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1. Introduction

Let X be survival time with continuous distribution FX(x) and density
fF(x). Similarly, let Y be time to censoring, independent of X, with continuous
distribution FY(y) and density fY(y). We observe time on trial, T, and death

or censoring indicator, D, where

-3
]

min(X,Y)

1 if X<Y (death)

o
Il

0 if X>Y (censoring)

Using a sample {Ti,Di);i=l,2,...,n} we wish to find a smooth estimate of the
survival distribtion 1 —Fx(x) =P[xX>x].

Define the hazard function by
hy (x) = fX(x)/(l -Fy ()

and the integrated hazard function by

X X
HX(X) = f hX(u)du = - J d &n (l—FX(u)) R
0 0
. . -H_(x)
which is related to survival by 1-FX(x) =e X . Defining the indicator

function I[A] (1 or O according as the event A holds ornot), the sample cumula-
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tive distribution is

n
F (t) =) I[T, <t]/n.
n . i-—
i=1
We are concerned with a smooth approximation of the hazard function over
subintervals using polynomials. We write the polynomials as linear combinations
of B-splines defined on the knots or points defining the subintervals. The B-

spline or order r or polynomial of degree r-1 is defined for the non-decreasing

sequence of knots

(1) T-r+1’ T2 g Tl,...,TK, TK+1,...,TK+r_l ,

using the following divided differences:
r-1 r-1
g, (Ty58) = (T,-t), © = [max(O,Tj—t)]

gr(Tj, Tj+1;t) = [gr(Tj+l;t) - gr(rj;t)] / (Tj+1-Tj)

- . o - gr(Tj+1,...,Tjir;t) - gr(rj,...,Tj+r_1;t)
gr j’ j+l"'-’ j+ry (t -T) *
jtr j

Then the normalized B-spline is

er(t) = (Tj+r—’l'j) gr(’[j, Tj+1,...,Tj+r;t) .

In case some knots coincide, continuity can be used for the definition. For a
discussion of B-splines see de Boor (1976). Figure 1 gives graphs for r=2,3

corresponding to linear and quadratic B-splines.
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FIGURE 1. Linear and quadratic B-splines for knots {tj} .
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2. Hazard Approximation by Splines with Fixed Knots
We fit the model
K-1

(2) h(x) = ) 6. N, (x)
X j=—r+1 I T

over the interval Of}(iTK by selecting knots

< ceelT =7 =

Tl = Tep2 = 777 K-kl T Ree-1

Although the model is parametric with parameters g==(6_r+1, e;r+2""’6K—l)’

there is great flexibility through the choice of knots {Tk} and spline order r.
We consider estimating Q by maximizing the likelihood. The joint contiwnuous-—

discrete density under the random censorship model is
£ o (t,d) = [£,(0)(1-F ()1 [£ ()@ -F ()19

T,D X v Y X

=y (N (N @-r )

where 1-FT(t)= (1-FX(t)) (1-FY(t)) by independence. The log-likelihood is

then

Iho~—3

h

n fT,D(ti’di) =
i=1

[di in hx(ti) + Qn(l-Fx(ti))]

i=1

3) T
+ ) [@-dp nh(e) + In(1-Fy(t,)) ]
i=1

Differentiating (3) with respect to 6 using (2) gives
N

ty

gr(U)dUJ ,

e~

n
In £ p(egdp) = b Tdy N () / QY (e)) 07 - J

i=1 i= 0

@
eolw
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= - i f
where ﬁr(x) (N (x), N—r+2,r(x)”'"NK—l,r(x)) and 3 is the transpose o

-r+l,r
0.
N

If the solution of the derivative equation, 0 % n fT,D (ti’di)/a£:=8 s
K-1

~

Nj r(x) then we propose the esti-
b

A A A X ~
mator 1-Fx(x) = exp(—HX(x)), where Hx(x) = o hX(u)du .

gives a nonnegative function h (x) = .
X . J
j=-r+l

Because of the necessity of choosing the degree r as well as suitable knots

{Tk} and then solving a messy non-linear derivative equation which we can only

N
hope has a non-negative solution hX’ we turn instead to a simplification.

3. An Ad Hoc Estimator

The model h,(x) = N_(x) 6~ breaks down when the knots defining N are
X Y N Y
random variables. Nevertheless, motivated by the success of the estimator of
Breslow (1974) that uses constant splines over random death times, we propose a

similar simplication using linear splines (r=2). Specifically, we replace

the knots Oi‘l‘lf_ sz . 'iTK in (1) by distinct death times O<T<l>< T<2><‘ . '<T<l<>
which are different sorted values of Ti for which Di=1’ i=1,2,...,n. Using
n
Nj,Z(T<j+1>)= 1, and O at other knots gives the minimizing solution 6_1==0 and
t,

N n i

6, =m, ./ J N, ,(u)du , for j=0,1,2,...,K-1 ,

J j+l izl 0 3,2 J
where m is the number of death times equal T<k>' Then the estimate of the

integrated hazard is

t,
i

n K X n
H (x) = kzl {m, Jo Npq,p(Wdu / 121 Jo Ne_p,p(0)dt}
From the identity

X
fo N-1,2(wdu =(j21§_1 Ny,300) (T<k+l>-T<k>> /2,



we can cancel the nonzero factor (T<k+1> -T<k>)/2 from both numerator and

denominator to obtain

N K n
4) x)= ) { YN, ,x)/ ) YN (e} .
& 1K grer 303 =1 k-1 3t

. . < <
For computing, with knots Tk—l Tk Tk+1’ we have

0, for XiTk—l

2
I N, 400 = < G-ty ) T ) (g = gD FOT T Sx <y
k-1 3

1-(T

2
1ot~ (T =) (g =T y))sFor T <x <t

k k+1

\

1, for xiTk_'_l .

The estimator (4) is a non-negative differentiable monotone increasing

function of x on the interval [0, T<k>] and thus

H ()
- X
l—rﬁ‘lx(x)=eHX

is a differentiable monotone decreasing function on this interval., Figure 2

gives an example of the estimator contrasted with the Kaplan-Meier estimator

(1958).
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n
4. Consistency of Hx(x)

n
The following theorem gives consistency of HX(X) and consequently

n
1-Fx(x) under some assumptions.

THEOREM 1:
1f fx(t) >0 a.e. on the interval of t values for which FT(t)< 1,

v P
Hx(x) -> HX(X) as n> for x in the interior of the interval.

PROOF:

From equation (5) we obtain the inequalities

(6) i, <x] < )} N, .(x) <11, ,<x]
1= S 3,30 2 e

By the continuity of Fx and Fy’ FT is continuous and the ordered times on trial
0<T <T < <7 are distinct with probability 1. Consequently the
@) (n) P v auenty
where M= z Di are distinct
i=1
and we have

ordered death times 0 < T[1] < T[z] < vee< T[M]

with probability one and K=M. Thus, T<k>= T[k]

N
< <
L () <HG) U (),
where the upper bound

M
Q) U (x) = kzl Ty g9 < x] /@A -F (T 200 D))

is obtained by replacing the numerator and denominator of (4) by upper and

lower bounds in (6) with knots {T[k]} . Similarly

M
(8) L (x) = kzl Ty £ X1/ QA =F T 590
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is obtained from lower and upper bounds in the numerator and denominator of
(4). Here we use the conventions T[O] =0 and T[M+l] =T[M] in (7) and (8) so
that (6) holds for k=1 and k=M. Intuitively, the bounds Un(x) and Ln(x) will

be close to the empirical integrated hazard function

M
H (x) kzl [Ty <x]/ @ =F (T7)))

. {Di I[Ti<x] / (n(l—Fn(Ti-m}

1]
[[Naar =]

i
shown by Breslow and Crowley (1974) to converge weakly to

H (x) = E{D I[T<x]/ (l—FT(t))}

using methods of Billingsly (1968). Consistency will follow by showing
P P
Un(x)-Hn(x) >~ 0 and Hn(x)-Ln(x) ~+ 0, We show convergence for the upper

bound; the argument for the lower bound is similar. Write

M [T <x] [T <x]
Un(x) - Hn(x) = % [k"l:l - - [k] -
k=1 1-F (T[k+l]) 1- Fn(T[k])
M I[T <x< T ]
() -3 [k-11 "7 = "Tx] +
Kl n@-F Ty = Yok ™ Vo)
M Lrp g <xd vy ,

k=1 n(l-_Fn(Tfi]))(l.-Fn(T[i] - wnk+l)

where Wnk==Fn(T[£]) - Fn(T[i-l]) .  The expression (9) is in turn bounded by

-1
[n(1-F () -20 )] +H () wn*/ (1-Fn(x)-wn*) ,



P
where w_* = 1<m§x<M LA Since Fn(x) -> FT(X) <1 and Hn(x) £ HX(X) < © ywe

P
complete the proof by showing wn* + 0. We bound AR by
wnk=Fn(T[k]) - I;'n(TI:k—-lj)

= FT(T[k]) - FT(T[k-l]) +

(Fn(T[k]) - FT(T[k])) - (Fn(T[k_lj) - FT(T[k_lj))

A

F (T[k]) Fr (T ]) + 2 sup(Fn(t) - FT(t))

[k-1

P
Using the Glevenko Cantelli Theorem, sup(Fn(t) —FT(t)) > 0, and so we show
P
max F (T[k]) F (T ]) > 0. Now for €, §>0,

1<k<M (-1

P[ max (F (T[k]) FT(T

])) > €]
1<k<M

[k-1

< P[ max  (F (Tp ) - F(T )) >e|M=m] P[M=m]
T n(p-8)<m<n(p+§) 1<k<M [k] T [k-1]

(10) + P[|M-np| > né ]
< max P[ max (F (T(k) FT(Ttk_l)))> el

n(p-8)<m<n (p+3) 1<k<m

+ P[|M-np| > n8] ,

*
where M has a binomial (n,p) distribution, p=P[X iY], and T . ,T* are

(1) (m)

order statistics for an independent sample of size m from the distribution

Fo(0) = Fppp (e[D)
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with density

(1) £,(0) = £p (e[1) = £.(6) Q-F())/p .

T|D

The 2nd term in (10) goes to zero as n+* and so it remains to show

*
F (T

max (F (T (k-1

))) 2 0, as m~+®,
1<k<m

) ~

By the assumptions, we see from (11) that F*(t) is continuous in addition

to FT(t) and we can write

max [F (T

- F )]
1<k<m (k) T (k 1)

= max [T () - L, (1t 1))
1<k<m T (k) (k-1)

= max  [RTU) - R R W 0],
1<k<m ()

where U( are order statistics from a uniform (0,1) distribution. Thus, by

k)

continuity it remains to show

max (U >0 as m > o,

- U )
likem  ® 7 GD

Finally, by properties of uniform order statistics,

m
P[ max (U, ,-U )y>el < § PlU U > €]
1iken (O 7 6D =k o T e
= m P[U >el=m@l-e)">0 asm—+o .

@
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It is likely that these strong assumptions can be weakened for proving consis-

tency. However, some control on the spacings of adjacent death times may be
N

required around the point x as Hx(x) is a function of the order statistics and

cannot be written as a counting process.
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