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1. Introduction

Let X be survival time with continuous distribution
 F
 (x)

 a n d
 density

f (x) . Similarly, let Y be time to censoring, independent of X, with continuous

distribution F (y) and density f (y). We observe time on trial, T , and death

or censoring indicator, D , where

T = min(X,Y)

1 if X < Y (death)

D =<

0 if X > Y (censoring) .

Using a sample {T.,D.);i=l,2,...,n} we wish to find a smooth estimate of the

survival distribtion 1-F
v
(x) = P[X > x] .

X

Define the hazard function by

h
χ
(x) = f

χ
(x)/(l-F

χ
(x))

and the integrated hazard function by

x x

Hfx) = I h (u)du = - f cUn(l-F
γ
(u)) ,

Ύ
 h JO

 X

which is related to survival by 1 - F (x) = e X . Defining the indicator

X

function l[A] (1 or 0 according as the event A holes or not), the sample cumula-
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tive distribution is

F (t) = I I[T. <_ t] /n
n
 i=l

 X

We are concerned with a smooth approximation of the hazard function over

subintervals using polynomials. We write the polynomials as linear combinations

of B-splines defined on the knots or points defining the subintervals. The B-

spline or order r or polynomial of degree r-1 is defined for the non-decreasing

sequence of knots

(1)

using the following divided differences:

g
r
(τ t) = (

τ
j-t)+

 λ
 = [max(O,τ -t)]

r λ

Vi
; t ) = [8

r
(
Vi

;t)
 -

g
r

(
V

t ) ] / (
V r V

Then the normalized B-spline is

V
( t )

In case some knots coincide, continuity can be used for the definition. For a

discussion of B-splines see de Boor (1976). Figure 1 gives graphs for r=2,3

corresponding to linear and quadratic B-splines.
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B-Spline of Order 2

j + l
Γj+2

B-Spline of Order 3
j+3 f

FIGURE 1. Linear and quadratic B-splines for knots {t.} .
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2. 5i^r^_Appτoxima_tion_by_Sρlines with Fixed Knots

We fit the model

K-l

(2) h (x) = I θ N (x)

X j=-r+i J J'
r

over the interval 0 < x < τ by selecting knots
— — K

τ
-r+l

 = T
-r+2 - •" "

 τ
0= °±

T
11

 T
2 - " * 'i

τ
κ
 = T
K+1

Although the model is parametric with parameters θ= (θ , fr
 o
,...,θ ),

<\; —r+± —r+z K—x

there is great flexibility through the choice of knots {tj}
 a
nd spline order r.

We consider estimating θ by maximizing the likelihood. The joint contiguous-

discrete density under the random censorship model is

[f
χ
(t)(l-F

y
(t))]

d

= (h
χ
(t))

d

where 1 - F (t) = (1 - F (t)) (1-F (t)) by independence. The log-likelihood is
1 Λ I

then

U 11
I I n f ( t , d ) = I [ d £ n h ( t ) + i l n ( l - F ( t . ) ) ]

i=l i ) U x x i = i i A l X l

( 3 ) + I [ ( 1 - d . ) iln h ( t . ) + £ n ( l - F ( t . ) ) ]
1=1 1

Differentiating (3) with respect to θ using (2) gives

a
 n

aθ
I An f ( t ,d ) = I [d N (t ) / (N (t ) θ" ) - N ( u ) d u ] ,

^=1 1 iD i i ^ _ ^ l ^r l ^r I ^ JQ ^r
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where N (x) = (N (x), N (x),...,N (x)) and θ' is the transpose of
r\jt — r + I , r —r-t-z, r is.—i,r <\,

If the solution of the derivative equation, 3 Y £n f (t.,d.)/3θ = O ,

. i ,JJ l l /\, <\,

K-l
 Λ

gives a nonnegative function h (x) = £ θ. N. (x) then we propose the esti-

Λ /s
 Λ

 Γ
x

mator 1 - F (x) = exp(-ίL(x)), where Hχ(x) = lL(u)du .

Jo

Because of the necessity of choosing the degree r as well as suitable knots

{τ, } and then solving a messy non-linear derivative equation which we can only

hope has a non-negative solution h , we turn instead to a simplification.

3 An Ad Hoc Estimator

The model h (x) = N (x) θ^ breaks down when the knots defining N are
Λ Λjϊ" ΓXJ Ά^r

random variables. Nevertheless, motivated by the success of the estimator of

Breslow (1974) that uses constant splines over random death times, we propose a

similar simplication using linear splines (r = 2 ) . Specifically, we replace

the knots 0 < τ <τ <
 β
 <τ__ in (1) by distinct death times 0<T < T <• <T

which are different sorted values of T. for which D.=l, i=l,2,...,n. Using

N.
 9
(T .,

1 S
) =1, and 0 at other knots gives the minimizing solution θ =0 and

^ n ^ i
θ
i =

 m
,

+ 1
 / I N (u)du , for j =0,1,2,...,K-l ,

J J + 1
 i=l Jo

 J )

where ΠL is the number of death times equal T . Then the estimate of the

integrated hazard is

<\j K rx n r i

V x ) = I {mk \-l 2 ( u ) d u ' Σ \ 1 2

( t ) d t } *
A k = l R j 0 k 1 > Z i = l JO k " 1 > Z

From the identity
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we can cancel the nonzero factor (̂  i- -T )/2 from both numerator and

denominator to obtain

r\, K

(4) H^x)
k=l

N (x) I I I N (t
J
'

J
 1=1 r>k-l '

J

For computing, with knots τ ^ < T <
 T
^
+
-i >

 w e
 nave

(x) = <

0, for x< τ
k-1

'
 f o r

1, for x > τ
k + 1

The estimator (4) is a non-negative differentiable monotone increasing

function of x on the interval [0, T , ] and thus

1 - F
χ
(x) = e

is a differentiable monotone decreasing function on this interval. Figure 2

gives an example of the estimator contrasted with the Kaplan-Meier estimator

(1958).
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4. Consistency of ΐL(x)

The following theorem gives consistency of Hχ(
χ
) and consequently

1 - F (x) under some assumptions.

THEOREM 1:

If f
v
(t) >0 a.e. on the interval of t values for which F (t) < 1,

'λl P

H^(x) -> H^(x) as n->°° for x in the interior of the interval.

PROOF:

From equation (5) we obtain the inequalities

(6)

By the continuity of F and F , F is continuous and the ordered times on trial

0 < T
Q \

 <Ύ
(2)

 <
 '"

<Ί
( )

 a r e
 distinct with probability 1. Consequently the

n

ordered death times 0 < T
Γ i Ί

< T
Γ o Ί

 < -—<Ί
ΓΊ
 where M= 7 D. are distinct

LI J L2J LMJ ^ ^ l

with probability one and K = M. Thus,
 τ

<
i

>

= T
ΓT,Ί

 anc
^

 w e

where the upper bound

(7) u
n
(χ) =

is obtained by replacing the numerator and denominator of (4) by upper and

lower bounds in (6) with knots {TJ-, -,} . Similarly

(8) L
n
(x) =
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is obtained from lower and upper bounds in the numerator and denominator of

(4). Here we use the conventions ΊY -, = 0 and
 T
Γ

M + 1
Ί
 =
 ^ΓMΊ

 i n
 ^

 a n d
 ^

 s o

that (6) holds for k = l and k=M. Intuitively, the bounds U (x) and L (x) will

be close to the empirical integrated hazard function

H (x) = I I[T
Γ

k=l
 L J

I {D. I[T. <x] / (n(l-F (T. -)))}
i = 1

 l l n l

shown by Breslow and Crowley (1974) to converge weakly to

H (x) = E{D
X

using methods of Billingsly (1968). Consistency will follow by showing

P P
U (x) -H (x) -> 0 and H (x) - L (x) •* 0. We show convergence for the upper
n n n n

bound; the argument for the lower bound is similar. Write

U
n
( x ) - H

n
( x ) = ^

k=l

l C τ [ k - i 3 < x ] _ l C τ [ k ] < x ]

(9) = I
k=l n(l-F (T

Γ
Γ

 i Ί
) - w . -w .

 | Ί
)

n [k-lj nk nk+1

k=l

where w ^ =
 F
 (

τ
r
k
-|) ~

 F

n
^

T
rv_i1^

 τ h e
 expression (9) is in turn bounded by

[n(l-F (x) -2w *)] + H (x) w */ (1-F (x) -w *) ,
n n n n n n
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. - P p
where w = max w . Since F (x) •> F (x) < 1 and H (x) -> H (x) < «> we

n l £ k £ M n n 1 n X

complete the proof by showing w * -*• 0. We bound w , by
n nK.

w =F (T
Γl Ί
) - F (T

Γl lnk n LkJ n [k-l

F
τ
(T

[ k ]
) -

(F
n

(T
[k]> " V

T
[ k ] » " ί'n̂ Cfc-l]) " V

T
[k-l]»

F
T

( T
[k]> "

p
Using the Glevenko Cantelli Theorem, sup(F (t) -F (t)) ->• 0, and so we show

m a x F ( T Γ Ί ) - F ( T f Ί ) -> 0 . Now f o r ε , δ > 0 ,
K k < M L J LK-lJ

P[ max ( F τ ( T r k Ί ) - F (T f O ) > ε]
Kk<M L R J i Lfc 1J

I P[ max ( F τ ( T Γ v l ) " F

τ

( T ΓV-l Ί } } > ε I M

n(p-δ)<τm<n(p+δ) l £ k £ M L L * J l L k 1 J

(10) + P [ | M - n p | > nδ ]

£ max P[ max ( F

τ ( T ( k ) ) " F τ ( T ( k - l ) ) ) > ^
n(p-δ)<m<n(ρ+δ) l < k < m

P [ | M - n p | > nδ]

where M has a binomial (n,p) distribution, p=P[X<_Y], and T " .,...,T* are

order statistics for an independent sample of size m from the distribution
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with density

(11) f
Λ
(t) = f

τ
.

D
 (t|l) = f

χ
(t) Cl-P

γ
(t))/p

The 2nd term in (10) goes to zero as n-*
00
 and so it remains to show

max (F (T ) - F (T J ) + 0, as m + «>.

Kk<m
 K } K J

By the assumptions, we see from (11) that F^(t) is continuous in addition

to F (t) and we can write

max [F (T* ) - F <T* . ) ]

max [ F T ( F Λ - 1 (F Λ (T* ) ) ) - F ^ " 1 (F A (T*
1 < k < m

max [F ( F ^ ( U ) ) - F F^ 1 (U )] ,
Kk<m ^ ; K }

where U,. v are order statistics from a uniform (0,1) distribution. Thus, by

continuity it remains to show

P
max (U - U ) + 0 as m -> «>.

Kk<m
 W ( k

"
i ;

Finally, by properties of uniform order statistics,

m

~~ k=l

m P[U
( 1 )

 > ε] = m(l - ε )
m
 -> 0 as m
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It is likely that these strong assumptions can be weakened for proving consis-

tency. However, some control on the spacings of adjacent death times may be

required around the point x as Hy(x) is a function of the order statistics and

cannot be written as a counting process.
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