for τ is (T(JC))/

= |JC/|, / = 1, ... n; T(JC) is the vector of absolute values of the coordinates oixeC^1. For

β, 7 e 7, ra(β, 7) = sup^eG β'#7 = β'7. The definition of m gives the first equality while

the second follows from the non-negativity of the coordinates of β and 7. Thus Corollary

1 is applicable and yields x ^ v iff €/T(JC) ^ €;τ(y), i = 1, ... , n which is equivalent to

1 * ^ 1 ^ 1 , 1 = 1 , ... ,n.

Example 2.2. Again take V = J?1 with the usual inner product and take G to be the

group Tn of permutations acting on 7?". Let

and let et be the vector whose first i coordinates are 1 and the rest of the coordinates are

0, / = 1, ... , n. It is not hard to show that T={e]9 ... ,en, -en} is a frame for 7. A classical

rearrangement result due to Hardy, Littlewood and Pόlya (1952, p. 261) shows that m(β,7)

= β'7 for β, 7 e 7. Let Ί(X) be the vector of the ordered values of x so τ(x) e 7. These

ordered values are denoted by JC(/), i= 1, ... , n so x{,) ^ JC(2) ^ ... ^ Jt(π). A direct applica-

tion of Corollary 1 shows that x ^ y iff e-τ(x) ^ e,'τ(y), / = 1, ... , Λ - 1 , and e'ni(x) =

eήτ(y). Thus, x ^ y iff.

Of course, this is the traditional ordering of majorization discussed at length in Marshall

and Olkin (1979). For this example, that (*) is equivalent to saying x is in the convex hull

°f {gy\g e 7Jn) was observed by Rado (1952).

Example 2.3. We use the notation established in Examples 2.1 and 2.2. Take V =

7? and take G to be the group generated by on U 7>n. Take 7to be

and note that T = {ex, ... , en} is a frame for 7. For x e 7?", let |jt|(/) denote the z'-th largest

value of {|JC,|, j = 1, ... , «}, and let Ί(X) € 7 be the vector with z'-th coordinate \x\a). Then
T is a maximal invariant for this example. Combining the results of Examples 2.1 and 2.2
shows that m(β, 7) = β' 7 for β, 7 € 7. Corollary 1 shows that x ^ y iff e\r(x) ^ e'jiy)
for i = 1, ... , n which is equivalent to Σ^ |JC|(/) ^ X^ |y|(/), k = 1, ... , n. This is usually

called the sub-majorization ordering although terminology is not consistent in this case (see

Marshall and Olkin (1979)).

Before discussing the next three examples, some notation is required. Given a real sym-

metric p x p matrix x let μi(x) ^ ... ^ μp (x) denote the p ordered eigenvalues of x. Given

an n x p real matrix x, let λi(x) ^ ... ^ λ^x) ^ 0 denote the singular values of x (if

n < p, then necessarily the last/? - n singular values are zero). Thus, λ/(x) = (μ,(x'x))1/2

where x' is the transpose of x. A useful result due to von Neumann (1937) and Fan (1951)

is

THEOREM 1. Let A and B be real nx k matrices. Then
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supΓ,Δ tr ΓAΔB' = X*, λ,(A) λ, (B)

where the sup is over all Γ e ϋn and ΔeOk.

A discussion of and variations on this Theorem can be found in Marshall and Olkin

(1979, p. 514).

Examples 2.4. In this example, V = Sp—the vector space of all p x p real symmetric

matrices and the inner product is

where tr denotes trace. The group G is the group of p x p orthogonal matrices, Up, and

the group action is x -• Γ x Γ" for Γ e ϋp. Clearly G is a subgroup of ϋ(V) for this example.

Let

7={x\xu 25... ^xpp,Xij=O foriΦ j}

where xy is the ij element of x. A convenient choice for τ is to let τ(x) be the diagonal

matrix in Sp with diagonal elements (ΦO)// = μ/(χ)> ι: = U •• , P A frame for 7 can be

constructed as follows. Let t, e όp have the first / diagonal elements equal to one and all

the remaining elements oft, equal to zero, / = 1, ... , p. Also, let tp+ι = -tp. That T =

{t,, ... , tpt tp+,} is a frame for 7 follows easily (see Example 2.2). We now claim that

m(u,y) = (u,y) for u,y e 7. To see this, first choose δ large enough so that u + δl and

y + δl have positive diagonal elements. Then

(*) m(u,y) - supr/ruΓyΓ = s u p Γ M u + δ I ) Γ ( y + δ I ) Γ } - δfr(y) - δfr(x) + δ2p

= m(u+δl, y+δl) - btr(y) - δίr(u) + δ 2p.

Since u + δ l and y+δl have positive diagonals and are in 7,

λ /(u+δl) = μl (u + δ l ) , / = l , ... 9p

and the same holds for y in place of u. With n = k = p, A = u + δ l and B = y+δl. Theorem

1 implies that

/n(u+δl,y+δl) ^ X i μ/(u+δl) μ# (y+δl).

Since μXu+δl) = wl7 + δ and μXy+δl) = v/7 + δ, there is obviously equality in the above

inequality (just take Γ = / in the definition of m). Substituting this into (*) and a bit of

algebra show that m(u,y) = tr{uy) = (u,y). Hence Corollary 1 is applicable and yields

thatx^yiff

In other words, x ^ y iff the vector of eigenvalues of x is majorized by the vector of

eigenvalues of y. This result was established by Karlin and Rinott (1981) using a different

argument.

Example 2.5. For this example, V is the vector space Lpn of all n x p real matrices

with inner product (xj, x2) = ίr(X|X2). For notational simplicity, it is assumed n ^ p; the

contrary case is handled by a similar argument. The group G is ϋn x ϋp which acts on

n by x -• ΓxΔ' for Γ e ϋn and Δ e ϋp. The convex cone 7 is 7 = {x|x,, ^ ... ^ xxpp

^ 0, Xij = 0 for all / Φ j) where xtj is the i,j element of x. The maximal invariant T is

defined to be: u = τ(y) is the element of 7 with wl7 = λ, (y), / = 1, ... , p. That τ is a maximal

invariant is a consequence of the singular value decomposition theorem (Eckart and Young,

1939). To evaluate m on 7, consider u,y e 7. Then

m(u,y) = supr i Δίr(uΔy'Γ) = Xp\\x(u)\fy)

by Theorem 1. Since u,y e 7, it follows that λf (u) •= uu and λf.(y) = yih Thus, for
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u,y e 7, m(u,y) = Xp\^uyu = (u,y). To apply Corollary 1, we first need a frame of 7.

Let t, e 7 have its first i diagonal elements equal to one and all other elements equal to

zero. Then it is easy to see that T = {tu ... , tp} is a frame for 7. A direct application

of Corollary 1 shows that x ̂  z iff.

XkMx)^XkMz)9k=\, ... ,/?.

In other words, x ^ z iff the vector of singular values of x is submajorized by the vector

of singular values of z (see Example 2.3 for a discussion of submajorization).

Example 2.6. As in Example 2.5, take V to be Lpn with the inner product (x,, x2)

= ίr(xjX2) and again assume for convenience that n ̂  p. Consider the group G = ϋn which

acts on Lpn by x -• Γx. Let Sp

+ denote the convex cone of positive semi-definite p x p

real matrices and for s e Sp

+ let s1/2 denote the unique element in Sp

+ which satisfies s1/2s1/2

= s. For this example, let 7 be 7 = {x|x = (o), s e όp

+} and set τ(x) = ( ( x

o

x ) ' ') e 7. That

τ(x) is a maximal invariant follows from Vinograde (1950). To characterize the group in-

duced ordering, we first calculate m using Theorem 1. For y e Lpm

/π(u,y) = sup Γ rr(uy'Γ) = supΓ/r(Γuy')

where the sup is over (jn. Now, apply Theorem 1 with n = k, A = uy' and B = \n to see

that m(u,y) = Σiλ,(uy') = Σ^λXuy'). The second equality holds since λ,(uy') = 0 for

i > p. In this example, the assumption that m restricted to 7 is the inner product, does

not hold. However a description of the order can be given in terms of the Loewner ordering

oncy Fors 1,s 2eό / 7, writes] ^^s 2if s2 —s, e ύ / (seeLoewner(1934)).

LEMMA 1. x^yiff x 'x^ L y 'y .

Proof. Assume x ̂  y so ra(u,x) ̂  m(u,y) for all u € Lpn.
Pickxx = α β ' where α e 7P, α'α = 1 andβe ^ . T h e n

#w(u,y) = Σiλ f (αβ'y') = Σ V / ^ β ' y ' y ' β α ' ) = (β'y'y'β) 1 7 2

since αβ'y' has rank one and α'α = 1. A similar expression holds for x so

(β'x'xβ)1 7 2 ^ (β'y'y'β) 1 / 2 for all β e 7? which implies that x'x ^ L y'y. Conversely, as-

sume x'x ^ L y'y so for all u e Lpn, ux'xu' ^ L uy'yu'. This implies that (see Bellman

(1960), p. 115) μ,(ux'xu') SΞ μ,>(uy'yu'), / = 1, ... ,psoλ, (ux') ^ λ/(uy')fori = 1, ... ,

p. Hence m(u,x) ^ m(u,y) for all u e Lp%n so x ^ y by Proposition 2. G

The result has a number of interesting consequences.

PROPOSITION 5. The closed convex hull ofΌn in £„;„ is {ψ|ψe£π>rt, ψ'ψ ^LIn}.

Proof In Lemma 1, take n = p and y = ln. Then x =̂  ln means that x is in the convex

hull of {Γ|Γ e On} and by Lemma 1, this is equivalent to x'x = L̂ In. π

PROPOSITION 6. For x,y € Lp>π, x'x =^L y'y iff. x = ψy where- ψ e Lnn satisfies

Proof. From Lemma 1, x'x =^L y'y iff x ^ y. Also, x ^ y iff. x is in the convex hull

of {Γy|Γ e ϋn}. By Proposition 5, this convex hull is just {ψy|ψ'ψ ^z. AJ G

This completes our discussion of Example 2.6.

The reader should compare Examples 2.5 and 2.6 with the treatment in Jensen (1984).

There is some overlap but the results do complement each other. The result in Proposition

6 is an extension of Vinograde's (1950) result and can be derived rather easily from Vinog-

rade's result. The final example in this section is rather simple but shows that in some cases

very little is gained from Proposition 2.
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Example 2.7. In this example, let Vbe vP2 and let G be the group generated by g0 which

is rotation through ττ/2 in the counterclockwise direction in 7?2. Thus, G has four elements

which are {go, go, go, go} and G is Abelian. Take ;7to be

and let τ(x) be the unique vector in 7 of the form gΌx for ί = 0, 1, 2, 3. The calculation

of m is easy and of very little help. About all one can say here is that x ^ y iff x is in

the convex hull of {gι

oy\ i = 0, 1, 2, 3}. Exactly the same remarks are in order when G

is the group generated by the rotation through 2ττ/k (k = 3, 4, ...)• Namely, m is easy to

describe, but of no help in describing the ordering. Note that Proposition 4 (and hence

Corollary 1) cannot be used in this example. However, if instead of a finite rotation group,

we use a finite dihedral group (see Benson and Grove (1971), p. 7) acting on ^ , then with

the obvious choice for 7, Proposition 4 and Corollary 1 do apply directly.

3. The Decreasing Functions. In this section, we apply results of Marshall, Walkup

and Wets (1967) to describe the decreasing functions of some of the group induced order-

ings discussed earlier. As in the last section, it is assumed that (V, ( ,•)) is an inner product

space acted on by a closed group G CZ O (V), τ is a maximal invariant function whose range

is the convex cone 7 with Ί(X) e {gx\g € G}. The problem considered here is to give a useful
analytic condition on/.V^ /^so that x ^ y implies that/(jc) ^ / (v) .

A solution to the problem just described will be given in the case that, when restricted
to 7, the group induced ordering ^ is a cone ordering. To be more precise, let D be a subset
of an inner product space (W, ( , •)) and let ΛTCIW be a fixed convex cone. A cone ordering

induced on D by K is a relation < defined by x < y iff v - x € K. A function f:D -> R
is decreasing on (D, <)ifjc<yimplies/(jc) ^ fiy), forx,yeD.

THEOREM 2 (Marshall, Walkup and Wets (1967)). Suppose D is convex with a non-
empty interior andf.D -* R is continuous at the boundary ofD. Let T be a frame for K.
Thenf is decreasing on{D, <) iff.

(3.1) f{x + \t) ^f{x) for all xeDandallteTandλ>0 such that x + λteD.

Corollary 2 (Marshall, Walkup, Wets (1967). In addition to the assumptions in

Theorem 1, assume thatf has a differential df:D° ->Won the interior ofD. Then f is decreas-

ing on (D, <), iff

(3.2) (df(x),ή^0

forallteTandxeD0.

Before applying these results to the problem at hand, a few preliminaries are needed.

Given the convex cone 7 which is the range of τ, let M be the subspace of V which is gener-

ated by 7. Thus, 7 is a convex cone with a non-empty interior in the inner product space

(M, ( , )). Also, let

7* = {x\x e M, (x,y) ^ 0 for all y e 7}

so 7* is the dual cone (in M) of 7: Of course, 7* is also a convex cone. The following

result shows that the group induced ordering is in fact a cone ordering on 7 in the special

case treated in Proposition 4.

PROPOSITION 7. For β, 7 e 7, suppose that m(β, 7) = (β, 7). Then, for u,v e 7,

u^vijf v-we 7*.
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Proof. Since u,v e 7, T(M) = u and τ(v) = v. Thus, Proposition 4 implies that

w^viff

(3.3) (β, u) ^ (β, v) for all β e 7 which holds iff.

(3.4) (β, v-w)^0 for all βe 7,

and this is equivalent to the assertion that v - i / e T * . D

The above result gives a sufficient condition that ^ be a cone ordering on 7. Further

the cone ordering is determined by the convex cone 7*. In examples 2.1 through 2.5, m

on 7 x 7 is the inner product so Proposition 7 applies directly.

PROPOSITION 8. Assume that the pre-ordering on 7 is the cone ordering defined by 7*.

Let Γ* be a frame for 7*. Then a function f:V -> R] which is continuous at the boundary

of 7 is decreasing iff for each xe7 and t e 7*,

forallλ>0such thatx + λt€ 7.

Proof Apply Theorem 2 with D = 7 and K = 7*. •

COROLLARY 3. Let the assumptions of Proposition 8 hold. Also assume that f has a diffe-

rential dfi^-^M. Then f is decreasing iff. for all t e Γ*,

(3.4) (df(x)9t)^0

forxeT*.

Proof This is immediate from Corollary 2. D

The application of Corollary 3 to Examples 2.1,2.2, and 2.3 is quite easy and the essen-

tial details can be found in Marshall, Walkup and Wets (1967). A discussion of Example

2.4 is much the same as that for Example 2.5 which we now give.

Example 2.5 continued. The notation and results given in Example 2.5 are assumed.

First, the subspace M generated by 7 is the space of all n x p real matrices u with M^ =

0 for i Φ j , soMΊsp dimensional. The dual cone 7* C M is

A frame Γ* for 7* consists of t\, ... ,tpeM where:

ti has its i,i diagonal 1, its (/+1), (/+1) diagonal -1 and all other elements of ί,

are0,for/ = 1, ... ,p-\;

tp has itsp,p diagonal 1 and all other elements 0.

This follows from Proposition 1 in Marshall, Walkup and Wets (1967). Letf:£Ptn -> Rι

be a ϋn x ϋp invariant function and let/denote the restriction of/to 7. When/has a diffe-

rential, then/is decreasing iff

(ί, df{μ)) ^ 0, / e Γ* and u e 7

which is equivalent to

δ//δw, i ^ δ//δ«22 ^ ... ^ bflbupp *£ 0.

In Example 2.6, the group ordering is not an 7* cone ordering on 7, but is an 7* cone

ordering in a different coordinate system. To be more precise, Lemma 1 shows that

x ^ v iff. x'x ^L y'y. The Loewner ordering ^ L is a cone ordering on ό+

p. Thus, a decreas-

ing function/on Lpn in Example 2.6 can be characterized by first writing it as/(jc) =f{x'x)

and then using the Marshall, Walkup and Wests ((1967), Example 4) results.
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4. Remarks on the Convolution Theorem. Again consider the general situation of
an inner product space (V ( , )) acted on by a compact group G C ϋ( V). As usual, ^ denotes
the pre-order defined by G.

Definition 2. If for every two compact monotone sets A and B, the function

Ψϋ>) = iviAMiB(y-x)dx

is decreasing (see Definition 1), then we say the convolution theorem (CT) holds for G.

It is a standard approximation argument to show that CT implies that for suitably smooth,

integrable and decreasing/j / 2 , the convolution

fly) = ifx */2)(y) = fvAWfi(y-χ)dχ

is again decreasing. Hence the term convolution theorem. This result has many applications

in the area of probability inequalities—for example, see Marshall and Olkin (1974), Eaton

and Perlman (1977), Marshall and Olkin (1979) and Eaton (1982).

CT was established for V = Rn and G = 7\ by Marshall and Olkin (1974). This result

was extended to all reflection groups by Eaton and Perlman (1977). Examples of reflection

groups are the groups considered in Examples 2.1, 2.2 and 2.3. When the group G acts

transitively on {x\x e V, ||JC|| = 1}, then x ^ y means that ||JC|| ^ \\y\\ and all the decreasing

functions have the form x -> η(||jc||) where η is decreasing on [0, °°). CT obviously holds

for such cases. In summary, here is a listing of some groups for which CT is known to

hold:

(i) All finite and infinite closed reflection groups (see Eaton and Perlman (1977)).

(ii) Any group G which acts transitively on {.ψte V, \\x\\ = 1}.

(iii) A product G\ x G2 x ... x Gk acting on the direct sum V] (x) V2 ® ••• ® Vk

The action is coordinatewise, (gι,g2, ••• , g*)C*i»*2, . ,**) = (g\X\, giXi, •• , g r t ) ,

where G, acting on V, is of the type (i) or (ii) above.

These are the only groups that I know for which CT holds. The remainder of this section

is devoted to a discussion of a necessary condition on G in order that CT hold. Some exam-

ples are given where CT does not hold.

Recall that x ^ y means x € C(y) where C(y) is the convex hull of {gy\g e G}. Also, a
set B is monotone iff for all x e B} C(x) C β .

Definition 3. Given any set A, let

PROPOSITION 9. The set 6{A) is the smallest monotone set which contains A.

Proof. To show δ(A) is monotone, consider u €'0(A) so u e C(x) for some x e A. Since
C(x) is monotone, C(u) C C(x) so C(u) C ό(A) which shows ό(A) is monotone. Now,

assume B 3 Λ and B is monotone. If x e A then x e B so C(x) CIB as B is monotone. Hence

UU CM CB. D

Here are some properties of ό which are easily verified:

(i) ώ ((J β A α )=Uαύ 1 (A α )

(4.1) (ii) ύ'(Λ, + Λ 2 ) C ύ (Λ,) + ύ (i42)

(iii) A compact implies S(A) compact

In (4.1), the sign + denotes the usual Minkowski sum of two sets.

Next is a necessary condition for CT to hold.
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PROPOSITION 10. Assume that for each x Φ 0, C(x) has a non-empty interior (For a

discussion of this condition, see Eaton and Penman (1977)). In order that CT hold, it is

necessary that

(4.2) A + yCI ό(A + x) for all y e C(JC), for all xeV, and for all compact monotone

sets A.

Proof Assume that (4.2) does not hold for some xf y e C(x) and A. Then, A must

have a non-zero element and x must be non-zero. Let z € A with z φ 0. Since φ φ

(C(z))° C A, the set A has a non-empty interior. Hence A + j has a non-empty interior

and the open set N = (A + y)° Π (ύ(A + x))c is not empty. With / denoting Lebesgue

measure, we have

/(A) = /(A + jθ > /((A + JO Γϊ C3"(Λ + *)),

since Λf is open and non-empty. For u e V let

SinceA+jcC δ(A + x),

Ψ(x) = /((A + x) Π ύ"(Λ + JC)) = /(A + JC) = /(A).

However,

Ψ(y) = /((A + y) Π c3(A +JC)) < /(A)

so Ψ(y) < Ψ(JC) and CT does not hold. D

PROPOSITION 11. Each of the following conditions is equivalent to (4.2):

(4.3) A + C{x) CIcίj'(A +χ) for all xeV and for all compact monotone sets A,

(4.4) C(z) + C(JC) C ό(C(z) + JC) for all x,zeV,

(4.5) ό(C(z) + x) is a convex set for all x,zeV.

Proof Clearly (4.3) implies (4.2). Conversely, if (4.2) holds, then

A + C(x) = U vecw (A + y)Qό(A + x)

so (4.3) holds. Clearly (4.3) implies (4.4). To show (4.4) implies (4.3) first observe that
when A is a monotone set,

A + C ( J C ) = ( J « Λ ( C ( Z ) + C U ) ) .

Since A is monotone, A = \JzeA C(x) so (4. l)(i) and (4.4) imply that

+ x) = O'(U«Λ(C(Z) + C(x)) =\JzeA ό(C(z) + JC) 3 U x e A ( ^ ) + C(JC)) = A + C(JC)

Hence (4.3) holds. To show (4.4) and (4.5) are equivalent, first assume (4.4) holds. Since
C(z) + C(x) is monotone, Proposition 9 implies that

Thus, when (4.4) holds there is equality in (*). But C(z) + C(x) is convex as both C(z)

and C(x) are convex so (4.5) holds. Conversely, assume that (4.5) holds and consider

u e C(z) and v e C(x). It must be shown that u + v € ό(C(z) + JC). Since ό(C(z) + JC) =

c3"(C(z) + g*)) for all g eG, it follows that u + gjc is in c!>'(C(z) + JC) for all g e G as u e

C(z). But, if S(C(z) -f x) is convex, this implies that all convex combinations (over g e

G) of u + gx are also in ό(C(z) + x). Since v e C(JC), v can be represented as a convex

combination of {gx\g e G) so u + v is a convex combination of {w + gjc|g e G}. Hence (4.4)

holds. Q
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The following example shows that CT does not hold for any finite rotation group acting
on y?2. It will be shown that condition (4.5) does not hold for these cases.

Example 4.1. Fix an integer k ^ 3 and let θ = 2τr/k. The case of k = 2 is trivial.
Let G be the group generated by g = gθ which is rotation (in the counter-clockwise direc-
tion) through the angle θ. Thus G = {I, g, ... , gk~]} has k elements. Let z = ({,) and let
rbe

x = 5(gηz)

where η = θ/2, so x has length 5. Then w = z + jceC(z) + JC and has coordinates

Applying gk~ι to the set C(z) + JC shows that the vector

is in the set ύ(C(z) + JC). Hence, if ύ(C(z) + JC) is to be convex, the vector

must be in S(C(z) + JC). However, a carefully drawn picture will convince the reader that

v is not in C(w) for any w e C(z) + JC. The case of k = 4 is a good starting point to see

why S{C(z) + JC) is not convex for the particular choices of z and JC above (see Figure 1).

Thus CT does not hold for any of the finite rotation groups acting on y?2. However, CT

does hold for the finite dihedral groups acting on y?2 as these are reflection groups (see Ben-

son and Grove (1971)).

x + gz

FIGURE 1. Case of k = 4.

The dashed line gives the right

most boundary of ό(C(z) +
JC).

The final result of this section shows that the necessary condition (4.2) is satisfied for

the situation considered in Proposition 4. More precisely, again assume that τ is a maximal

invariant with a convex cone 7 as its range and τ(x) e {gx\g e G}.

PROPOSITION 12. As in Proposition 4, assume that for u,v e 7, m(ufv) = (w,v). Then,

forw,ve 7

(4.6) C(κ) + C(v) = C(M + v)

andcondition (4.2) holds.
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Proof. Since « + v e C(u) + C(v) and since C(u) + C(v) is monotone, it is clear that

C{u + v) CI C(u) + C(v). Now, suppose z € C(w) 4- C(v) so z = 7 + δ with 7 e C(u)

and δ e C(v). Using the relations given by (2.5) and the results of Propositions 2, 3 and

4, we have

(4.7) m{w,z) = m(w,y + δ) ss m(w,y) + m(w,y) «£ /W(W,M) + m(w,v) =

m(τ(w),u) + m(τ(w),v) = (τ(w), u + v) = tfi(τ(w), u + v) = m(w,w + v)

for any w e V. By Proposition 2, this implies that z ^ w + v s o z e C(u + v). Hence

C(u) + C(v) CI C(M + v) so (4.6) holds. To show (4.2) holds, (4.4) will be verified. First

observe that C(z) = C(τ(z)) and

Λ(C(z) + JC) - ό(C{τ(z)) + T W ) for z,x e V.

Thus, by (4.6), we have

C(z) + CM = C(τ(z)) + C(τM) =

C(τ(z) + τM)CΛ'(C(τM) + τM) =

Λ(C(z)+JC)

so (4.4) and hence (4.2) holds. D

The above result shows that (4.2) holds for Examples 2.1-2.5 although CT is only known

to hold for Examples 2.1-2.3. It is not known whether (4.2) holds for Example 2.6.

Whether or not CT holds for Example 2.5 is an important unresolved problem.

The implications of (4.6) concerning the group G are not known, but are probably impor-

tant in understanding when CT holds. Both these implications and useful conditions for

CT to hold would be welcome contributions.
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