# SPLINE SMOOTH ESTIMATES OF SURVIVAL 

Jerome Klotz<br>Ohio State University

## 1. Introduction

Let $X$ be survival time with continuous distribution $F_{X}(x)$ and density $f_{F}(x)$. Similarly, let $Y$ be time to censoring, independent of $X$, with continuous distribution $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})$ and density $\mathrm{f}_{\mathrm{Y}}(\mathrm{y})$. We observe time on trial, T , and death or censoring indicator, $D$, where

$$
\begin{aligned}
& T=\min (X, Y) \\
& D=\left\{\begin{array}{lll}
1 & \text { if } X \leq Y & \text { (death) } \\
0 & \text { if } X>Y & \text { (censoring) }
\end{array}\right.
\end{aligned}
$$

Using a sample $\left.\left\{\mathrm{T}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}\right) ; \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$ we wish to find a smooth estimate of the survival distribtion $1-F_{X}(x)=P[X>x]$.

Define the hazard function by

$$
h_{X}(x)=f_{X}(x) /\left(1-F_{X}(x)\right)
$$

and the integrated hazard function by

$$
H_{X}(x)=\int_{0}^{x} h_{X}(u) d u=-\int_{0}^{x} d \ln \left(1-F_{X}(u)\right)
$$

which is related to survival by $1-F_{X}(x)=e^{-H} X^{(x)}$. Defining the indicator function $I[A]$ (1 or 0 according as the event $A$ holc's or not), the sample cumula-
tive distribution is

$$
F_{n}(t)=\sum_{i=1}^{n} I\left[T_{i} \leq t\right] / n
$$

We are concerned with a smooth approximation of the hazard function over subintervals using polynomials. We write the polynomials as linear combinations of B-splines defined on the knots or points defining the subintervals. The Bspline or order $r$ or polynomial of degree $r-1$ is defined for the non-decreasing sequence of knots
(1)

$$
\tau_{-r+1}, \tau_{-r+2}, \ldots, \tau_{0}, \tau_{1}, \ldots, \tau_{K}, \tau_{K+1}, \ldots, \tau_{K+r-1},
$$

using the following divided differences:

$$
\begin{aligned}
& g_{r}\left(\tau_{j} ; t\right)=\left(\tau_{j}-t\right)_{+}^{r-1}=\left[\max \left(0, \tau_{j}-t\right)\right]^{r-1} \\
& g_{r}\left(\tau_{j}, \tau_{j+1} ; t\right)=\left[g_{r}\left(\tau_{j+1} ; t\right)-g_{r}\left(\tau_{j} ; t\right)\right] /\left(\tau_{j+1}-\tau_{j}\right) \\
& \cdot \\
& \quad \\
& g_{r}\left(\tau_{j}, \tau_{j+1}, \ldots, \tau_{j+r}, t\right)=\left[\frac{g_{r}\left(\tau_{j+1}, \ldots, \tau_{j+r} ; t\right)-g_{r}\left(\tau_{j}, \ldots, \tau_{j+r-1} ; t\right)}{\left(\tau_{j+r}-\tau_{j}\right)}\right] .
\end{aligned}
$$

Then the normalized B-spline is

$$
N_{j r}(t)=\left(\tau_{j+r}-\tau_{j}\right) g_{r}\left(\tau_{j}, \tau_{j+1}, \ldots, \tau_{j+r} ; t\right)
$$

In case some knots coincide, continuity can be used for the definition. For a discussion of B-splines see de Boor (1976). Figure 1 gives graphs for $r=2,3$ corresponding to linear and quadratic $B$-splines.



FIGURE 1. Linear and quadratic B-splines for $\operatorname{knots}\left\{t_{j}\right\}$.
2. Hazard Approximation by Splines with Fixed Knots

We fit the model
(2)

$$
h_{X}(x)=\sum_{j=-r+1}^{K-1} \theta_{j} N_{j, r}(x)
$$

over the interval $0 \leq x \leq \tau_{K}$ by selecting knots

$$
\tau_{-r+1}=\tau_{-r+2}=\cdots=\tau_{0}=0 \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{K}=\tau_{K+1}=\cdots=\tau_{K+r-1} .
$$

Although the model is parametric with parameters ${\underset{\sim}{*}}_{\theta}=\left(\theta_{-r+1}, \theta_{-r+2}, \ldots, \theta_{K-1}\right)$, there is great flexibility through the choice of knots $\left\{\tau_{k}\right\}$ and spline order $r$.

We consider estimating $\underset{\sim}{\theta}$ by maximizing the likelihood. The joint continuousdiscrete density under the random censorship model is

$$
\begin{aligned}
f_{T, D}(t, d) & =\left[f_{X}(t)\left(1-F_{y}(t)\right)\right]^{d}\left[f_{Y}(t)\left(1-F_{X}(t)\right)\right]^{1-d} \\
& =\left(h_{X}(t)\right)^{d}\left(h_{Y}(t)\right)^{1-d}\left(1-F_{T}(t)\right),
\end{aligned}
$$

where $1-\mathrm{F}_{\mathrm{T}}(\mathrm{t})=\left(1-\mathrm{F}_{\mathrm{X}}(\mathrm{t})\right)\left(1-\mathrm{F}_{\mathrm{Y}}(\mathrm{t})\right)$ by independence. The log-1ikelihood is then

$$
\sum_{i=1}^{n} \ln f_{T, D}\left(t_{i}, d_{i}\right)=\sum_{i=1}^{n}\left[d_{i} \ln h_{X}\left(t_{i}\right)+\ln \left(1-F_{X}\left(t_{i}\right)\right)\right]
$$

$$
\begin{equation*}
+\sum_{i=1}^{n}\left[\left(1-d_{i}\right) \ln h_{Y}\left(t_{i}\right)+\ln \left(1-F_{Y}\left(t_{i}\right)\right)\right] \tag{3}
\end{equation*}
$$

Differentiating (3) with respect to $\underset{\sim}{\theta}$ using (2) gives
$\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ln f_{T, D}\left(t_{i}, d_{i}\right)=\sum_{i=1}^{n}\left[d_{i} \sim_{\sim}^{N}\left(t_{i}\right) /\left(\underset{\sim}{N}\left(t_{i}\right){\underset{\sim}{r}}^{\prime}\right)-\int_{0}^{t_{i}}{\underset{\sim}{N}}_{N}(u) d u\right]$,
where ${\underset{\sim r}{N}}_{N}(x)=\left(N_{-r+1, r}(x), N_{-r+2, r}(x), \ldots, N_{K-1, r}(x)\right)$ and ${\underset{\sim}{~}}^{\theta^{\prime}}$ is the transpose of $\stackrel{\theta}{\sim}$

If the solution of the derivative equation, $\partial \sum_{i} \ln f_{T, D}\left(t_{i}, d_{i}\right) / \partial \theta_{\sim}^{\theta}=0$, gives a nonnegative function $\hat{h}_{X}(x)=\sum_{j=-r+1}^{K-1} \hat{\theta}_{j} N_{j, r}(x)$ then we propose the estimator $1-\hat{F}_{X}(x)=\exp \left(-\hat{H}_{X}(x)\right)$, where $\hat{H}_{X}(x)=\int_{0}^{x} \hat{h}_{X}(u) d u$.

Because of the necessity of choosing the degree $r$ as well as suitable knots $\left\{\tau_{k}\right\}$ and then solving a messy non-linear derivative equation which we can only hope has a non-negative solution $\tilde{\mathrm{h}}_{\mathrm{X}}$, we turn instead to a simplification.

## 3. An Ad Hoc Estimator

The model $h_{X}(x)={\underset{\sim}{r}}_{N}^{N}(x){\underset{\sim}{~}}^{\prime}$ breaks down when the knots defining ${\underset{\sim r}{ }}_{N}^{r}$ are random variables. Nevertheless, motivated by the success of the estimator of Breslow (1974) that uses constant splines over random death times, we propose a similar simplication using linear splines $(r=2)$. Specifically, we replace the knots $0 \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{K}$ in (1) by distinct death times $0<T_{<1>}<T_{<2>}<\cdots<T_{<K>}$ which are different sorted values of $T_{i}$ for which $D_{i}=1, i=1,2, \ldots, n$. Using $N_{j, 2}\left(T_{\langle j+1\rangle}\right)=1$, and 0 at other knots gives the minimizing solution $\tilde{\theta}_{-1}=0$ and

$$
\tilde{\theta}_{j}=m_{j+1} / \sum_{i=1}^{n} \int_{0}^{t_{i}} N_{j, 2}(u) d u, \text { for } j=0,1,2, \ldots, k-1
$$

where $m_{k}$ is the number of death times equal $T_{<k>}$. Then the estimate of the integrated hazard is

$$
{\underset{X}{X}}_{\sim}^{H_{x}}(x)=\sum_{k=1}^{K}\left\{m_{k} \int_{0}^{x} N_{k-1,2}(u) d u / \sum_{i=1}^{n} \int_{0}^{t} N_{k-1,2}(t) d t\right\} .
$$

From the identity

$$
\int_{0}^{x} N_{k-1,2}(u) d u=\left(\sum_{j>k-1} N_{j, 3}(x)\right)\left(T_{\langle k+1\rangle}-T_{\langle k\rangle}\right) / 2
$$

we can cancel the nonzero factor $\left(T_{\langle k+1\rangle}-T_{\langle k\rangle}\right) / 2$ from both numerator and denominator to obtain
(4) $\quad{\underset{H}{X}}^{\sim}(x)=\sum_{k=1}^{K}\left\{m_{k} \sum_{j>k-1} N_{j, 3}(x) / \sum_{i=1}^{n} \sum_{r>k-1} N_{r, 3}\left(t_{i}\right)\right\}$.

For computing, with knots $\tau_{k-1}<\tau_{k}<\tau_{k+1}$, we have

$$
\begin{aligned}
& \sum_{j \geq k-1} N_{j, 3}(x)=\left\{\begin{array}{l}
0, \text { for } x \leq \tau_{k-1} \\
\left(x-\tau_{k-1}\right)^{2} /\left(\left(\tau_{k}-\tau_{k-1}\right)\left(\tau_{k+1}-\tau_{k-1}\right)\right), \text { for } \tau_{k-1} \leq x<\tau_{k} \\
1-\left(\tau_{k+1}-x\right)^{2} /\left(\left(\tau_{k+1}-\tau_{k}\right)\left(\tau_{k+1}-\tau_{k-1}\right)\right), \text { for } \tau_{k} \leq x \leq \tau_{k+1} \\
1, \text { for } x \geq \tau_{k+1} .
\end{array}\right.
\end{aligned}
$$

The estimator (4) is a non-negative differentiable monotone increasing function of $x$ on the interval $\left[0, T_{<k\rangle}\right]$ and thus

$$
1-\tilde{F}_{X}(x)=e^{-\tilde{H}_{X}(x)}
$$

is a differentiable monotone decreasing function on this interval. Figure 2 gives an example of the estimator contrasted with the Kaplan-Meier estimator (1958).
Proportion
Surviving

|  |  |
| :---: | :---: |
|  |  |



4. Consistency of $\tilde{H}_{\mathrm{X}}(\mathrm{x})$

The following theorem gives consistency of $\tilde{H}_{\mathrm{X}}(\mathrm{x})$ and consequently $1-\sim_{\mathrm{F}}^{\mathrm{X}}$ ( x$)$ under some assumptions.

THEOREM 1:
If $f_{X}(t)>0$ a.e. on the interval of $t$ values for which $F_{T}(t)<1$, ${\underset{H}{X}}^{\sim}(x) \xrightarrow{P}{ }_{H_{X}}(x)$ as $n \rightarrow \infty$ for $x$ in the interior of the interval.

PROOF:
From equation (5) we obtain the inequalities

$$
\begin{equation*}
I\left[\tau_{k+1} \leq x\right] \leq \sum_{j>k-1} N_{j, 3}(x) \leq I\left[\tau_{k-1}<x\right] \tag{6}
\end{equation*}
$$

By the continuity of $F_{X}$ and $F_{Y}, F_{T}$ is continuous and the ordered times on trial $0<T_{(1)}<T_{(2)}<\cdots<T_{(n)}$ are distinct with probability 1 . Consequently the ordered death times $0<T_{[1]}<T_{[2]}<\cdots<T_{[M]}$ where $M=\sum_{i=1}^{n} D_{i}$ are distinct with probability one and $K=M$. Thus, $T_{\langle k\rangle}=T_{[k]}$ and we have

$$
\mathrm{L}_{\mathrm{n}}(\mathrm{x}) \leq \stackrel{\sim}{H}_{\mathrm{X}}(\mathrm{x}) \leq \mathrm{U}_{\mathrm{n}}(\mathrm{x})
$$

where the upper bound

$$
\begin{equation*}
U_{n}(x)=\sum_{k=1}^{M} I\left[T_{[k-1]}<x\right] /\left(n\left(1-F_{n}\left(T_{[k+1]}^{-}\right)\right)\right) \tag{7}
\end{equation*}
$$

is obtained by replacing the numerator and denominator of (4) by upper and lower bounds in (6) with knots $\left\{\mathrm{T}_{[\mathrm{k}]}\right\}$. Similarly

$$
\begin{equation*}
L_{n}(x)=\sum_{k=1}^{M} I\left[T_{[k+1]} \leq x\right] /\left(n\left(1-F_{n}\left(T_{[k-1]}\right)\right)\right) \tag{8}
\end{equation*}
$$

is obtained from lower and upper bounds in the numerator and denominator of (4). Here we use the conventions $T_{[0]}=0$ and $T_{[M+1]}=T_{[M]}$ in (7) and (8) so that (6) holds for $k=1$ and $k=M$. Intuitively, the bounds $U_{n}(x)$ and $L_{n}(x)$ will be close to the empirical integrated hazard function

$$
\begin{aligned}
H_{n}(x) & =\sum_{k=1}^{M} I\left[T_{[k]}<x\right] /\left(n\left(1-F_{n}\left(T_{[\bar{k}]}\right)\right)\right) \\
& =\sum_{i=1}^{n}\left\{D_{i} I\left[T_{i}<x\right] /\left(n\left(1-F_{n}\left(T_{i}-\right)\right)\right)\right\}
\end{aligned}
$$

shown by Breslow and Crowley (1974) to converge weakly to

$$
H_{x}(x)=E\left\{D I[T<x] /\left(1-F_{T}(t)\right)\right\}
$$

using methods of Billingsly (1968). Consistency will follow by showing $U_{n}(x)-H_{n}(x) \xrightarrow{P} 0$ and $H_{n}(x)-L_{n}(x) \xrightarrow{P} 0$. We show convergence for the upper bound; the argument for the lower bound is similar. Write
(9)

$$
U_{n}(x)-H_{n}(x)=\frac{1}{n} \sum_{k=1}^{M}\left\{\frac{I\left[T_{[k-1]}<x\right]}{1-F_{n}\left(T_{[k+1]}\right)}-\frac{I\left[T_{[k]}<x\right]}{1-F_{n}\left(T_{[k]}\right)}\right\}
$$

$$
\begin{equation*}
=\sum_{k=1}^{M} \frac{I\left[T_{[k-1]}<x \leq T_{[k]}\right]}{n\left(1-F_{n}\left(T_{[k-1]}\right)-w_{n k}-w_{n k+1}\right)} \tag{9}
\end{equation*}
$$

$$
\sum_{k=1}^{M} \frac{I\left[T_{[k]}<x\right] w_{n k+1}}{n\left(1-F_{n}\left(T_{[k]}\right)\right)\left(1-F_{n}\left(T_{[k]}^{-}-w_{n k+1}\right)\right.}
$$

where $w_{n k}=F_{n}\left(T_{[\bar{k}]}\right)-F_{n}\left(T_{[\bar{k}-1]}\right)$. The expression (9) is in turn bounded by

$$
\left[\mathrm{n}\left(1-\mathrm{F}_{\mathrm{n}}(\mathrm{x})-2 \mathrm{w}_{\mathrm{n}}^{*}\right)\right]^{-1}+\mathrm{H}_{\mathrm{n}}(\mathrm{x}) \mathrm{w}_{\mathrm{n}}^{*} /\left(1-\mathrm{F}_{\mathrm{n}}(\mathrm{x})-\mathrm{w}_{\mathrm{n}}^{*}\right),
$$

where $W_{n}^{*}=\max _{1 \leq k \leq M} W_{n k}$. Since $F_{n}(x) \xrightarrow{-P} F_{T}(x)<1$ and $H_{n}(x) \xrightarrow{P} H_{X}(x)<\infty$ we complete the proof by showing $w_{n} * \xrightarrow{P} 0$. We bound $w_{n k}$ by

$$
\begin{aligned}
& w_{n k}=F_{n}\left(T_{[k]}\right)-F_{n}\left(T_{[k-1]}\right) \\
& =\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}-1]}\right)+ \\
& \left(\mathrm{F}_{\mathrm{n}}\left(\mathrm{~T}_{[k]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[k]}\right)\right)-\left(\mathrm{F}_{\mathrm{n}}\left(\mathrm{~T}_{[k-1]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[k-1]}\right)\right) \\
& \leq \mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}-1]}\right)+2 \sup \left(\mathrm{~F}_{\mathrm{n}}(\mathrm{t})-\mathrm{F}_{\mathrm{T}}(\mathrm{t})\right) \text {. }
\end{aligned}
$$

Using the Glevenko Cantelli Theorem, $\sup \left(F_{n}(t)-F_{T}(t)\right) \xrightarrow{P} 0$, and so we show $\max _{1 \leq k \leq M} \mathrm{~F}_{\mathrm{T}}\left(\mathrm{T}_{[k]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{T}_{[k-1]}\right) \stackrel{\mathrm{P}}{\rightarrow} 0$. Now for $\varepsilon, \delta>0$,

$$
\begin{align*}
& \mathrm{P}\left[\max _{1 \leq \mathrm{k} \leq \mathrm{M}}\left(\mathrm{~F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}-1]}\right)\right)>\varepsilon\right] \\
& \left.\leq \sum_{n(p-\delta) \leq m \leq n(p+\delta)} P \max _{1 \leq k \leq M}\left(\mathrm{~F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}]}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{[\mathrm{k}-1]}\right)\right)>\varepsilon \mid \mathrm{M}=\mathrm{m}\right] \mathrm{P}[\mathrm{M}=\mathrm{m}] \\
& +\mathrm{P}[|\mathrm{M}-\mathrm{np}|>\mathrm{n} \delta] \tag{10}
\end{align*}
$$

$\leq \max _{\mathrm{n}(\mathrm{p}-\delta) \leq \mathrm{m} \leq \mathrm{n}(\mathrm{p}+\delta)} \mathrm{P}\left[\max _{1 \leq \mathrm{k} \leq m}\left(\mathrm{~F}_{\mathrm{T}}\left(\mathrm{T}_{(\mathrm{k})}^{*}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{T}_{(\mathrm{k}-1)}^{*}\right)\right)>\varepsilon\right]$

$$
+\mathrm{P}[|\mathrm{M}-\mathrm{np}|>\mathrm{n} \delta],
$$

where $M$ has a binomial ( $n, p$ ) distribution, $p=P[X \leq Y]$, and $T_{(1)}^{*}, \ldots, T_{(m)}^{*}$ are order statistics for an independent sample of size $m$ from the distribution

$$
F_{*}(t)=F_{T \mid D}(t \mid 1)
$$

with density

$$
\begin{equation*}
f_{*}(t)=f_{T \mid D}(t \mid 1)=f_{X}(t)\left(1-F_{Y}(t)\right) / p \tag{11}
\end{equation*}
$$

The 2nd term in (10) goes to zero as $n \rightarrow \infty$ and so it remains to show $\underset{1 \leq k \leq m}{\max }\left(\mathrm{~F}_{\mathrm{T}}\left(\mathrm{T}_{(\mathrm{k})}^{*}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{T}_{(\mathrm{k}-1)}^{*}\right)\right) \stackrel{\mathrm{P}}{\rightarrow} 0$, as $\mathrm{m} \rightarrow \infty$. By the assumptions, we see from (11) that $F_{*}(t)$ is continuous in addition to $\mathrm{F}_{\mathrm{T}}(\mathrm{t})$ and we can write

$$
\begin{aligned}
& \max _{1 \leq k \leq m}\left[\mathrm{~F}_{\mathrm{T}}\left(\mathrm{~T}_{(\mathrm{k})}^{*}\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~T}_{(\mathrm{k}-1)}^{*}\right)\right] \\
& \quad=\max _{1 \leq \mathrm{k} \leq \mathrm{m}}\left[\mathrm{~F}_{\mathrm{T}}\left(\mathrm{~F}_{*}^{-1}\left(\mathrm{~F}_{*}\left(\mathrm{~T}_{(\mathrm{k})}^{*}\right)\right)\right)-\mathrm{F}_{\mathrm{T}}\left(\mathrm{~F}_{*}^{-1}\left(\mathrm{~F}_{*}\left(\mathrm{~T}_{(\mathrm{k}-1)}^{*}\right)\right)\right)\right] \\
& \quad=\max _{1 \leq \mathrm{k} \leq \mathrm{m}}\left[\mathrm{~F}_{\mathrm{T}}\left(\mathrm{~F}_{*}^{-1}(\mathrm{U}(\mathrm{k}))\right)-\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{*}^{-1}(\mathrm{U}(\mathrm{k}-1))\right]
\end{aligned}
$$

where $U_{(k)}$ are order statistics from a uniform $(0,1)$ distribution. Thus, by continuity it remains to show

$$
\max _{1 \leq k \leq m}(\mathrm{U}(\mathrm{k})-\mathrm{U}(\mathrm{k}-1)) \stackrel{\mathrm{P}}{\rightarrow} 0 \quad \text { as } \mathrm{m} \rightarrow \infty
$$

Finally, by properties of uniform order statistics,

$$
\begin{aligned}
& P\left[\max _{1 \leq k \leq m}\left(U_{(k)}-U_{(k-1)}\right)>\varepsilon\right] \leq \sum_{k=1}^{m} P\left[U_{(k)}-U_{(k-1)}>\varepsilon\right] \\
& =m P[U(1)>\varepsilon]=m(1-\varepsilon)^{m} \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

It is likely that these strong assumptions can be weakened for proving consistency. However, some control on the spacings of adjacent death times may be required around the point $x$ as $\tilde{H}_{\mathrm{X}}(\mathrm{x})$ is a function of the order statistics and cannot be written as a counting process.

ACKNOWLEDGEMENT
Research was supported in part by the National Institutes of Health Grant No. 2-RO1-CA-18332-07.

## REFERENCES

Billings1y, P. (1968). Weak Convergence of Probability Measures. J. Wiley, New York.

Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics 3~~ $89-99$.

Breslow, N. and Crowley, J. (1974). A large sample study of the life tables and product limit estimates under random censorship. Annals of Statistics $\underset{\sim}{3}$, 437-453.
de Boor, C. (1976). Splines as linear combinations of B-splines. A survey. University of Wisconsin - Madison Mathematics Research Center Technical Report 1667.

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association ${\underset{\sim}{c}}^{53}$, 457-481.

