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1. Introduction

In a clinical trial in which comparison of survival across treatment

groups is of interest, it is useful to have a descriptive measure of the diff-

erence in survival between groups. If the hazard functions in two groups are

roughly proportional, then the ratio of hazard functions has the interpretation

of relative risk and has intuitive appeal as a descriptive statistic.

In this paper we investigate the large sample properties of several esti-

mators of relative risk. The experimental setting envisioned is the clinical

trial or other similar situations in which survival is being measured, and in

which there are possibly different potential follow-up times for each patient.

The notation and model are given in Section 2. Section 3 presents the maxi-

mum likelihood estimator based on an exponential model, and the maximuir partial

likelihood estimator of Cox (1972;1975). Various other approaches are indicated

in Section 4, and one, the Mantel-Haenszel (1959) estimator, is investigated in
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detail. Some numerical comparisons are made in Section 5.

2. Notation

For the i ^ sample, i = 0,l, we assume that the true survival times are

observations on a non-negative random variable X., with absolutely continuous

cumulative distribution function F.. The hazard functions in each sample are

dF.(t)
 ±

defined to be λ.(t) =
 (

 .; we assume that λ (t) =θλ
Q
(t) (which implies

fi i

that 1-F = (1 - F_) ). Our objective is to investigate several estimators of θ,

the relative risk.

In general, the possible follow-up time is limited by a fixed end point to

the study, while patients enter a trial at possibly different times. The poten-

tial follow-up may thus vary from patient to patient, and may be modeled as non-

negative random variables T. (possibly depending on the sample) with cumulative

distribution functions C. The T. are assumed to be independent of the X. and

what is observed is a survival time X. =min{X., T.}, as well as whether the ob-

servation is uncensored (X.=X.) or censored (X.=T.). (This random censorship

model is, in fact, more restrictive than necessary, and is used here primarily

for ease of exposition.)

The distribution function of the survival times X. is given by H. = 1-

(1-C.)(1-F.), and the subdistribution function of the observed deaths from each

sample will be denoted by G., where dG.(t) = (l-H.(t)) X
±
(t)dt. The number of

n
i

patients in each sample will be denoted by n., with n = n
Λ
+ n and α. = lim .

1 U -L 1 __̂ . oo n

Subscript n will be used to denote empirical versions of cumulative distribution

n
o
 n

i
 n

o
 n

i
functions, and we will also define G

n
 = — G

Q n
 + -^Γ^in* H

n
 = - ^ H

Q n
 + -rΓ

H

ln
»

G = V o + α i G r a n d H = α o H o + α i H r

For the combined sample of n patients let the ordered survival times, with-

out regard to censoring, be denoted by

x= (x
r
...,x

n
)
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Define a corresponding vector of sample indicators

Z = (Z ,...,Z ) ,
~ _ι_ n

Z. =0 X. from sample 0

where
 3 J

Z. = 1 X. from sample 1 ,

and a vector of censoring indicators

δ = (δ ...,6 ) ,
~ j- n

δ. = 0 X. censored
where

6. = 1 X. uncensored

Further, define the number at risk in the respective samples at X. by

n

and n
Ί
 . = I (1 - Z ) .

3. Likelihood Approaches

3.1 Maximum Likelihood

With an exponential model, we have

-λ t -λ t

F
Q
(t)= 1-e

 U
 and F

1
(t)=l-e

The likelihood is in this case well known (Bartholomew (1957)) to be maximized

by the ratio of occurrences to exposure time:
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(1)

and

Thus, the maximum likelihood estimator of θ is λ-/λ . From (1) it can be seen

that, in general,

λ
i * I

 d G
i

( t )
 '

 t d
V

t }

o ^ o

l λ
i
(t) (1-H

±
(t))dt/ j (1-H.(t))dt ,

so that λ^/λ -> θ under the exponential model, but not necessarily otherwise.

Asymptotic normality of λ /λ can be shown in general using the represen-

tation (1) and follows from likelihood theory under the exponential model (see

Gardiner (1982) for details.) In the latter case, the large sample variance

of ^ ( ^ / X Q - Θ ) is

(2)
[α

o
(l-H

o
(t)) + o^ θ] λ

Q
(t) dt

λ
Q
(t)dt λ

Q
(t)dt

3.2 Maximum Partial Likelihood

Cox (1972) presented a statistical procedure for inference from cen-

sored survival data which depended on the model of proportional hazards, and

used a likelihood which did not depend on the form of λ (t), This is not a

likelihood in the standard sense but was later shown by Cox (1975) to be a

partial likelihood.
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In the two sample case, and using £nθ = β, the Cox partial likelihood is

and In (L($)) =

(3)

n
L(3) = .Π

1
[exp(3Z.) / (n^+n^ exp(β))]

ό [βZ -ln(n +n exp(β))]
J J υj J-J

The proposed estimator of θ is then e , where 3 is the solution to

o = r(β) = I δ z. -
n exp(β)

n oj + n i j e x p ( β )

(4)
)) exp(β) dG

n
(t)

McRae and Thomas (1972) show there is a solution to (4) corresponding to a

maximum of (3) with arbitrarily high probability as n^°°.

The estimated variance is -£e ] /£"(β), where

_j t S,ino.inii e χ P< g >

(5)
n.n r00 (1-Hn ( t

1 2 On

K Γn0 (1-H

exp(β) dG
n
(t)

o I U ( 1 - H π ( t
L-fΓ O n

In
(t exp(β)]

Thus, vίΓ (e -θ) is taken to be asymptotically normal, with mean 0 and variance

(6)
θ

V i
Γί'

[ 1 -

αo

H ( t )
0

(1-HO

Ί Γi—

( t ) )

1

+ α

]θ λ
u

(t)dt

t)) θ
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the denominator arising from the limit in probability of ^~ .

The log-likelihood £(3) is composed of random variables which are neither

independent nor identically distributed, so standard likelihood theory fails to

justify the large sample moments and distribution given above. However, an

approach is possible following the outline of the proofs for standard likeli-

hoods, as suggested in Cox (1975). There are several articles covering the

large sample theory for random covariates (Tsiatis, 1981, Andersen and Gill,

1981, for example), but none which explicitly cover the two-sample case arguing

directly from the partial likelihood using classical methods. We sketch such

a proof below.

Expanding V (3) around the true value 3
n
>
 w
e have

0 = £'(β
0
) + (β-β

Q
)

where β is in (β ,β). Thus

-n
 h
 V (β )°

r (β*)/n

_1^

The result follows if n
 2
 £

f
(3 ) is asymptotically normal with mean 0 and var-

iance estimated by - - &
I !
(3

Λ
), if β £ β and if - (&

rl
(3*) - &

lf
(3,J)S 0 .

n U U n U

From (4) we can see that &
τ
(3

n
) is just the logrank test, with the addition

of the constant exp(3
π
) multiplying n , and thus trivial extensions of existing

proofs show that

under proportional hazards and random censorship (Crowley and Thomas, 1975) or

more general censoring (Aalen, 1978). Further, it is clear from (5) that

- W
f f
(3*) -£

l f
(3

Λ
)] will converge in probability to 0 if 3 £ 3

Λ
 .

n U U
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To show the consistency of 3, note that £
f l
(3) < 0, so that &

f
(3) is de-

i
1
 (3)

creasing, and that —̂̂ - can be seen from (4) to converge in probability to

α.d-H-ίt)) exp(3) dG(t)
(7) α

Ί
 I dG

1
(t) -

α
Q
(l-H

0
(t)) + α

1
(l-H

1
(t)) eχp(3)

If the true parameter is 3
Q
> and setting 3 = 3

Q
 + Δ, (7) decomes

exp(3
Q
) λ

Q
(t)dt

' o

(8)

^(1-^ίt)) exp(3
Q
 +Δ)(l-F

0
(t))

e X p ( Δ )

α
o
(l-H

o
(t)) + ^(1-^Ct)) exp(3

Q
 + Δ)

dG(t)

Writing dG(t) = [α
Q
(l-H

0
(t) + ^(1-^Ct)) exp(3

0
)] λ

Q
(t)dt, (8) simplifies after

a little algebra to

L i π V W / v
l-H

Ί
(t)) exp(β

n
)(l-exp(Δ))λ (t)dt

/Q\ _
 α α

 i 0 1 0 ϋ
\yj

 0

α
Q
(l-H

0
(t)) + α

1
(l-H

1
(t)) exp(3

0

The expression (9) is 0 when Δ = 0, and negative (positive) when Δ is positive

(negative); there is thus with high probability a single root of &
f
(3) = 0 in an

Λ
 p

arbitrary neighborhood of 3Q, SO that 3 -• 3
Q
 .

This result can be generalized to vector-valued covariates, not necessarily

i.i.d , with a finite number of possible outcomes. The approach requires

establishing that

lim P{(£(3
n
) - sup &(3))>0} = 1 ,

n ^ ^
 U

 3εN(3)
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for N.(3Q) = {β:|β-β
Q
| =Δ}. This rests on careful consideration of the terms

U.(3) of the log-partial likelihood, centered by their conditional expectations

under β= 3Q given the information on the times of all previous censored and un-

censored observations and the associated covariates, and on the fact that an

uncensored observation occurs at X.. Details are given in Liu and Crowley

(1978).

4. Ad Hoc Methods

4.1 Standardized Mortality Ratio

Peto, et al. (1977) provide an excellent review of the analysis of

clinical trials and point out the need for simple, closed-form test statistics

and estimators. They suggest that by analogy with the standardized mortality

ratio, an estimator of relative risk is provided by the ratio of observed deaths

in sample 1 to that expected under the null hypothesis. This is

n

.Σ
O/E = -J--

n-j+1 being the total number at risk at X. and n /n-j+1 thus the estimated

number of deaths from sample 1. This can be rewritten as

1-IL (t ) dG (t)
I n n

from which it can be seen that
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dG-(t)

(1-H^t)) dG(t)

(l-H(t))

Under proportional hazards this is

(10)
Γ (1-H^t)) λ

Q
(t)dt

(1-H^t)) [α
o
(l-H

o
(t)) + α^l-H^t)) θ] λ

Q
(t)dt

α
o
(l-H

Q
(t)) + 0^(1-^ (t))

The estimator 0/E is thus biased towards 1, For example, with the exponential

model and no censoring, (10) is equal to 1.24 when θ = 1.5, and 1.44 when θ = 2.

However, Bernstein, Anderson, and Pike (1981) present some Monte Carlo results

which indicate that 0/E behaves fairly well for moderate sample sizes and mod-

erate departures from the null hypothesis.

4.2 The Mantel-Haenszel Estimator

An analogy with the analysis of case-control studies could also be

drawn, as was done for the logrank (or Mantel-Haenszel) test by Mantel (1966).

This would suggest that the Mantel-Haenszel (1959) estimator of the log odds

ratio (relative risk for rare diseases) from sets of 2x2 tables be used as an

estimator of relative risk for survival studies as well. This is given by

^ ( n ^ - (1-Z.))

n-j+1

I δ (1-Z )(n
l Γ
Z )

J
Bl
-

J
—^lizr——n-j+l



65

( 1
-

H
θ n

( t
»

 d G
lπ

( t
>

(1-H (t"))

In establishing the large sample properties of θ it is convenient to use

the results on counting processes, outlined, for example, by Andersen, Borgan,

Gill and Keiding (1981). Thus, n. dG. (t) are counting processes with com-

ft _
pensators λ.(s) n.(l-H. (s ))ds, and

^ o

M
i
(t) ))ds ,

are orthogonal square-integrable martingales. Also, as v'ΐΓ (1-H (t ))/

n
n
(l-H (t~)) and /n~ (1-H. (t""))/n

Ί
 (1-H (t~)) are left-continuous and therefore

U n Un 1 n

predictable processes, and are bounded (interpreting 0/0 as 0), we have that

n

0

( 1
"

H
n

( t

dM ft)

and dM
χ
(t)

are orthogonal square-integrable martingales. Further, the conditions for asy-

mptotic normality given by Andersen, Borgan, Gill and Keiding (1981) are

satisfied, and we have that

(1-H (t ))
l n
 dG. (t) _
_ Un

λ
o
(t)(l-H

On
(t ))dt
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and

Ώ (1-H (t ))

"5—.— λ (t)(l-H (t ))dt

o (1-H (t ))
 X 1 Π

are in the limit, mean 0, independent normal random variables with variances

(l-H(t))
λ

Q
(t)dt

2 1
(1-H (t)Γ(l-H (t))

0 i
(l-H(t))

λ
1
(t)dt

Thus, we have a result of the form

and our estimator θ can be seen to be (except for the presence of t in-
K A

0n
stead of t in the respective numerators, which will not matter in the limit

because of the assumed continuity of F.(t)) Asymptotic normality of θ follows

i R

from repeated application of the ό-method, expanding A and B around their

common limit

(1-H (t))

μ
0
 = I

 ί
 dG (t) ,

U
 Ό d-H(t))

 U

and A
n
 and B- around
In In

o (l-H(t))
dGj^Ct) .
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This gives

B
ln

 μ
i

For proportional hazards, - — = — = θ, and we have established that

Λ
 p

 B
0n

 μ
0

θ -> θ, and that /n (θ - θ) is asymptotically normal, with variance which

reduces to

(11)

Γ°°

Vi <
(l-H(t))'

[α
o
(l-H

o
(t)) + α

l (
l -

H ]

l-H(t)

λ
Q
(t)dt

λ
Q
(t)dt

The estimator θ has been generalized to statistics of the form

K

(12)

J ( H
0 n

( t )
'
 H

l n
( t ) )

d G
l n

( t )

J ( H
0 n

( t )
>

 H
l π

( t ) )

d G
0 n

( t )

which will also be consistent for θ under the proportional hazards model and

will be asymptotically normal for a certain class of functions J, The choice

of J = ^ ^ Q n ^ ^
1
"

H
l n ^

t
 * corresponds to θ . This is discussed from the

point of view of the resulting test statistics by Andersen (1981), and from the

point of view of estimation by Begun and Reid (1981). That some restrictions

on J are necessary can be seen from the choice of JΞ1, resulting in the ratio

of cumulative hazards
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Γ
c d G

O n
( t )

n

ϊJ-J-
n

y i
n Oj

Λ l
(00)

(00)

where Λ.(t) is sometimes referred to as Nelson
f
s estimator (Nelson, 1969) of the

ft
cumulative or integrated hazard λ.(s)ds. The ratio may well provide a useful

J o
 x

1
 o

estimate as a function of time, for

Λ
1
(t)

 =
 Λ

1
(t)/t

Λ
Q
(t) Λ

Q
(t)/t

has the interpretation of the ratio of time-averaged hazards, but choice of t

will be important in its use as an estimator, as the asymptotic variance of

Λ(t) can increase without bound (cf Breslow and Crowley, 1974), A similar

point was made by Kalbfleisch and Prentice (1981), who study estimates of the

average hazard ration, defined to by

λ
1
(s)/λ

0
(s) dW(s)

for suitably chosen weight functions W.

5. Some Numerical Comparisons

As a large sample measure of efficiency we can compare asymptotic var-

iances for those estimators which are consistent. With the exponential model

this includes the maximum likelihood estimator λ /λ , the maximum partial like-

R
 Λ

lihood estimator e' , and the Mantel-Haenszel estimator θ . Since it is maximum

R ^

likelihood, we have that A.Var. /n~ (λ A - θ) <_ A.Var. v'n" (e - θ ) , where A.Var.

stands for asymptotic variance. For the general proportional hazards model we

can see from (6) and (11) and the Cauchy-Schwarz inequality that A.Var.
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β
ΛΓ(e - θ ) £ A.Var. vίΓ (θ - θ) , with equality with θ=l. With equal exponential

survival distributions and equal censoring, comparison of (2) with (6) and (11)

reveals that all three estimators have the same asymptotic variance.

Table 1 gives large sample variances for the three estimators under an

exponential model with λ = 1, covering the cases θ= 1,1.5, and 2.0 for four

different censoring patterns. Conditions 1 and 2 correspond to a cohort enter-

ing the study at time 0, with staggered entry of other subjects from 0 to 1 and

analysis at time 1; case 1 having an equal size cohort in each sample and case

2, unequal. The third censoring condition is equal, type I censoring at time 1,

and the fourth is no censoring. Also given in Table 1 are comparisons of e

/\

and θ for Weibull distributions under the same censoring conditions. The most
R

remarkable feature of the table is the high relative efficiency of the simple,

closed-form Mantel-Haenszel estimator. This small loss can be regained entirely

in a two-step procedure suggested by Begun and Reid (1981), using the statistic

(12). They show that the optimal J depends on θ, but that use of this J with

/\

θ replaced by θ (or any consistent estimator) provides full efficiency relative
R

to the maximum partial likelihood estimator.

Further numerical comparisons covering the case of grouped survival times

are given in Crowley (1975).



70

TABLE 1. Large Sample Variances

1) (̂ (t) =t/1.25

θ

1

1.5

2

1-F^t)-

. tε[O
f]

λ
1
/λ

0

9.51

19.01

31.77

e"
θ t

L];i. t

9

19

32

>1

e*

.51

.08

.20

9

19

32

/\

Θ
R

.51

.08

.25

2) C
Q
(t)=t/1.25 C

1
(t)=t/1.5 ,

θ

1

1.5

2

λ
l

9

18

31

.14

.45

.02

9

18

31

e

.16

.46

.21

9

18

31

Θ
R

.16

.46

.24

3) C
Q
(t) =C

1
(t) =0 ,

V
λ
2
 eP Θ

R

1 6.33 6.33 6.33

1.5 12.91 12.97 12.98

2 21.91 22.31 22.36

4) No censoring

θ λ l / λ 2 β^ ΘR

1 4 4 4

1.5 9 9.35 9.36

2 16 17.75 17.87
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Table 1 (continued)

2
t_

II . l-FQ(t) = e Z 1-F^t) = e

C t(t)=t/1.25 ,

1 12.16 12.16

1.5 24.37 24.37

2 41.07 41.14

2) C0(t)=t/1.25 ,

1 11.38 11.38

1.5 22.99 22.99

2 38.90 38.92

Results for cases 3) and 4) are the same as for corresponding entries

in Part I.
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