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1. Introduction

An impressive array of mathematical and statistical papers and books

have appeared in which a variety of maintenance policies are studies to deter-

mine their performance and to achieve optimization. In most of the models

treated, it is assumed that the relevant information to be used is available

and correct, and that maintenance actions are carried out as specified in the

maintenance policy being used or to be used.

Unfortunately, the most important factor in a great many actual maintenance

operations is omitted, thus vitiating the solution theoretically determined.

The most important factor, inadvertently overlooked or deliberately ignored

for the sake of mathematical tractability, is the fallibility of the mainten-

ance performer. In actual practice (as contrasted with the model formulation),

the maintenance performer may:

(1) Repair the wrong part.

(2) Only partially repair the faulty part.

(3) Repair (partially or completely) the faulty part, but damage adjacent

parts.
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(4) Incorrectly assess the condition of the unit inspected.

(5) Perform the maintenance action not when called for, but at his

convenience.

Clearly, the list of imperfect and even destructive repair actions occurring

in actual maintenance may be extended much further. Apparently, we need math-

ematical models for maintenance which take explicit account of imperfect and/or

destructive repair and faulty inspection.

In this paper, we formulate a variety of more realistic models which in-

corporate explicitly imperfect maintenance actions, postulating a probabilistic

basis for their occurrence. We do not attempt to carry out solutions to the

problems arising within these models, unselfishly leaving this challenging and

enjoyable (?) task to the eager doctoral candidate looking for a dissertation

topic and the young professor searching for problem areas yielding publications

so vital for tenure and promotion. We do, however, summarize the main results

of one study we carried out in detail of the type described above.

Throughout we assume a life distribution of F(t) for the unit being main-

tained.

2. Planned Replacement Based on Time Elapsed

First we succinctly describe three basic maintenance models which have

been widely used. (See Barlow and Proschan, 1965, Chapters 3 and 4). In these

classical models, no provision has been made for imperfect maintenance. We

then describe a variety of imperfect repair or inspection actions on a pro-

babilistic basis with their resultant adverse effects and costs. Some or all

of these difficulties may be incorporated into the three models as originally

formulated to achieve more realistic descriptions of maintenance situations as

they actually occur in practice.

2.1 Age Replacement

A unit is replaced at failure or at age T (constant), whichever comes

first. Operation and replacement continue indefinitely in this fashion. Given
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the cost c. of failure during operation and the cost c^(< c ) of planned

replacement, describe the operating characteristics of this policy and determine

the optimal value of T, i.e., the value minimizing the long-run cost per unit

of time. Compute the resulting minimal cost per unit of time in the long run,

2.2 Block Replacement

A unit is replaced at fixed times T, 2T,..., . In addition, it is

replaced at failure. The cost of failure replacement is c. , while the cost of

a planned replacement is c
2
(< c ). Describe the operating characteristics of

the policy and find the value of T minimizing the long run cost per unit of

time. Compute the resulting minimum long run cost per unit of time.

In both the age replacement and block replacement policies, replacement of

a failed unit is by a new unit. Thus the instant of replacement represents a

regeneration point in the stochastic process.

2.3 Maintenance with Minimal Repair

A unit is replaced by a new unit at fixed time T. If failure occurs

at time t<T, minimal repair occurs, returning the unit to the functioning state,

but the condition of the unit is that of a unit of age t Any number of fail-

ures resulting in minimal repair may occur during [θ,T]. The cost of minimal

repair is c
o
; the cost of planned replacement by a new unit at time T is c

Ί
,

and c.
 >
c « . As before, derive the operating characteristics of the policy, find

the optimizing value of T, and compute the resulting minimal cost per unit of

time in the long run.

We now formulate imperfect maintenance features on a probabilistic basis.

These may be incorporated into any of the three basic models above to achieve

a more realistic description of maintenance as it occurs in practice.
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2.4 Imperfect Maintenance Features

(a) Planned replacement may occur not at the time or age planned but

may deviate from this time by an amount D which is governed by a probability

distribution F .

(b) The replacement is not always installed properly. With probability

p it is installed properly, and with probability q = l-p it is faultily in-

stalled; the resulting failure rate function r (t)=ar(t), where r(t) is the

failure rate function corresponding to proper installation and a > l .

(c) With probability d, 0 < d < l , failure of a unit is detected immed-

iately; with probability density g(t), failure of a unit is detected t units of

time following its occurrence, t>0. A cost of c t is incurred if failure re-

mains undetected for t units of time. This cost is in addition to the cost c

of failure replacement.

(d) With probability q^, minimal repair at time tQ may be imperfectly

performed, leading to a functioning unit of effective age t~+m, rather than

the actual age t~, m > 0 . Each time a minimal repair is imperfectly performed,

the repaired unit's effective age increases by m units of time.

(e) In addition to the random features corresponding to imperfect

maintenance, information as to costs may be uncertain. Thus c-, c , c~ may be

random, governed by distributions F , F , F , respectively.

3 Maintenance Based on Inspection

The models of Section 2 called for maintenance actions based on unit

age or chronological time. Another class of maintenance policies calls for main-

tenance actions based on the physical condition of the unit. Of course, these

policies require inspection of the unit according to some plan.

3.1 Periodic Inspection

The simplest plan of inspection is to inspect the unit periodically at

interval I, say. For simplicity, we assume that the purpose of the inspection
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is to determine whether the unit is functioning or failed; a failed unit would

remain undetected unless specifically inspected. (An example is a battery serv-

ing as a spare; another example is a fire detection device. In the biological

realm, the occurrence of cancer in the early stages is an example).

Suppose the cost of each inspection is c
τ
 and the cost of undetected failure

is c per unit of time between failure and its detection. We wish to determine

the optimal value of I (periodic inspection interval) to minimize total expected

costs.

3.2 Inspection Interval Dependent on Age

For an item with increasing failure rate, it would be reasonable to

schedule inspections more and more frequently as the age of the item increased.

Thus, inspections might be scheduled at ages x^<x
2
,..., where (x

2
 - x ) >

(x - x ) > ••• . From a knowledge of c , c , and the failure rate function r(t)

of the unit, we wish to find the values of x,, x ,..., which minimize total

expected costs.

3.3 Identifying Failed Unit(s)

A system fails. We inspect the components in sequence to identify the

failed units and then replace them in order to resume system functioning. The

reliability of component i is ρ
i
 and the cost of inspecting component i is

c , i = l,...,n. Our aim is not to identify all failures (and, of course, to

replace them), but only a set sufficient to permit the resumption of system

functioning. For example, consider the following system.

L©J L(7

Diagram 1. System diagram showing failed components.

Failure is indicated by a circle around

component number.
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It suffices to identify components 6 and 7 as failed and to replace them to

initiate resumption of system functioning.

What is the optimal sequence of component inspection? That is, what se-

quence of component inspection will result in resumption of system functioning

at minimal expected cost?

3.4 Imperfect Inspection Features

(a) Inspection scheduled for time t~ say, may actually occur at time

t~ + D, D random.

(b) Inspection may be imperfect so that with probability q- a function-

ing unit is labeled failed and with probability q~ a failed unit is labeled

functioning. In Model 3.3, these probabilities may differ for different com-

ponents of the system, so that for component i, these probabilities become

q_ . and q ~ ., i = 1, . . . , n.

(c) Knowledge of costs may be imperfect, so that the various cost

parameters may be considered as random variables.

4. Summary of Results for an Imperfect Repair Model

Brown and Proschan (1980) formulate and analyze an imperfect repair

model. They obtain the operating characteristics of the stochastic process

generated and monotonicity properties for various parameters and random vari-

ables. They do not impose any cost structure nor attempt any optimization. In

this section we describe the model and summarize the results obtained. Here we

attempt to interpret the results; for mathematical proofs we refer the interested

reader to the original paper.

4.1 Model

An item is repaired at failure. With probability p, it is returned to

the "good as new" state (perfect repair); with probability q = l-p, it is

returned to the functioning state, but is only as good as an item of age equal



185

to its age at failure (imperfect repair). Repair takes negligible time. The

process of alternating failure and repair continues indefinitely over time; we

call it a failure process. Finally, suppose the item has underlying life dis-

tribution F with failure rate function r(t).

4.2 Stochastic Results Obtained

For the case p «0 (all repairs are imperfect), the failure process is

a nonhomogeneous Poisson process with intensity function r(t).

For the more realistic case of 0 < p <1, we note that the time points of

perfect repair are regeneration points. The interval between successive re-

generation points is the waiting time for a perfect repair starting with a new

component.

Let F denote the waiting time distribution for a perfect repair starting

with a new component. Let r denote its failure rate function. Then we show:

LEMMA 1: (i) r (t) =pr(t) . (ii) 7 (t) = 7 P (t) .
P P

Aside from its immediate value in understanding the imperfect repair model,

the results of Lemma 1 are interesting in that they represent a physically moti-

vated example of the well-known and widely used model of proportional hazards.

The assumption of proportional hazards is often made for mathematical con-

venience, especially in competing risk theory. Here we see one realistic

instance of its occurrence in maintenance theory.

Since the original failure rate function is simply multiplied by p, it

follows that many of the important classes of distributions characterized by

aging properties are preserved in the following sense: If F has a given aging

property, then F also has this property for 0 < p < l . Formally stated, we have:

THEOREM 1: Let F be in any of the classes: IFR, DFR, IFRA, DFRA, NBU, NWU,

DMRL, or IMRL. Then F is in the same class.

Theorem 1 cannot be extended to the NBUE and NWUE cases.
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Monotonicity Properties

Let μ(p) denote the mean of F . Clearly μ(ρ) is a decreasing function.

However, the next theorem shows that a reversal in the direction of monotonicity

may be achieved by weighting μ(p) appropriately.

THEOREM 2: (i) Let F be NBUE for all p in (0,1]. Then pμ(ρ) is increasing

for pε (0,1] In particular, this monotonicity holds for F

NBU or DMRL.

(ii) As an immediate consequence of (i), when F is NBUE for all

p in (0,1], we have the bound:

μ(p) 1 ^ μ(D .

(iii) Dual results hold for the NWUE, NWU, and IMRL classes.

The inequality p p(p )<p μ(p ) for p <p when F is NBUE for all pε (0,1]

can be interpreted as: F is smaller in expectation than a geometric sum (with

parameter p
Ί
/p

9
) of i.i.d. random variables having distribution F . When F is

^2

NBU, "smaller in expectation" can be strengthened to "stochastically smaller".

A dual result holds for F NWU.

Let N (t) denote the number of failures in [0,1) for the failure process in
P

which perfect repair has probability p. We can prove that for F NBU, N (t) is

stochastically decreasing in p. Intuitively, this is reasonable since greater

p leads to a quicker return to the "good as new" state.

A stronger conclusion can be obtained under the stronger assumption of

IFR:

THEOREM 3: Let F be IFR. Let Z denote the waiting time until the next failure,

starting in steady state. Let h denote the failure rate function

of Z . Then (i) for each t>_0, h (t) is decreasing in p; (ii) as

a consequence, Z is stochastically increasing in p. (iii) Dual
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results hold for F DFR.

A weaker conclusion is obtained under the weak assumption of F DMRL

(IMRL):

COROLLARY 1: Let F be DMRL(IMRL). Then EZ is increasing (decreasing)

in p.

In all the results above, conclusions were obtained for dual families of

distributions corresponding to deterioration with age and improvement with age.

The following result applies for DFR distributions, but the dual result is

known not to necessarily hold for IFR distributions.

THEOREM 4: Let F be DFR. Let Z (t) denote the waiting time at t for the next

failure to occur; let Z*(t) denote the waiting time at t for the

next perfect repair. Let m (t) denote the failure intensity at t

and let m*(t) denote the renewal density at t for the renewal pro-

cess with interarrival time distribution F . Finally, let A (t)

P P

denote the effective age at time t, i.e., the time elapsed since

the last perfect repair. Then:

(i) A (t), Z (t) and Z*(t) are stochastically increasing
P P P

in t for fixed p; m (t) and m*(t) are decreasing in t

for fixed p.

(ii) A (t) and Z (t) are stochastically decreasing in p for
P P

fixed t, m (t) is increasing in p for fixed t.
P
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