
2. GLIVENKO-CANTELLI-convergence: The VAPNIK-CHERVONENKIS-Theory with some

extensions.

Let us start with the simplest case: Assume that ( ξ . ) . ^ is a sequence of

i.i.d. random variables on some p-space (Ω,F^P) with distribution function

(df) F; let F
n
 be the EMPIRICAL df pertaining to ξ^. .^ξ , i.e.,

F (t) : = — Σ 1 (ξ ) tQR.
n * n . _«. ("-°°at] i '

Then the classical GLIVENKO-CANTELLI Theorem states:

(8) D
F
 := sup|F (t)-F(t)| •»• 0 F-a.s.

n
 tQR

 n

F F

(Note that D is a random variable since D = sup|F (t)-F(t)|, where (Q denotes

the rationale.)

The proof of (8) usually runs as follows:

a) One shows that (8) holds true if the ξ.
!
s are uniformly distributed on

(0,1).

b) Using the QUANTILE TRANSFORMATION

s H- F~
1
(s) := inf{t GR: F(t)£s}, s€(0,l)

and a) one obtains (8) for the SPECIAL VERSIONS

ξ. := F (η.), where the η.
f
s are independent and uniformly distributed on

(0,1) (and defined on the same p-space as the ξ.
!
s).

Note that Uξ.} = L{ξ.} for each i; even more, by independence, one has

c) Reasoning on the fact that the validity of (8) only dependes on

the proof is concluded.

In view of the more general situations we shall consider later on in this sec-

12
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tion we want to clarify c) a little bit more:

•}{••}{•

c ) (8) claims that

1 n

P({ω€Ω: lim (sup | - Σ 1, . Ί ( ξ . ( ω ) ) - F ( t ) | ) =0}) = 1;
n-x» tGR n i = l C °° ' t J 1

consider ξ(ω) := (ξ..(ω), ξ ( ω ) , . . . ) E ] R and put

g ( ξ ( ω ) ) := sup l jj Σ 1 , (ξ (ω) )-F(t) | .
^ tGR n i = l ( ' t J 1

Now, note (and remember) the fact that in the present situation

( 9 ) 1
g E

1
- ^ ! is β^β-measurable

1
since g (x) = sup | - Σ 1, - , ( x . ) - F ( t ) | for x_ : = ( x i 9 x 9 , . . . ) .

tGQ i = l * J X

Therefore A := {̂ EϋR : lim g (x_)=0} £ Φvo whence, p u t t i n g

ξ(ω) := ( ξ . ( ω ) , ξ 2 ( ω ) , . . . ) one obtains

n
P({ωEΩ:lim (sup | i Σ l ( - < β ^ ( ξ ^ ω ) )-F(t) | )=θ} )

= P({ωGΩ:limg (ξ(ω))=O>) =P({ωEΩ: ξ(ω)GA})
n

= L{ξ}(A) = L{ζ}(A) = F({ωGΩ : ξ(ω)6A})
b)

n
= Γ({ωGΩ : lim (sup | - Σ 1, . ( ξ . ( ω ) ) - F ( t ) | ) = 0 } ) = 1,

n-x° tGR Π i = l °°' ± b)

When taking (X,B) = (R,β) and C := {(-«>,t] :tθR}, then, in the setting of

Section l, the GLIVENKO-CANTELLI-convergence (8) reads as

(8*) D (C,μ) Ξ supjμ (C)-μ(C)j -> 0 P-a.s.
n
 cec

 n

Concerning more general situations it turns out however that (8 ) may

hold for the empirical measures obtained from one sequence ξ-,ξ
99
... of inde-

pendent random elements in (X,B) each having distribution μ but not for the

empirical measures obtained from another such sequence, say η ,η ,... .

EXAMPLE (cf. D. Pollard (1981), Example (5.1)).



14 PETER GAENSSLER

Let (X,B,μ) be a nonatomic p-space ( i .e.,{x}EB and μ({x})=0 for a l l x θ ( ) .

Suppose that there exists a subset A of X with inner measure μ (A)=0 and outer

measure μ*(A)=l (cf. P.R. Halmos (1969), Section 16, for an example). Let

B := AΠβ be the trace σ-algebra of B on A and μ be the p-measure defined on

A A

B by μ (AΠB) := μ(B), BEB; note that μ is well defined since μ*(A)=l. By the

A A A

definition of B
Δ
 the embedding ξ

Δ
 of A into X is B.,B-measurable

A A A

(ξ
Λ
 (B) = {xEA: ξ

Λ
(x)=xEB} =AΠBEB. for any B6B) and one has

A A A

μ A (ξ A " 1 (B)) = μ(B) for a l l BEB.

Consider the p-space

(Ω 1,F 1^P 1) := (A ,S) BΔ, x μ )
Έ A ]N A

and on it the random elements ξ.: Ω- + X, defined by

TM

where π.: A -> A denotes the i-th coordinate projection.

Then, by construction, the ξ.
f
s are independent having distribution μ

(L{ξ
i
}(B) =P

1
(ξ

i
"

1
(B)) =ΊP

1
(π

i
"

1
(ξ

A
"

1
(B))) = V ^ ' ^ B ) ) = μ(B)

for each BEB).

Now, let C be the class of all finite subsets of A;

then CCβ and μ(C)=O for all CGC since (X,B,μ) we assumed to be nonatomic. But

since all the ξ.
f
s take their values in A it follows that for the empirical

measures μ pertaining to ξ ,...,ξ one has

sup |μ (C)-μ(C)| Ξ 1.

cec
 n

Taking instead the p-space

and on it the random elements η.: Ω -> X, defined by

where here τr.:(CA) •> QA is again the i-th coordinate projection and where
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denotes the embedding of CA into X, it follows as before (noticing that

μ (CA)=1) that the n.
f
s are i.i.d. with distribution μ (whence

But, for the same class C as before one has now for the empirical measure μ

———— n

pertaining to η , ...,η , μ (C)=0 for all CeC, since the η^
!
s take their values

in CA, whence

sup|μ (C)-μ(C)| =0.

cec
 n

(Note that in both cases D (C,μ)Ξsup|μ (C)-μ(C)| is measurable.)
n
 cec

 n

Finally, taking as underlying p-space the CANONICAL MODEL

(Ω,A,P) = (X^.B.., xμ)

and on it the coordinate projections ξ., iGU , being again i.i.d. with

distribution μ, the above example shows that for the very same class C one

gets e.g. ,

sup|μ (C,x)-μ(C)| = sup \iΛC9x) - l.(x-)

cec
 λ
 ~ cec

 λ
 "

 A 1

for x.
 =
 (XIJXΛ'

 1
^

 e x
 » whence, since AφB

{xθiΈ : s u p | μ 1 ( C , x ) - μ ( C ) | = l } = A x X x X x . . .

cec
 λ
 "

i.e., here - in contrast to (9) -

(10) ϋ ^ g t x )
 :
=

 s u
P|μ (C,x)-μ(C)|

ncec
 n
 -

is not B__ ,β-measurable,
JN

This indicates already the need for appropriate measurability assumptions to be

discussed later.

Let us point out at this stage the usefulness of GLIVENKO-CANTELLI-conver-

gence in statistics by giving only one example concerning CHERNOFF-type esti-

mates of the mode (c.f. H. Chernoff (1964), and E.J. Wegman (1971)). For other

examples, see P. Gaenssler and J.A. Wellner (1981). For the moment we antici-

pate the following GLIVENKO-CANTELLI-Theorem which will be proved later in this

section:
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(11) Let ξ ,ξ ,... be i.i.d. random vectors on some p-space (Ω,F^P) with

values in X = E , k^l, having distribution μ on B = 03, . Let C Ξ B ^ be the

class of all closed Euclidean balls in ]R then

lim (sup |μ (C)-μ(C)|) = 0 P-a.s.

Now, consider (X,B) = (E jβ^), k^l, and suppose that μ is "unimodal" in the

following sense:

(*) there exists a ΘG]R such that for some <5 >0, μ(B
C
(θ,δ ))>μ(B

C
(x,<S ))

for all xEΊR , xj=θ, where B°(x,& ) denotes the closed Euclidean ball with

center x and radius <5 .
o

Facing the problem of finding a consistent sequence of estimators for the

(unknown) θ, one may proceed as follows:

Suppose that 0<r with lim r =δ are given; then, given i.i.d. observations

x. = ξ.(ω), i=l,...,n, choose as estimate θ (ω) = θ(ξ
i
(ω),.. . ,ξ (ω)) a center of

ii n 1 n

a closed Euclidean ball with radius r which covers most of the observations,

i.e. for which

(#*) μ (B°(θ (ω),r ),ω) £ μ (B°(x,r ),ω) for all χ£3R
k
,

n n n n n

Then the claim is that lim θ = θ JP-a.s.
n

n-χ»

Proof. Choose M>0 such that μ(CB
C
(O,M))<μ(B°(θ,δ )). According to (11) we have

o

3P(Ω )=1 for Ω := {ω6Ω: lim (sup |μ (C)-μ(C) | )=θ} .

° ° n-x» CGB,
 n

K

Let ω6Ω and suppose that θ (ω)-/-»θ as n->
co
; then

either (1) lim sup |θ (ω)| - °°
n

or (2) there exists an x*θ such that lim θ (ω) =x for

some subsequence (n.) of ]N.

We will show that both, (1) and (2), will lead to a contradiction.

ad (1): lim sup I θ (ω)| = °° implies that there exists some subsequence (n.) of IN

n+oo
 n

 ^

such that B
C
(Θ (ω),r ) C CB

C
(O,M) for all j, whence
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lim sup μ (B
C
(Θ (ω),r ),ω) ύ lim inf μ (CB

C
(O,M),ω)

J-*» j j j j+~
 Π

j

= 1 - lim sup μ (B (O,M),ω) = l-μ(B
C
(O,M)) = μ(£β

C
(O,M))

< μ(B (θ>β
n
)) = lim inf μ

n
 (B

C
(θ,δ

Q
),ω) ^ lim sup μ (B

C
(θ,r ),ω)

k

which is in contradiction with the choice of θ according to (**).

ad (2): lim θ
n
 (ω) = x * θ implies that lim inf μ (B

C
(Θ (ω),r ),ω)

£ lim |μ (B°(θ (ω),r ),ω) - μ(B
C
(θ (ω),r ))|

n. n. n. n. n.

/

V
= 0 according to (11)

+ lim sup μ(B°(θ
n
 (ω),i»

n
 )) ύ μ(B

C
(x,δ )) < μ(B°(θ,δ ))

3"*°° j j ° (*) °

= lim inf μ
n
 (B°( Θ,<5

Q
) ,ω) ύ lim inf μ

n
 (B

C
(θ,r ),ω),

which again is in contradiction with the choice of θ according to (**). D

Before starting with the VAPNIK-CHERVONENKIS Theory we want to add here

some remarks concerning the]P-a.s. limiting behaviour of so-called weighted

discrepancies which are of importance in statistics as well (cf. T.W. Anderson

and D.A. Darling (1952), J. Durbin (1953)).

For this, let (X,B) = QR,β) and ( 5
i
)

i 6 ] N
 be a sequence of i.i.d. random

variables on some p-space (Ω,FjP) with df F; let F be the empirical df per-

taining to ξ
is
...,ξ

n
 and define the WEIGHTED DISCREPANCY by

F
 |F (t)-F(t)|

D (q) := sup

tem q(F(t))

where q: [ θ , l ] -> ]R+ i s some given WEIGHT FUNCTION.

(Note that D (q) Ξ D
F
 for qΞl.)

Considering instead of the ξ.
!
s the special versions ξ. = F~

1
(n.), the n.'s

being independent and uniformly distributed on (0,1), it follows in the same
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way as pointed out in part c*) of the outline of the proof of (8) that w.r.t.

p

Γ-a.s. convergence of D (q) for continuous q
!
s one may consider w.l.o.g.

p
instead of D (q) its versions

.
F
 |F < |

D (q) := sup
n q(F(t))

where F is the empirical df pertaining to L
}
...,ξ .

But, due to the identity {ξ\^t} = {η.^F(t)} for all tGIR one has

F (t) = U (F(t)) for all tEH, where U is the empirical df pertaining to

η
l

5
'*''

η
n*

 T n e r e f o r e

A F
 |U (F(t))-F(t)| |ϋ (s)-s|

D
r
(q) = sup — - ^ sup — =: D (q),

tEΠR q(F(t)) s6[0,l] q(s)

~F
where we remark that for continuous F we have even D (q) = D (q), whence for

continuous q's and F
f
s one has, comparing again with part c*) of the outline

of the proof of (8), that

D
n

( q ) =
 ̂ n

(q) =
 V

q )

showing that in this case D
F
(q) is a DISTRIBUTION-FREE STATISTIC. By the way,

F ** ~F
since for continuous q

f
s and arbitrary F

f
s D (q) = D (q) ύ D (q), we obtain

in this case that

^ for each d^O.

Also, the above remarks show that for continuous q*s we may restrict ourselves

w.l.o.g. to the case of finding conditions on q such that

(*) lim D (q) = 0 ΠP-a.s.

n-*»
 n

in order to get the same GLIVENKO-CANTELLI-convergence for D (q).

The following theorem gives in a certain sense necessary and sufficient

conditions on q for (*) to hold (cf. J.A. Wellner (1977) and (1978)).

THEOREM 1. Let (η.). be a sequence of independent random variables on some

p-space (Ω,F,IP) being uniformly distributed on [θ,l]

above with a weight function q belonging to the set

p-space (Ω,F,IP) being uniformly distributed on [θ,l]. Let D (q) be defined as
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0^ := ίq:[0,l] -*]R, q continuous, q(0) = q(l) = 0, q(t) > 0 for all

tE(0,l), q monotone increasing on [0,6 ] and monotone decreasing

on [l-δ ,l] for appropriate δ.=δ.(q), i=0,l}.

Then, putting Ψ(t) := , > , one has:

1
(i) For any q€(λ with Jψ(t)dt < °° it follows that

1
 0

lim D (q) = 0 P-a.s.

1

(ii) For any qE£ with Jψ(t)dt = °° it follows that
1
 0

lim sup D (q) = °° P-a.s.

Proof.(i): For any ε>0 there exist θ.>0 such that θ.<δ., i=0,l, with

θ
o
 1

Jψ(t)dt < ε/4 and / Ψ(t)dt < ε/4.

0 1-θ

We have D (q) = sup Ψ(t)|ϋ (t)-t| ^ sup Ψ(t)U (t)
n
 te(o,i)

 n 0 < t
-

θ

o

 Π

+ sup Ψ(t)t + sup Ψ(t)|ϋ (t)-t| + sup Ψ(t)|u (t)-t|

o o 1 1

= : I^n) + I
2
 + I

3
(n) t I^ίn), say.

Now, to start with the first summand I.Cn), one has

-* J Ψ(t)dt P-a.s. by the SLLN, whence lim sup I (n) < ε/4 P-a.s.

0 n-*»

Concerning I
2
, note that for all

t θ
o

Ψ(t)t ^ JΨ(s)ds ^ J Ψ(s)ds, whence I = sup Ψ(t)t < ε/4.
0 0 0<t^θ

o

As to Io(n) we have Io(n) = sup ~ΊT) I
U
 (ΐ)""

11
!

o~ o

^ [ min q(t)]~ sup |u (t)-t| ̂ 0 P-a.s. according to (8).

θ ^t^l-θ, θ ^t^l-θ,
 n

= : c with 0<c<°°

Therefore lim ^(n) = 0 P-a.s.
n-*»
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Finally, I
4
(n) = sup Ψ(t) | 1 - - Σ l

(i
_
 iΊ
(η.)-t|

i

- Σ sup Ψ(t)l, ,(η.) + sup Ψ(t)(l-t)
n
 i=i I Θ ^ I

 u J x
 i-

1

- Σ Ψ(η.)l, Ί
(η.) + J Ψ(t)dt where again by the SLLN

1
lim - Σ

n

(η.) = J Ψ(t)dt P-a.s.; thus
1

lim sup I.(n) < ε/2 P-a.s.

So we have shown that lim sup D (q) < ε P-a.s. for any ε>0; this proves the

assertion in (i).

(ii): Let NEU be arbitrary but fixed; we will show

(+) lim sup D (q) k N P-a.s.

which gives the assertion in (ii).

Now, by assumption,

either (a) J Ψ(t)dt = «>

0

1

or (b) J Ψ(t)dt = oo.

Let us consider case (a) (case (b) can be dealt with in an analogous way),

i.e.,assume

J°Ψ(t)dt = oo.

0

Then, for n sufficiently large, say n^n ,

\
FIGURE 1 a

n

is

(cf

Σ

:= max {t
o'

well defined

. Figure 1)

Σ

Ψ(t)

(i.e.

-

{

1+

2nN}

...} *

l)N-2r

and

n^n n^
o o

in other words one has

Σ P(η

n
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whence by the BOREL-CANTELLI LEMMA

P(lim sup {η ^a }) = 1.
n n

From this we obtain, looking at the first order statistic η , thatP-a.s. one

has
 n

n # 1
 ^ a for infinitely many n and this implies thatP-a.s.

^ — Ψ(a ) — = N for infinitely many n, which implies (+). D

Remark. The validity of the first inequality at the end of the proof is based

on the following fact which is easy to prove:

Given two df's F , F on E. and some strictly positive function h on some inter-

val (a,b)C]R , then for any continuity point t C(a,b) of F and of h one has

|F
2
(t)-F (t)|

 1

 F

2

( t
o

)
"

F
2

( t
o "

0 )

sup ^ -

a<t<b h(t) h(t
Q
)

THE VAPNIK-CHERVONENKIS THEORY:

There are various methods for proving GLIVENKO-CANTELLI-Theorems (i.e.,

a.s. convergence of empirical C-discrepancies D (C,μ)) in cases where a common

geometrical structure for the sets in C is essentially used; see P. Gaenssler

and W. Stute (1979), Section 1.1, for a survey on the results and methods of

proof.

For arbitrary sample spaces where geometrical arguments are no longer

available, perhaps the most striking method based on combinatorial arguments

was developed by V.N. Vapnik and A.Ya. Chervonenkis (1971). We are going to

present here their main results together with some extensions and applications.

In what follows, if not stated otherwise, let X be an arbitrary nonempty

set and denote by P(X) the power set of X (i.e.
5
the class of all subsets of X).

For any set A, |A| denotes its cardinality.

DEFINITION 1. Let C be an arbitrary subclass of P(X) and, for any FCX with

|F| < oo
5
 let

Δ
C
(F) := |{FΠC: CGC}I
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be the number of different sets of the form FΠC for CEC.

Furthermore, for r=0,l,2,... let

m
C
(r) := max {Δ

C
(F): |F| = r }

9

and

V(C) :=
finfίr: m

C
(r)<2

Γ
}

l~, if m (r) = 2
Γ
 for all r.

If m (r)<2
Γ
 for some r, i.e., if V(C)<«>, C will be called a VAPNIK-CHERVONENKIS

CLASS (VCC).

REMARKS.

C C T

a) m (•) is called the GROWTH FUNCTION pertaining to C. Note that m (r)£2

for all r and m (r)=2
r
 iff there exists an FCX with |F|=Γ such that for all

F
!
CF there exists a CeC with F<X=F

!
; in other words: m (r) = 2

Γ
 iff C cuts all

subsets of some FCX with |F|=r, saying that F is shattered by C.

On the other hand, m (r)<2 implies m (n)<2 for all n^r.

b) EXAMPLES.
1) If X=K and C = {(-«>,t]: t€3R}, then

r
m (r) = r+1, whence C is a VCC with V(C) = 2.

2) (cf. R.S. Wenocur and R.M. Dudley (1981)): More generally, let X be an

arbitrary set with |x|£2 and suppose that CCP(X) fulfills the following

condition (*):

(*) VFQC with |F|=2 there exist C.GC, i=l,2, such that m e =0

and FΠC
2
=F.

(Note that (•) holds if {0,X}CC.)

Then C is a VCC with V(C)=2 iff C is linearly ordered by inclusion.

PROOF. Assume to the contrary that C is not linearly ordered by in-

clusion. Then there exist C
!
,C

M
6C such that C'ψC" and C'cjlC;

choosing x ^ ^ C " and x^C'VC
1
, it follows, together with (*), that

F := {x ,x } is shattered by C which implies V(C)>2.

To prove the other direction, assume (cf. (*)) that C contains at least

two elements and is linearly ordered by inclusion. Then, since
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implies V(C)^2 (note that |C|=1 iff V(C)=1), it remains to show that

For this, consider an FQ( with |F|=2; then, since C is linearly ordered

by inclusion, there is at most one F'CF with |F'|=1 and F'=FΠC for some

CGC, showing that F is not shattered by C. D

3) If X=[O,1] and C := {CCX: |c|<oo}, then m
C
(r) = 2

Γ
 for all r,

whence V(C)=°°.

v
c ) L e t φ ( v , r ) : = Σ \ A 9 w h e r e | r ] := 0 f o r j > r ,

j = 0 3 ' ' -1 '

j = 0 * 3 I
i . e . , φ(v,r) = <

if v<r

2Γ, if

(Note that φ(v,r) is the number of all subsets of an r-element set

with at most v elements.)

Then it is easy to show that the following relations hold true:

(12) Φ(v,r) = φ(v,r-l) + φ(v-l,r-l),

where φ(O,r) = 1 and φ(v,O) = 1;

(13) Φ(v,r) £ r
V
+l for all v

9
r^O,

The following remarks d) and e) are taken from R.M. Dudley (1978).

d) Let H, be the collection of all open half spaces in Έ. , k^l, i.e., all sets

of the form

k k

ίxGIR : (x,u)>c} for 0 * uG3R and some cGΠR,

and let \(r) be the maximum number of open regions into which ]R is

decomposed by r hyperplanes H.

H. = {x€]Rk : (x,u.) = c.}, j=l,...,r;

then the maximum number N, (r) is attained for £L,...,H in "general

position11 i.e. if any k or fewer of the u. are linearly independent.

L.Schlafli (1901, posth.) showed that
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Nk(r) = φ(k,r).

J. Steiner (1826) had proved this for k^3.

k
e) If F is an r-element subset of ]R , then

H

(15) Δ K(F) ύ 2φ(k,r-l)

and equality is attained if the points of F are in "general position",

i.e. no k+1 of them are in any hyperplane (cf. T.M. Cover (1965);

E.F. Harding (1967); D. Watson (1969)).

H
k

Therefore the growth function m (•) pertaining to H satisfies

H
(16) m

 K
(r) = 2φ(k,r-l).

Without using (14)-(16), but directly from the definition of φ(v,r) and the

recurrence relation (12), Vapnik and Chervonenkis ((1971), Lemma 1) proved

the following lemma:

Lemma 7. If X is any set and if CCp(X) is a Vapnik-Chervonenkis class

(i.e.
9
 V(C) ύ v < °° for some v ) , then

m (r) < φ(v,r) for all r^v.

In view of (16) this implies that for arbitrary X one gets an upper estimate

r
for the growth function m (•) pertaining to a VCC CCP(X) by the growth

*v v

function m (•) pertaining to the class H of all open halfspaces in X = E ,

namely
II

(17) m
C
(r) < | m

 V
(r+1) for all r^v^V(C).

Instead of Lemma 7 we shall show here a slightly sharper result whose

nice proof (based on a proof of a more general result in J.M. Steele (1975))

I learned from David Pollard on occasion of one of his Seminar talks in Seattle

(1982); cf. also N. Sauer (1972).

Lemma 8 (Vapnik-Chervonenkis-Lemma). Let X be any set and CCp(χ) be a Vapnik-

Chervonenkis class (i.e.,V(C) =: s<°°), then
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Q

m (r) £ φ(s-l,r) for all

Proof. Let r^s be arbitrary but fixed. We have to show that for any FCX

with |F|=r

(a) Δ°(F) := |{FΠC: C6C}| ̂  φ(s-l,r).

Let {F ,.,,,F } be the collection of all subsets of F of at least size s

(so p = (
r
) + (

 Γ

1
) + . . . + (

r
)).

* s s+1 r

Note that (a) is trivially fulfilled if

(b) F Π C Φ F . for all i=l,... ,p and all CGC.

Now, by assumption, we have:

(c) For each F. there exists an F. CF. such that

F ! Φ F. ΠC for all CGC,

implying

(d) {FΠC: CeC} C B
1
 := {BCF: B Π F ^ F * for all i=l,...,p}.

In one special case the result follows readily, namely if F. = F. for all

i=l,...,p since then B+ F. for all i=l,...,p and each BEB (which means that

β cannot contain any subset of F of at least size s), so that (a) follows

from (d).

We are going to show that by a successive modification of the F.'s the general

case will reduce in a finite number of steps to this special case:

If F. * F. for some i, choose any x EF and put

F? := (FJ uίx
1
}) n F

i 9
 i=i,...,

P
,

and define the corresponding class

B
2
 := {BCF: BΠF^^ΦF^ for all i=l,...,p}.

We will show below that

(e) |B
1
| i |8

2
|.
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2

If now F. = F. for all i=l,...,p,then B^ cannot contain any subset of F of at

least size s in which case (a) follows from (d) and (e).

2
If F. * F. for some i we go once more through the same argument, i.e.

f
we choose

2 2 1
any x 6 F , x Φ x and put

?l := (F?U{χ
2
}) n F

1
, i=l,...,p,

B. := {B C F:B Π F. * F? for all i=l,...,p}

O 1 1

and show as in (e) that |'B | ύ \β \ .

So, another n-2 (n^r) repetitions of this argument would generate classes

B
4
,...,B

n
 such that

|B
1
| ύ |B

2
| * |B

3
| * ... * |B

n
|

with

Bn = f B C F B Π F J F* for a l l i = l , . . . , p }

and F. = F. for all i=l,...,p, which is the special case implying (a).

So it remains to prove (e):

For this it suffices to show that there exists a one-to-one map, say T, from

B
1
 \ B

2
 into B

2
 \ B

r

Our claim is that T(B) := B \ {x } is appropriate:

Let B 6 B \ B
2
; then by definition of B ^ i=l,2

s

B O F . + F ! for a l l i = l , . . . ,p

2
and BΠ F. = F. for at least one j G {l , . . . ,p}

1 1 1 2

implying that x € CF. whereas, by construction, x E F. and therefore

x G F. and x E B; the last makes T one-to-one. It remains to show that

B\ { X 1 } E ^^B
χ
 for all B E &^*

2
 So, let B E B^Bgi then

(BNίx
1
}) Π F. = (BΠ F.) \ {x

1
} = F? \ {x

1
} = F^, whence

(BXίx
1
}) ^ B^; so we must finally show that B\ ίx

1
} E B

2 >
 i.e. that

(+) (B\ {x
1
}) Π T

±
 Φ F^ for all i=l,...,p.

1 1 2

ad (+): Let i E {l,...,p} be arbitrary but fixed; if x E F., then x E F.,
1 1
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but x £ (B\{x
X
}) Π F

i 3
 implying (+) in this case. If x

1
 E (?F., i.e.,

{x
1
} Π F, = ?, then F^ = F*

 %
 whence (B\ {x

1
}) Π F. = B Π F. Φ F^ = F?,

implying (+) also in this case. This proves Lemma 8. D

The next lemma, being a consequence of Lemma 7 or Lemma 8
5
 respectively,

will be one of the key results used below.

Lemma 9. Let X be any set and CCp(χ) be a Vapnik-Chervonenkis class

(i.e.,V(C) =: s < ~) then

(i) m
C
(r) ϊ r

S
 for all r£2, and

(ii) m
C
(r) ύ r

S
+l for all

Proof. According to Lemma 7 and (13) we have

C s C

m (r) < φ(s,r) ύ r +1 for all r^s, whence (note that m (•) is integer valued)

m (r) ̂  r for all r^s;

if 2 £ r £ s , it follows that m
C
(r) ύ 2

Γ
 ύ 2

s
 ύ r

S
; this proves (i).

C O s

Finally, for r=0 we have m (0) = 1 = 2 (whence s^l) ̂ 0 +1, and for r=l

we have m (1) ̂  2= 1
S
+1, proving (ii). D

Besides Lemma 9, the following VAPNIK-CHERVONENKIS-INEQUALITIES are

basic for the whole theory. Vfe are going to present this part in a form

strengthening the original bounds obtained by Vapnik and Chervonenkis. This

will be done in a similar way as in a recent paper by L. Devroye (1981).

For this, let again (X,8) be an arbitrary measurable space (Devroye

(1981) considers only (X,B) = (]R
k
,6

k
), k*l), and let (ξ

±
)

i e : N
be a sequence

of independent and identically distributed random elements in (X,B), defined

on some common p-space (Ω,F,F), with distribution μ ΞL{ξ^} on 8*

For n,n' E Έ let μ and v
 t
 be the empirical measures based on ξ.,...,ξ

and ξ
n + 1
> >£

n+n
»» respectively.

Let C be an arbitrary subset of B, and let
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D (C,μ) := sup |μ (C) - μ(C)| ,
n
 CGC

 n

D (C) := sup |μ (C) - v ,(C)|,

where we assume that both D_(C,μ) and D_
 t

(C) are measurable w.r.t. the

n n, ri ~———————————————_______^—

canonical model (i.e., with (X , B
τΊ
, x μ) as basic p-space and with ξ.

f
s

being the coordinate projections of X onto X).

(Note that then D (C,μ) and D
 T

(C) are also measurable considered as func-

tions on the initially given p-space (Ω,F,P), since

ω H- ξ(ω) := (ξ^ω) ,ξ
2
(ω) ,. . . ) G X

1
 is F,6^-measurable.)

The proof of the following inequalities is patterned on the proof of

Vapnik and Chervonenkis (1971). As a corollary we will obtain both, the fun-

damental Vapnik-Chervonenkis inequality and its improvement by Devroye (1981).

Lemma 10. For any ε>0, any 0<α<l, and any n,n
τ
 E UN one has

(a) P(D (C,μ)>ε) ̂  (1 ±—)"
1
 P(U , (C) > (l-α)ε),

4α
2
ε
2
n»

and

( b ) P ( D
n n
, ( C ) > ( l - α ) ε ) ^ m

C
( n + n

!
) 2 e x p [ - 2 ^

2 2 2

Q

where m (•) denotes the growth function pertaining to the class C.

Before proving this lemma, let us point out the following facts:

We have that

D
 t

(C)(ω) = sup |μ (C,ω) - v .(C,ω)|
n,n CGC ^ ^

= h
 π!

(ξ(ω)) for ξ(ω) = (ξ
1
(ω),ξ

o
(ω),...) G X

1
*,

11,11 ± Z

where h
 t

: X —> ]R, defined by
n, n

, n n+n
1

h ,(x) := sup I- Σ 1 (x ) - i I 1 (x )| ,
n
'

n
 cec

 n
 i=i

 c x n
 i=

n
+i

 c x

for x_ = (x^,x ,...)6X , is, by assumption, B , β-measurable, whence
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A := {x G X : ̂  ^ (C) > (l-α)ε} G B ^ ,

and therefore

P({ω G Ω: ^
 nl

(C)(ω) > (l-α)ε}) = L{ξ}(A)

if z>0

= J u(h ,- (l-α)ε) d(x μ) where
Έ Π n

 1 if ẑ O.

f 1, ϋ
u(z) := <

l θ , id

Noticing further that h , depends only on the first n and the following n
f

coordinates of x_, we obtain using the notation

1
 - ( λ

 2
 - ( ϊ

x :- U
r
. . . , x

n
; , x :- ^

x

n + 1
> >

x

n + n
» ^

- n n+n
f
 n n+n

1

X := x X, X := x X
5
 P := x μ, P := x μ

1 n+1 1 n+1

and P := P
1
 x P

2
, that

(*) P(D ,(C) > (l-α)ε) = J u(h ,(χ
1

a
χ

2
)-(l-α)ε) P(dχ

1
,dχ

2
).

n
'

n
 X^ x χ2

 n
»

n

In the very same way one has

(**) P(D
n
(C,μ) >ε) = P

1
({χ

1
=(x

1
,...,x

n
) G X

1
: sup |i Σ l

c
(x

i
)-μ(C)| >ε}),

Proof of inequality (a) in Lemma 10.

According to (*) of our remarks made before, one has

P(U
 t

(C) > (l-α)ε) = J u(h
 t

- (l-α)ε) dCP
1
xP

2
)

n > n
 yl x x

2 n
»

n

(FuBini) ^
[ 5

χ2

U{h
n^-

 ( 1
"

α ) ε ) d E > 2 ]
 ^

^ © := J [ J u(h ,- (l-α)ε) dP
2
] dP

1

A
1
 X

2 n > n

with A
1
 := {x

1
 G X

1
: sup |μ (C,χ

1
)-μ(C)| > ε},

CGC
 n

1 1
 Π
 1 1

where μ (C,x ) = — Σ l
p
(x.) for x = (x

1
 ,.. . ,x ) G X .

n
 i = 1

 C i 1 n

But for any ( x
1
^

2
) G X

1
 x X

2
 with x

1
 G A

1
 there exists a C

χ l
 G C
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such that

L.x
1
) - μ(C

χ l
)| > ε,

2 1 9 2
whence (for v

 τ
(C,x ) = -

t
 Σ l

p
(x.) with x = (x ,,...,x

 f
) E X )

n n - L> ϊ n+l n+n
i-n+1

we have

l
μ
n

( C
χl'

χ l )
 " V

( C
χ l '

χ 2 )
l
 > ( 1

"
α ) ε

if l
v

n

 ( C
χ l '

χ 2 )
 " uCC

χl
)I £ αe;

therefore, we obtain for all x £ A the following estimate for the inner

integral in (a):

/ u(h ,(x\x
2
) - (l-α)ε) P

2
(dχ

2
)

χ2
 n

'
n

P
2
({χ

2 € X2: |v.(C
 l 5

χ
2
) - μ(Ci)| S oε}).

But, by Tschebyschev's inequality,

P
2
({χ

2
 E X

2
: |v

n !
(C

χ l
,χ

2
) - μ(C

χ l
)| > αε})

1

2 2
α ε

μCC? (l-y(Cχ l))

n f % α 2

1

2 f '
ε n 1

thus, summarizing we obtain

P(D ,(C) > (l-α)ε),(C) (lα)ε) ̂  ( ) ( 1 ^ )

4α
2
ε
2
n'

= P(D (C,μ) >ε)(l ^—)

(•#)
 n

 4o ε n
f

which proves (a).

Proof of inequality (b) in Lemma 10.

According to our remarks preceeding the proof we may and will consider

D .(C) as a function h . of
n,n

!
 n,n

!

1 2 1 2 1 2

x = (x ,x ) E X x X with x = (x-,... ,x ) and x = (x .,... >
x

n + n
»)

1 2
Due to the symmetry of P = P *P (w.r.t. coordinate permutations) one has
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λ λ 9 n+n1

for each f 6 L (X xX , <2> B,P)
1

J f(x) P(dx) = J f(T.x)P(dx)

for every permutation T.x of x (which means that

T.x is the image of x when applying a permutation

T. to the n+n
f
 components of x).

Therefore,

P(U
 t

(C) > (l-α)ε) = J u(h
 f

(x) - (l-α)ε) P(dx)

where the summation w . r . t . i i s over a l l (n+n')I permutations T. .

Ws also remark here for l a t e r use in the proof t h a t

Q

u(h . - ( l -α)ε) = sup u(h , - ( l - α ) ε ) ,
n,n ' c ^ n,n

where h° t ( x ) := |μ ( C ^ 1 ) - v , ( C , χ 2 ) | for
n j n n n

1 9 1 9

x = (x ,x ) e X xX .

Next, l e t x = ( x \ χ 2 ) 6 X1 x X2 (with x 1 = ( x ^ . . x ^ and

2
x = ( χ

n + 1 > » x

n + i )) ^ e a r b i t r a r y but fixed and put

F χ : = ^ X l ' # " ' ' X n ' X n + l 9 ' # # ' X n + n f ^ * t h e n f o r a n y C1»C2 G C O n e h a S t h a t

C
l
 C

2
F Π C = F Π C implies h

 Λ
,(T.x) = h ,(T.χ) for all T..

Λ ± x Δ n
5
n l n

9
n l I

Hence, denoting with C a subclass of C such that for any two

C ,C 6 C ,F n C Φ F n C , and such that at the same time for any
Δ. A X X J. X Z

CEC there exists a C EC with F Π C = F n C, we obtain for all T.
X X X X X 2.

sup u(h° ,(T.x) - ( l -α)ε) = sup u(h C

 t (T.x) - ( l -α)ε)

C Eg n,n ' l C E ^ n,n τ l



32 PETER GAENSSLER

Σ u(h
C

 t
(T.x) - (l-α)ε).

CGC
 n

'
n 1

x

For later use in the proof we note here also that

jC I = Δ (F ) (cf. DEFINITION 1)
x x

for every x = (x^x
2
) E X

1
x X

2
.

It follows that

(n+n')!

/ .
 M t

 Σ u(h ,(T.x) - (l-α)ε)
(n+n

1
)! . n,n

!
 1

rrγ Σ sup u(h ,(T.x) - (l-α)ε)

1
 (n+n')!

ΓΓ .
Σ
.

 u ( h
n , n '

( T
i

x )

Note that for each fixed x and C

is the fraction of all (n+n
1
)! permutations T.x of x for which

|μ
n
(C

5
(T

i
x)

1
) - v

n !
(C,(T

i
x)

2
)| > (l-α)ε.

Now, for x and C being arbitrary but fixed, put

{1, if x. e C

^ , j=l,...,n+n
τ
, and denote by

0, if x. € CC

(η^
1
,... , n ^

n
, ) the vector T^η for η = (n

χ9
.. . >

n

n + n
ι)

Consider then the p-space (Ω ,A JP ) with Ω being the set of all (n+n
1
)!

permutations T., A := P(Ω ), and

|A|

Γ (A) := , A e A .

(n+n')!
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Then, us ing t h e random v a r i a b l e s ζ . : Ω — > { 0 , l } 5 defined

by ς . ( I\) := η . , Ύ± E Ω Q 9 j = l , . . . 5 n + n f , we obta in

l ί

n n
( | i Σ ς . - i [ (n+n')μ . ,(C,x) - Σ ζ . ]

i = l ^ π+n i = l ^

Σ ζ . - (n+n')y + n ι ( C , x ) + | Σ ζ . | > ( l - α ) ε )
j = 1

^ 2 exp [-2n ( f) (1-α) ε ],

using Hoeffding's inequality for sampling without replacement from n+n' binary-

valued random variables with sum (n+n
f
)μ

 f
(C,x); cf. W. Hoeffding (1963) and

R.J. Serfling (1974).

1 2 1 2
Summariz ing we t h u s o b t a i n f o r e v e r y x = ( x , x ) E X xX

( n + n ! ) ί
Σ ί ^ . ' W Σ u ( h . ( T . x ) - ( l - α ) ε ) ]

\C | (2 exp [ - 2 n ( ^ τ ) 2 ( l - α ) 2 ε 2 ] ) = ΔC(F )
x n+n x

Q
^ m (n+n !) ( ), and therefore

- (n+n1)!
> (l-α)ε) = I o [γ—^TTΓ Σ u(h^ , (T.x)-(l-α)ε) 1 P(dx)J [J^J, Σ ^ h ^ ^ (T.x

X x X l—1

Λ
 (n+n

f
)Σ

 p

( Σ [
7
—VvΓ

 Σ u
^

h
 ,(T.x) - (l-α)ε)l) P(dx)
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m
C
(n+n') 2.exp [-2

which concludes the proof of (b). D

NOTE: We have in fact shown, assuming measurability of

Δ
C
α

ξ l
,...,ξ

n
,ξ

n + 1
 ξ

n + n
,}), that

P(D ,(C) > (l-α)e) £ 2 exp[-2n(^-
Γ
)

2
(l-α)

2
ε

2
] E(Δ

C
({ξ.,... ,ξ ,

n,n n+n 1. ΠTΠ

in many cases this bound is considerably smaller than the r.h.s. of (b).

COROLLARY.

(i) Vapnik-Chervonenkis (1971).

Taking α = — and n
f
 = n, one gets

2

P(D (C,μ) > ε) ύ 4 mC(2n) exp (- ^ ) for a l l n £ 2 / ε 2 .
n o

( i i ) Devroye (1981).

1 2

Taking α = — and n
1
 = n -n, one gets

P(D (C,μ)>ε) ύ 4 exp(4ε + 4ε
2
) m

C
(n

2
) exp(-2nε

2
)

for all n > max(~,2).

Proof, (i): It follows from (a) and (b) in Lemma 10 that in the present case

P(D
n
(C,μ) >ε) ik (1 - -^-)"

1
.m

C
(2n) 2 exp [-2n i i ε

2
]

ε n

2

A. 4 m
C
(2n)exp(- — • ) .

(nε
2
έ2)

 8

(ii): Again (a) and (b) in Lemma 10 yield in the present case

2 ~1 2
P(D (C,μ)>ε) ί» (1 § ) m

C
(n

2
)2exp[-2iH—) (ε

2
-2αε

2
+α

2
ε

2
 )]

n
 4(n -n)

 n
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x 2exp [-2n(ε2-2αε2+α2ε2) +4(ε 2 -2αε 2 +α 2 ε 2 )]

4 m
C
(n

2
) exp[-2nε

2
+4αnε

2
-2nα

2
ε

2
+4ε

2
+4α

2
ε

2
]

n (n
2
)exp[-2nε

2
+4ε+4ε

2
]

m (n 2)exp(-2nε 2). D

Based on Lemma 9 (i) and on part (i) of the corollary to Lemma 10 we now

obtain the main result of Vapnik and Chervonenkis concerning almost sure

convergence of empirical C-discrepancies in arbitrary sample spaces.

THEOREM 2. Let (X,B) be an arbitrary measurable space and let (£*) £-rκτ
 b e a

sequence of independent and identically distributed random elements in (X,B),

defined on some common p-space (Ω,FjP), with distribution μ = L{ξ.} on B.

F o r n G I l e t μ a n d v b e t h e e m p i r i c a l m e a s u r e s b a s e d o n ξ . 9 . . . 9 ξ a n d
n n i n

ξ
ntl

9
 "

 #
 *

ξ
2n'

 r e s
P

e c t i v e l
y

Let CCB be a VCC such that both D (C,μ) as well as D (C) are measurable

n n,n
w.r . t . the canonical model; then

lim D (C,μ) = 0 P-a.s .
n-χχ> n

Proof. Of course, it suffices to show that

(*) lim sup D (C,μ) ^ ε P-a.s. for every ε>0;

according to the Borel-Cantelli Lemma, (*) is implied by

(**) Σ P(D (C,μ) > ε) < «> for every ε>0,
n€]N n

whence the proof will be concluded by showing that (**) holds true.



36 PETER GAENSSLER

ad (**): Given any ε>0, we obtain from part (i) of the corollary to Lemma 10

that for all n ^ 2/ε

2

Γ(D (C,μ) > ε) ^ 4m (2n) exp(- ^ - ) .
n o

Since, by assumption, C is a VCC, we have V(C) =: s < °°,

whence by Lemma 9 (i)

Σ P(D (C,μ) > ε) ^ Σ
 o

 P(D (C,μ) > ε) +
n
 n<2/ε

2 n

2

Σ (2n)
S
 exp(- ̂ - ) < «. D

^
 8

The proof shows that the assumption of C being a VCC was essentially

Q

used to the amount that in this case the growth function m (r) is majorized

by r for r ^ 2 (with s being the minimal r for which m (r) < 2 ); without

C r

this assumption, i.e., in case that m (r) = 2 for all r, we would have

arrived at

2
.. „

 O
2n , ε n

λ4 Σ 2 exp(- — - ) = oo.
2 8

Thus, Theorem 2 can be restated as follows:

(18) If for a given CCβ there exists an s<°° such that C does not shatter any

FCX with I F| =S (i.e., for any FCX with |F|=s there exists an F'CF s.t.

F
1
 * F Π C for all C E C), then C is a GLIVENKO-CANTELLI-class

(i.e.jlim D (C,μ) = 0 JP-a.s.), provided that the measurability assumptions

stated in Theorem 2 are fulfilled.

The following example shows that these measurability assumptions cannot

be dispensed with, in general.

(19) EXAMPLE (cf. M. Durst and R.M. Dudley (1980)).

Let X = (X,<) be an uncountable wellordered set such that all its

initial segments {xEX: x < y } , y E X, are countable (cf. J. Kelley
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(1961), p. 29 - ).

Then C := {{x G X: x < y}
9
 y G X} does not shatter any F C x with

|F| = 2 (in fact: for any F = ίx ,x } C X with x
χ
 < x

2
 we have

{x } 4= F Π c for all C G C, since x 6 C would necessarily imply that

x
1
 G C for all C G C).

Note that C is linearly ordered by inclusion I To complete the example,

let B := {A C X: A countable or ζk countable}, and let μ on B be defined

by

r
if A is countable{0, iί

1, id

μ(A) : = «.

if CA is countable.

Then C C B and μ(C) = 0 for all C G C; on the other hand, given any

observations x.
9
 i=l,...,n, of i.i.d. random elements ξ. in (X,B) with

distribution μ, there exists a C G C s.t. x. G C for all i=l,.,.,n,

whence D (C,μ) = 1.

Note that in the present situation D (C) fails to be measurable

n, n .^__—

w.r.t. the canonical model (cf. Theorem 2). In fact, consider for sim-

plicity n=l, i.e.,Ω = X x X, F = S&B> Γ = μ x μ with ξ and ξ being

the projections of Ω onto the first and second coordinate, respectively.

Then

D (C) = sup |μ (C) - v (C)i = l
f
 ,

i,i
 c e C

 l l CΔ

where Δ denotes the diagonal in X x X which is not contained in F:

note that Δ E B® B iff there exists a countable subsystem E of B

which is separating in the sense that

(+) for any x,y G X with x * y there exists an E G E such that

1 (x) * l^Cy); but in the present situation it can easily be shown

that any countable subsystem E of B does not have the property (+)

which implies that

Δ φ B&B = F.
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Thus, although D (C,μ)=l is measurable w.r.t. the canonical model,

D (C) is not in the present case.
n,n

We will show later (Section 4) that in X = ΊR , k ^ 1, the class

B^ of all closed Euclidean balls fulfills the measurability assumptions

made in Theorem 2. As shown by R.M. Dudley (1979) one has V(B,) = k+2,

implying that B, is a VCC; therefore, by (18) with s = k+2, we obtain the

GLIVENKO-CANTELLI result (11) stated earlier without proof.

We are going to present here an independent nice proof of (11) which

I learned from F. Tops<z$e ((1976), personal communication); this proof

is based on the following two auxiliary results (20) and (21).

(20) RADON'S THEOREM (cf. F. Valentine (1964), Theorem 1.26).

Any F C ]R , k ^ 1, with |F| ^ k+2, can be decomposed into two

(disjoint) subsets F., i=l,2, such that

co(F
1
) Π co(F

2
) * 0,

where co(F.) denotes the convex hull of F.,

(21) (SEPARATION PROPERTY). For any two C^C^ 6 B
k
 one has

co(C
1
 \ C

2
) Π co(C

2
 \ C

1
) = 0.

Now, according to (18), in order to prove (11) it suffices to show

that B, does not shatter any F C ]R with |F| = s := k+2.

Suppose to the contrary that there exists an F C ]R with |F| = k+2

such that for every F C F there exists a C G B with F Π C = F .

This implies that for the F.
!
s of (20) which decompose a given F C R

with |FJ = k+2, there exist C. EΈ. such that F. = F Π C., i=l,2.

1 K 1 1

Since F Π F
2
 = 0, we have

F C P \ P __ J Tp C" P \ P
Λ
 c π \ C

o
 and F_ c c

o
 \ C, ,
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and therefore

co(C
1
 \ C

2
) n co(C

2
 \ C

1
) D co(F

1
) Π co(F

2
) Φ 0 (by (20))

which contradicts (21). D

As the proof has shown, the separation property of the class

C = B was essential; at the same time the proof has shown that in

general one has the following result (again under appropriate measura-

bility assumptions as in Theorem 2):

(22) If a given class C C β in X = I
k
, k M , fulfills the separation

property, then C is a VCC and therefore also a GLIVENKO-CANTELLI class.

Let me conclude this section with the following

CONJECTURE: The class of all translates of a fixed convex set in X = ]R ,

k £ k is, in general, not a VCC; at least it does not fulfill the separation
o

property: in fact, consider the class of all translates of a tetrahedron C

in E. , then the situation looks like this where you (hopefully) can see that

for C
z
 := C + z one has C \ Q,^ = C \ {x} and C \ C = C^ \ {x}, whence

co(C \ C
z
) Π co(C

z
 \ C) = {x} (cf. Figure 2);

I am grateful to Professors K. Seebach and R. Fritsch (Munich) for pointing

out to me this example.
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a \

C fa

FIGURE 2

Note added in proof: As pointed out by a referee, translates of multiples

of a fixed convex set need not be a GCC nor VCC: cf. Elker, Pollard and

Stute (1979), Adv. Appl. Prob. 11, p. 830.




