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1. Introduction

A parametric analysis of accelerated life test data largely depends on

the model chosen for the distribution of the life time and the relation of the

parameter(s) to the stress variable. In addition to the consideration of em-

pirical fit, a life distribution derived from reasonable postulates of the un-

derlying failure process adds credence to its statistical use. The exponential,

Weibull and log-normal families have been the popular choices in the extensive

literature of engineering applications of accelerated stress testing. The

first two draw from the extreme value theory and have simple forms of the fail-

ure rate function while the third is capable of using the large resources of the

normal theory inference results. In regard to the parameter-stress relation,

some empirical engineering models, such as the Arrhenius, Eyring and inverse

power law, are ordinarily used. These are cast in a common framework that

makes the logarithm of the scale parameter of the life distribution linearly

related to the stress. Consequently, the distribution of the log-life is in a

location-scale form with a linear regression for the location. Inference pro-

cedures under these formulations are discussed in Mann, Schafer and Singpurwalla

(1974), Nelson (1971) and others.

This article focuses on a versatile but not so well known life distribution,

called the inverse Gaussian distribution IG(θ,λ), whose probability density
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function (pdf) is given by

(1) f(y;θ,λ)=(2πλ~
1
y
3
)

1 -1 -1
 2

- 7rλy (yθ -1)z
, y > 0 , θ > O , λ > 0

3

Its mean and variance are θ and θ /λ, respectively. Although it is not a loca-

tion -scale family, it has the rare confluence of the three desirable features:

a wide variety of shapes of the probability density curve, analytical tract-

ability of many inferential results, and most important, its motivation from a

plausible stochastic setting of the failure process. Tweedie (1957) studied

the basic properties of this distribution, and an extensive literature has

evolved in the last decade concerning mainly the one- and two-sample inference

procedures and applications. A comprehensive survey is given by Folks and

Chhikara (1978).

In the context of accelerated life tests, we refer to the physical basis of

the inverse Gaussian distribution in Section 2 in order to formulate a plausible

stochastic relation of the failure time to the intensity of stress x. The

resulting regression model has the reciprocal-linear form θ = α + βx which is

explored in the subsequent sections from the aspects of maximum likelihood and

least squares estimation. The only previous work in this area is due to Davis

(1977) who considers the traditional linear regression of the mean θ = α + βx and

2

assumes λ constant or proportional to θ . These formulations are somewhat arti-

ficial when viewed in the background of a Wiener process, and except for the

uninteresting special case α = 0 , they lack the analytical advantage of our

reciprocal-linear formulation.

2
 The Reciprocal-Linear Regression Model

Along the ideas behind the development of the Birnbaum-Saunders (1969)

fatigue life distribution, the genesis of the inverse Gaussian distribution can

be cast in the context of fatigue growth in a material. Specifically, consider

that a material fails when its accumulated fatigue, or depletion of strength
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exceeds a critical amount ω > 0 . Assume that the fatigue growth takes place

2
over time according to a Wiener process with drift μ > 0 , and let 6 denote the

diffusion constant of the process. Then the time to failure (y), alternatively

called the first passage time through ω, has the inverse Gaussian distribution

IG(θ,λ) with θ=ωμ"~
1
 and λ = ω

2
δ"~

2
 (cf. Cox and Miller 1965, p. 221).

For a stochastic relation of y to the intensity of stress x, we note that

the parameter μ is the most obvious candidate to have a direct relation to x

because it measures the mean fatigue growth per unit of time. A linear form

μ = α + 3x with the natural positivity constraint 3^0 is a simple choice of the

relation. On the other hand, the quantities ό and ω correspond, respectively,

to the internal variability of the material and the critical damage that iden-

tifies a failure. It is therefore reasonable to assume that these are constants

unrelated to x. Referring to the pdf (1) and absorbing ω into the parameters

α and 3, we then have the reciprocal-linear regression structure

θ = α + 3x , λ = c o n s t a n t > 0

(2)
α > 0 , 3 > 0 , α + 3 > 0 , x > 0 .

The constancy of λ is analogous to the homoscedasticity assumption in the normal

theory linear model. The positivity constraints in (2) are demanded by the fact

that the pdf (1) is defined for 0<θ<°°. In a practical setting, we only re-

quire that a + 3x > 0 on a finite interval of x which corresponds to the admiss-

ible range of the stress. For a concrete discussion we assume that the origin

is taken at the lower end point of this interval so α>^0.

We now consider the observations (x.,y.), i = 1,...,n from n runs of an

accelerated life test experiment where y. denotes the failure time corresponding

to the stress setting x.. The random variables y,, ..,y are independent and

y. is distributed as IG(θ.,λ), with θ~ = α + 3 x
i
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Referring to (1), the log-likelihood function is given by

- l s λ S -1A = - £ logttπλ"1) - y I yT
z z i l x

(3)

c(α,β,λ) -
2 L J ±

2 „ n

- f I 1°8 y
±

-1
y i

which is defined on the restricted parameter space

Ω ={(α,3,λ): α_>0, , λ > 0}

The second form of (3) shows that we have an exponential family of distributions

with four-dimensional sufficient statistics. However, the natural parameter

space being only three-dimensional, the standard theories of inference for the

exponential families do not readily apply.

3. Maximum Likelihood Estimation

For the moment we disregard the restricted form of the parameter space

and consider maximization of £ with respect to ψ = (α,β,λ)
f
. The first ex-

pression in (3) yields the likelihood equations

(4)

dl/da = λ [ {l-(α+βx.)y.} = 0
i l x X

= λ I x i{l-(α+3x i)y i} = 0

= i n λ 1 - | f y i

1 { l - ( α + βx i)y i}
2 = 0
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We introduce convenient notation for the basic statistics:

n

I y.x] , j =0,1,2

(5)

-l
 n
 - -l

 n
 -l

 n
 -l

n I x , y = n £ y , R =n £ y
X 1 1

The first two equations in (4) simplify to

α V
0

which are linear in the parameters as are the corresponding likelihood equations

under the usual normal theory linear regression model. Interestingly however,

the coefficients on the left side are random variables, each a linear function

of y, while the terms on the right side are nonrandom. In the normal regression

case, the situation is reversed. The likelihood equations yield the unique

root ψ, = (α ,3 ,λ )
f
 given by

(6) 3
L
 = (xV

0
-V

1
) D

 λ
 = -(nD)

 λ
 I (x

±
-χ)(y

±
-y)

_ 2
where D - V

Q
V - V >0 with probability 1 by the Cauchy-Schwarz inequality. Ob-

serve that 3
T
 involves the usual covariance term in its numerator, but its
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denominator is quadratic in y. Further

8ψ3ψ
f = nλ

τ

o |V
3

Since this is positive definite, ψ locates the unique maximum of £
t
 We will

call ψ, the maximum likelihood root estimator (MLRE).

In order to obtain the maximum likelihood estimator (MLE), one needs to

examine whether or not the root lies in the parameter space Ω. The last equa-

tion in (4) shows that λ >0. Also from the reduced versions of the first two,

L

it is clear that at most one of α and fL can be negative. Thus, a violation

of the constraints can occur in no more than one component of ψ . It is easy

to construct examples where one of α and 3
T
 can indeed be negative. In such

L Li

cases, a search for the MLE requires a maximization of I on the boundaries α = 0

and 3 = 0. Substituting α = 0 in (3),we find that I is maximized at g =xv" ,

a A
Λ
 -1 _ 2 -l

 Λ

λ = R - x V
o
 , and its maximum value is £ =c-n/2 + (n/2) log λ where c

a z. a a
is a function of y. Similarly, with 3 = 0, the maximum value of & is £ =

~ D

c - n/2 + (n/2) log λ, which is attained at α, = V ~
λ
 and λ"

1
 = R - V "

1
 . In

b b U b U

either case, the maximizing solutions are positive and λ^ has the form

R - α
#
- 3

#
 x. Finally, a comparison of these maximized likelihoods shows that

o

I > JL if and only if x V
Λ
> V

o
. Collecting these results together, a formal

a b U — Δ

characterization of the MLE ψ can be stated as follows:

(7)

(α,3) = (<\

= (0,

if V
1
< min(xV

0
, x

if x " ^ £ V
1
 < xV

Q

,0) if xV
Q
 < V

1
 < x

R - α - 3χ ,
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where α and 3
T
 are given in (6). Note that if the root α < 0, the MLE of α

gets pulled to zero, as one would anticipate. However, at the same time, 3

changes its functional form. The situation is similar when 3 < 0.

Although the inverse Gaussian is not a location-scale parameter family,

certain equivariance properties hold for the MLE's under scale changes in x or

y, and location change in x. To describe these, we refer to the MLE
f
s as func-

tions of x and y by writing, for instance, α(x,y) in place of α, and consider

first the effects of scalar multiplications. For constants d >0 and d >0,

the following relations hold

α(d x, d
2
y) = d

2
 α(x,y)

3(d
1
x, d

2
y) = d

1
 d

2
 $(x,y)

λ(d x, d y) = d λ(χ,y) .

Also, the effect of a translation of x on the MLRE's is readily apparent. If

x is changed to x + x 1 where x > - min (x_,. . . ,x ), then α_ changes to α_ - x 3T~ o ~ o I n L L o L

w h i l e 3T r e m a i n s u n c h a n g e d . However, α and 3 c o u l d c h a n g e t h e i r f u n c t i o n a l

f o r m s . For i n s t a n c e , i f w i t h t h e o r i g i n a l x , α > 0 , 3 > 0 and i f x > α 3 , t h e n
o

we have 3= (xV -V )D , whereas with x translated to x + x 1, the new α is 0
U 1 ~ ~ o~

Λ
 — 2 - 1

 Λ

and the new 3 is (x + x ) (V + 2x V +x V ) . The MLE λ changes accordingly.
0 -̂ 0 -L 0 U

These properties help relate the MLE
f
s under different choices of scales for

the x and y variables.

4. Asymptotic Theory

Strong consistency and asymptotic normality of the maximum likelihood

estimators are established in this section under some mild conditions on the

limiting behavior of the design points. Letting F (x)=//{x.£x, i=l,. , . ,n}/n,

we henceforth assume that, as n^°°, F converges weakly to a proper distribution

function F on (0,°°). For brevity, we will only treat the case when the true



108

parameter point ψ is in the interior of Ω; that is, neither α nor 3 is 0. Unless

specified otherwise, all limits are taken as n->°°. We introduce the notation

(8)

τ.(n) = I x
J
(α+βx) dF , τ. = x

3
 (α+βx) dF

C j
(n) =

 χJ dF

n
 >

 c
j

 = χJ dF
 ' *

 =
 °

 1 2

7
LEMMA. Assume that x~ is uniformly integrable in F . Then R converges almost

surely (a.s.) to α + βc +λ~ , and V. to τ.,j =0,1,2.

PROOF. Since ECy^ = (α + 3xJ
 1
 and E ^

1
) = α + 3x

±
 + λ

 1
 (cf. Tweedie, 1957),

we have E(V.)=τ.(n) and E(R) = α + 3c (n) + λ"
1
. The assumptions α > 0 and 3 > 0

imply that x^ (α + 3x)~
1
£min{of ~ y , 3~

1
χ^~

1
}, so limτ.(n) = τ. and lim E(R) =

α+3c-+λ by the uniform integrability of x. Noting that Var(y. ) = λ~ (α +

3x.+2λ ), the stated a.s. convergence of R would follow by an application of
oo

the Kolmogorov strong law once we verify that £ x./i < °°. Because c (n) ->

-1 2
c

o
 < °°, for a given c > 0 there exists an n such that n x < ε for n > n .
2
 σ

 o n — — o

Consequently,

I x./i
2
 < 1° χ./i

2
 + ε

1 / 2
 I Γ

3 / 2
 <

i=l
 X

 i=l
 X

 i=n + 1

which establishes the desired result. For an application of the strong law to

V we require that T x. Var(y.)i < °°. This follows from the facts that

1
 i = 1 X

 L ^
Vaτ(γ

±
)=λ (α+3x

i
)"

3
 and x (α+3x)

similar, and the proof is concluded.

and x (α+3x) _£ 3
 J
χ. The treatment of V and V are
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To show that both ψ and ψ are strongly consistent for ψ, we first refer

to (6) and use the lemma to each component of ψ . In particular, 3 "*" g(τ),

a.s. where

o -1

g(τ) ( c
i

T
o-

T
i

) ( τ
oVV

The relations $τ = 1 - ατ and $τ = c- - ατ can be verified from the definition

of τ., and a substitution of these yields g(τ) = 3, so
J

5, a.s. Referring

to (7) we observe that 3
T
 Φ 3 if and only if xV

π
 - V < 0. However, using the

L 0 1

lemma we have with probability one, xV - V •* c τ - τ > 0. Thus, limsup|3 -3|

U 1 1 U 1 Li

= 0 , with probability one, hence 3 "*" 3, a.s. The proofs for α and λ are _

analogous.

We now turn to the limiting distribution of the maximum likelihood esti-

mators. In view of the asymptotic a.s. equivalence of ψ and ψ , it suffices

/\
to consider the limiting distribution of ψ

τ
. Referring to (6), the most

direct approach would be to first establish the joint asymptotic normality of

the V.
f
s and R and then use the ό-method. However, this process incurs some

formidable expressions whose simplifications are quite tedious. Instead, we

examine the first and second partial derivatives of the log-likelihood, and

observe an interesting relation

(9) = M[n
1 / 2

(φ
L
-ψ)]

where

M =

λS

(λλ
L
)
-1

>V
0 V

V V
L

V
1
 V

2.
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The exact relation (9) is more convenient to work with than the usual Taylor

expansion of 3£/9ψ which involves the second derivatives evaluated at some

undetermined intermediate point between ψ
τ
 and ψ.

3 1/2
 Λ

THEOREM. Assume that x is uniformly integrable in F . Then n (ψ - ψ) is
n ~1J ~

asymptotically trivariate normal N (0,£) where

J ~ ^

-1
(10)

'λΔ 0

Δ =

τ
o
 τ

i

T
2_

V "
1

PROOF. As a consequence of the lemma, e.+0, a.s. for i = l,2, so M->£ » a.s.

-1/2
Therefore, it suffices to show that n SJl/δψ has the limiting distribution

n-1 ~
 n

N
Q
(0,) ). Referring to (4) we observe that 3£/3ψ is of the form 7 q. where

3 ~ * ~ i=l -
1

q.
f
s are independent but non-identically distributed random vectors with means

-1/2
0. Focusing on an arbitrary linear function Z =n h

T
 9£/9ψ with h ^ O we

readily observe that lim Var(Z )=h
!
^ h > 0 . Therefore, the Liapounov central

n ~ ~

limit theorem would apply once we establish that lim ζ =0 where

ζ
n
= n'

3 / 2

Denoting ω

depending only on h, α, 3 and λ such that

.(α + 3x.) and referring to (4), one can find constants a. >_0

3
 3

 6
|h

f
q.| £ (1+x.) I a.ω.

J

1
 j=0

 3 X

-1/2
Consequently, ζ < n Y a.ε where ε = n

n - ^
0
 j n n

. +
 X i

)
J
 E(

W i

J J
) .
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Using the positive and negative moments of the inverse Gaussian distribution

(cf. Tweedie, 1957), it can be seen that ε is a fixed (not depending on n)

linear combination of the terms

r
00

V (n) = χ
k
(α + 3x)"

j
 dF (x)

J
κ

 Λ

 n

with 0 < j, k < 3. From the uniform integrability assumption, each of these

V., (n) has a finite limit. Hence lim ζ =0 and the proof is concluded.

The limiting normal distribution of the MLE
f
s, along with the a.s. con-

vergence of the sample information matrix, can be used to construct large sample

confidence intervals for the parameters. Specifically, the approximate var-

iances of α,(3 and λ are (nλD) V-, (nλD) V and 2n λ , respectively. Also,

the reciprocal mean failure time [θ(x*)] = α+(3x*, at a specified stress level

^
 Λ

 ^ -1

x*, is estimated by α+|3x*, whose approximate variance is given by (nDλ)

(V
2
-2x*

 2

5. A Least Squares Approach for_Jleĵ lijcated Designs

Although closed form expressions were obtained in Section 3, an analy-

tical treatment of the exact mean and variance of the MLE
!
s does not appear to

be feasible. In this section, we consider experiments with replicated obser-

vations and construct some unbiased estimators by employing a combination of

the maximum likelihood and least squares principles. A similar procedure has

been used by Singpurwalla (1973) when the underlying life distribution is

exponential.

Consider k stress settings x-,.. . ,x, and n. independent failure times

JL K. 1

(y. > »y ) observed atx., i=l,...,k. The random variables y.., j=l,...,

n.; i=l,...,k are all independent with y.. distributed as IG(θ.,λ), and

θ^
1
 = α+3x

i
. Let
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-i
 n ± k

y
i
 = n

i Σ y
l 1
 .

 N
 • ϊ

j=l
 J

 i=l

(11)

Q - ϊ I
k
 n

i

Our method consists of two steps. Disregarding the regression structure, we

first consider the θ.
?
s as free parameters in which case y., i=l,,.,,k and Q

constitute a set of complete sufficient statistics. As shown by Tweedie (1957),

these statistics are all independent, y. is distributed as IG(θ.,n.λ) and λQ is

distributed as χ
2
 with (N-k) degrees of freedom. Moreover E(y. ) = θ." +

( n Λ ) "
1
 and VarCy^

1
 ) = (θ^λ)""

1
 + 2(

n i
λ)"

2
. Defining

λ = (N-k) Q

it then follows that t. and λ "" are the uniformly minimum variance unbiased

estimators of θ. and λ , respectively. Focusing now on the t.
f
s which are,

in essence, the bias-corrected reciprocal means, we have the linear model

E(t.)=α+3x. with the covariance structure

Var(t
i
) = ( α + 3 ) ( λ )

 1
 + 2 ( λ )

 2

Cov(t
i
,t

jLt
)= 2[n

i
n

if
(N-k)]'"

1
 λ

 2
 ,

With large n.
f
s, the covariances are negligible compared to the variances. The

leading term in Var(t.) is proportional to n. but its dependence on (α+βx.)

is the major deterrant to an application of the usual weighted least squares.

In order to get unbiased estimators we consider the particular weighted least
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9 -1

squares which minimizes £ n.(t. - α - βx.) . Letting m . = N £ n.x.
J
, j > 1,

i = 1
 i i i J

 i = 1
 i i -

the resulting unbiased estimators are

k

5 = N"
1
 I n.y."

1
 - 3m + λ

i=l *
 1

v

(m -m ) N I (x - m ) ( n y - λ~ )
z ±

 i = 1
 i i i i

It can be seen that the behaviors of ψ = (α,3,λ)
f
 under different scalings

/\
of x and/or y are identical to those of ψ . For the balanced design n =

 =

~L 1
-̂  ~ ~_i

ΓL , 3 is independent of λ. The exact χ
2
 distribution of (N-k)λλ and the

simple linear forms of α and 3 also enable us to derive the exact variance and

-2
covariance expressions. Dropping terms of order N , we obtain

Var(λ -
1
) = 2(N-k)

 1
 λ , Cov(α,λ ) = Cov(3,λ~ ) = 0

Var(α) = (Nλ)"
1
 s

2
"

2
 [ α m ^ + Bm.^] ,

(12)

Var(3) = (Nλ)"
1
 s "

2
 [as + 3m"

1
 (s

2
 + s )] ,

Cov(a,3) = -(Nλ)~ s ~ [am^s. 4- 3s_] ,

2 2

where s
2

=
m -m and s ^ = m m -m .

The asymptotic (as N->°°, n.N •* r. , and k fixed) properties of ψ follow

directly from the asymptotics for Q and y., i =l,..,,k. In particular, ψ is
1/2 ~

strongly consistent, and N (ψ-ψ) is asymptotically distributed as N (0,Γ)
~ ~ J ~ ~

where the entries of Γ are equal to the limits of N times the corresponding

expressions given in (12).

Referring to (12) and the covariance matrix £ given in (10), we obtain the

asymptotic efficiencies (AE's) of the least squares estimators. Specifically,
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AE(λ) = 1,

AE(α)

AE(3) =

— 1 —1 -ί — 1 — 1 i
where v=3α c and τ.=α £ r .x.

J
 (1 + Vc x .) ,c.= I r .x. , j = 0,1,2,3

1 J .{
= 1
 i i 1

 x
 J -ί

 = 1
 i i

For fixed c.
f
s, these AE

f
s are monotonically decreasing functions of V.

Their bounds can therefore be established by considering the limits 3 + 0 and

α->0. As 3 + 0, τ.+cΓ
J
"c. and the limiting AE

f
s are each equal to 1. By

continuity, the AE
?
s are high when α is much larger than 3c , i.e., when the

major contribution to the reciprocal mean lifetime, at the center of the design,

is due to α, As α->0, T.^3 c. and the lower bounds are given by

, 2,2
 0

( C
2 "

C
T

)
 c Cc - c

2
 2

AE(α)
 ̂  7 ~ - S τ ; — AE(3) > -

1 2 υ
C
1

C
3

Here, c_ = J r.x. is well-defined since we have assumed all x. > 0
t
 When

i=l
 X

 ^
 1

some x
i
 values are close to 0, the quantity c - gets large and it forces the

lower bounds to become small. For example, the three point design with

ί
r
χ

1
,x

2
,x

3
) = (0.1, 1.0, 2.8) and ( r ^ r ^ r ^ = (.4, .4, .2) gives AE(α) >_ .311 and

AE(3)2L 679. This drawback of the least squares estimators can be overcome

by suitably translating the x-scale. For instance, in the previous example,

the translation to x^=x +1 gives the lower bounds .866 and .888 for AE(α) and

AE(B), respectively.

Straightforward computations show that, independent of the design, the AE

of the estimated reciprocal mean lifetime at the center of the design is equal

to 1, i.e., AE(α+3c
1
)=l. Also, for any two point design we have AE(α)=AE(3)
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= 1. This last result is explained by noting that when k=2, α = α,+N λ~ b-

Li .I.

and β = β +N λ b where b and b are constants. Evidently, the least

squares estimators are then asymptotically equivalent to the MLE's.

6. Example

Nelson (1971) reports data on the failure times of an insulation

material in a motorette test performed at four elevated temperature settings

o o
ranging from 190 C to 260 C. The original goal of the experiment was to

o

determine if the mean time to failure at the design temperature of 180 C ex-

ceeded a specified minimum requirement. However, the 260 C data were taken on

a batch of insulation different from the batch used at the other temperature

settings, and it became important to investigate whether or not the data from

the two batches were consistent. Nelson establishes the inconsistency of the

260 C data by employing a combination of graphical and analytic techniques

based upon the assumptions that the log-failure times are normally distributed

with a constant variance and the mean depending on temperature through the

Arrhenius relationship.

For illustrative purposes, we fit an IG regression model to these data

excluding the 260 C setting. Although the physical properties of the insulation

material are unknown to us, it seems reasonable to hypothesize that the wear

of the insulation increases until a critical amount has disintegrated or ceased

to perform adequately. Thus the assumption of an underlying IG distribution

is plausible. The assumption of a constant λ is tenable since the materials

used in the first three levels are known to have a common source. In the ab-

sence of a mechanistic model relating the mean life (θ) and the temperature (T),

we base our choice on the following observations: (i) regressing y. on T.

2
gives a value of R =99.9%, (ii) consistent with the IG assumption, the sample

variances raised to the power - — are approximately linear in Ύ^
9
 and (iii)

the transformation to T. - (180) is convenient in that it produces positive

MLE
f
s. Without a translation of T., the restriction α>_0 imposed in the
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definition of Ω would not be meaningful.

Guided by these considerations, we take the distribution of failure times

—1 —8 3 3

as IG(θ,λ) with θ =α+βx where x = 10 [T -180 ]. By using the results of

Sections 3, 4, and 5, we calculate the maximum likelihood and least squares

estimates of α , 3 and λ and also their approximate standard errors. The

results are given in Table 1 where the standard errors are shown in parentheses.

TABLE 1. The estimates and approximate standard errors

Parameters

Maximum likelihood

Least squares

α

.0371

(.0129)

.0320

(.0141)

3

7.3260

(.3557)

7.4316

(.3747)

.0102

(.0026)

.0097

(.0026)

The MLE's of the mean lives (thousands of hours) at 190°C, 220°C, and 240°C

are, respectively, 8.902, 2.565 and 1.606, with the associated standard errors

.094, .029 and .033. The corresponding least squares estimates are 8,863,

2.565 and 1.598, with the respective standard errors .101, .030 and .034. Both

sets of estimates are comparable to the observed sample means 8.782, 2.638 and

1.581.

o —

The MLE s obtained exclusively from the 260 C data, specifically y, and

λ, , are now compared with the estimates computed using only the first three

levels. From Table 1, the estimates of the mean time to failure at the fourth

level are θ =1.112 and θ =1.105 with the respective standard errors .037

and .038. These estimates agree closely with the sample mean y, =1.116, How-

ever, λ^ =.1310 differs substantially from both λ and λ~ . We perform an

exact test of the hypothesis of a common λ by using λ and λ. Under the null
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hypothesis of a common λ, lOλλ has an exact χ
2
(9) distribution and it is

4

statistically independent of 27λλ
 x
 which is distributed as χ

2
(27). Thus,

10λ " (9λ~ ) " is distributed as F(9>27). The observed value of this statistic

is 15.01 which corresponds to a p-value <.001. In agreement with Nelson, we

conclude that the two batches of insulating materials are significantly

different.
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