THE TEST AND CONFIDENCE INTERVAL FOR A CHANGE-POINT IN MEAN VECTOR OF MULTIVARIATE NORMAL DISTRIBUTION

By Wang Jing-Long and Wang Jin
China Normal University, Shanghai, China and Institute of Nuclear Power Operation, Wuhan, China

Let X_{1}, \cdots, X_{n} be a sequence of independent random vectors, such that the first k of this sequence, X_{1}, \cdots, X_{k} have a common multivariate normal distribution $N_{p}(\mu, \Sigma)$, and the last $n-k$ of this sequence, X_{k+1}, \cdots, X_{n} have a common multivariate normal distribution $N_{p}\left(\mu^{*}, \Sigma\right)$, where mean vectors μ and μ^{*} are all unknown. The integer k, which is called the change-point, is also unknown. In this paper, the hypothesis to be test is $H_{0}: \mu=\mu^{*}$ (i.e. no change) against $H_{1}: \mu \neq \mu^{*}$. The maximum likelihood methods are used to test for a change-point in mean vector of multivariate normal distribution when the covariance matrix Σ is known, or unknown. In the case of the covariance matrix Σ known, the exact null distribution of the test statistic is found, the table of critical values is given, it is shown that the power of test is a increasing function of $\left\|\mu^{*}-\mu\right\|$, and the probability that the MLE \hat{k} of change-point k is just equal to $k, P(\hat{k}=k)$ is a increasing function of $\left\|\mu^{*}-\mu\right\|$. In the case of the covariance matrix Σ unknown, the null distribution of test statistic is simulated, and the table of approximate critical values is given. In both cases the confidence interval for the change-point is discussed.

1. Introduction. In the exploration of some oil field of China,we take soil samples from 670 m to 1019.875 m beneath the earth, and get observations at intervals of 0.125 m . Thus, we get 2800×7 values of seven factors:

GГ : national Γ parameter
SON : time difference of sound wave
DEN : density
SND : compensate neutron
ILD : interaction
M4 : four meter gradient
CAC : diameter of well

* This work was supported by the National Natural Science Foundation of China AMS 1980 Subject Classifications: Primary 62H15, 62 H 12.
Key words and phrases: Change-point, confidence interval, multivariate normal distribution, test.

How should we divide the strata? This is a problem in cluster analysis of ordered samples. Oil exploration experts have applied standard methods to this problem, but the results are not satisfactory. Here we study this problem from another angle.

Let X_{1}, \cdots, X_{n} be a sequence of independent random vectors, such that

$$
X_{i} \sim N_{p}\left(\mu_{i}, \Sigma\right), \quad i=1, \cdots, n
$$

The hypothesis to be tested is

$$
\begin{aligned}
& H_{0}: \mu_{1}=\cdots=\mu_{n}, \\
& H_{1}: \text { for some integer } \quad k, 1 \leq k \leq n-1, \\
& \quad \mu_{1}=\cdots=\mu_{k}=\mu, \\
& \quad \mu_{k+1}=\cdots \mu_{n}=\mu^{*}, \quad \mu \neq \mu^{*} .
\end{aligned}
$$

If the null hypothesis H_{0} is rejected, we can divide the sequence X_{1}, \cdots, X_{n} into two groups: X_{1}, \cdots, X_{k} and X_{k+1}, \cdots, X_{n}. Thus one change-point means the sequence can be divided into two groups. Generally speaking, m change-points means that $m+1$ groups are identified. So we can consider the problem of cluster analysis of ordered samples as the problem of testing for change-points. In this paper, we mainly deal with the problem of at most one change-point. As to the problem of more than one change-point, we can discuss it using the result of the problem of at most one change-point.

When $p=1$, i.e. for the case of a sequence of normally distributed random variables, considerable attention has been devoted to change-point problems (see D. W. Hawkins (1977), K. J. Worsley (1986), X. R. Chen (1988)). When $p>1$, i.e. for the case of a sequence of normally distributed random vectors, change-point problems have been addressed only recently. In 1989, D. L. Hawkins dealt with the change-point problem, when $p=2$ and the covariance matrix Σ is known. P. R. Krishnaiah, B. Q. Miao and L. H. Zhao(1990) dealt with the change-point problem, when $p>1$ and the number of change-points is unknown, using the local likelihood method. The results of both papers are large sample theory. In this paper, we consider small sample theory.

In Section 2, the likelihood ratio method is applied to the change-point problem when the covariance matrix Σ is known. In Section 3, the likelihood ratio method is applied to the change-point problem, when the covariance matrix Σ is unknown. In Section 4, the stepwise discrimination procedure for analysis of the oil exploration data is proposed.
2. Likelihood Ratio Method when Σ Is Known. When the covariance matrix Σ is known, we can set it equal to I without loss of generality.

2.1. Test Statistic.

For fixed k, the likelihood ratio

$$
\begin{aligned}
\lambda_{k}= & \max _{\mu} \prod_{i=1}^{n}\left\{\left(\frac{1}{\sqrt{2 \pi}}\right)^{p} \cdot \exp \left[-\frac{\left(x_{i}-\mu\right)^{\prime}\left(x_{i}-\mu\right)}{2}\right]\right\} / \\
& \left\{\max _{\mu, \mu^{*}} \prod_{i=1}^{k}\left\{\left(\frac{1}{\sqrt{2 \pi}}\right)^{p} \exp \left[-\frac{\left(x_{i}-\mu\right)^{\prime}\left(x_{i}-\mu\right)}{2}\right]\right\}\right. \\
& \left.\cdot \prod_{i=k+1}^{n}\left\{\left(\frac{1}{\sqrt{2 \pi}}\right)^{p} \exp \left[-\frac{\left(x_{i}-\mu^{*}\right)^{\prime}\left(x_{i}-\mu^{*}\right)}{2}\right]\right\}\right\}
\end{aligned}
$$

It is easy to show that

$$
E_{k}=-2 \cdot \log \lambda_{k}=T_{k}^{\prime} \cdot T_{k}
$$

where

$$
\begin{aligned}
& T_{k}=\sqrt{\frac{n}{k \cdot(n-k)}} \cdot \sum_{i=1}^{k}\left(X_{i}-\bar{X}\right) \\
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
\end{aligned}
$$

Thus, for unknown k, minus twice the log likelihood ratio, i.e., the likelihood ratio test statistic is equivalent to

$$
U=\max _{1 \leq k \leq n-1} E_{k}
$$

We reject H_{0} for large values of U.

2.2. The Null Distribution of U.

Because the process $\left\{T_{1}, \cdots, T_{n-1}\right\}$ is Markovian, the null distribution of U can be found by a straightforward generalization of the iterative method employed by D. W. Hawkins (1977). The null distribution function of U is

$$
\begin{aligned}
F(x) & =P(U<x) \\
& =\int_{T_{n-1}^{\prime} \cdot T_{n-1}<x} F_{n-1}\left(T_{n-1}, x\right) \cdot f\left(T_{n-1}\right) d T_{n-1} .
\end{aligned}
$$

where $f(x)$ is a density function of $N_{p}(0, I)$, and $F_{k}\left(T_{k}, x\right), k=2, \cdots, n-$ 1 , have the recurrence formulas:

$$
\begin{aligned}
F_{2}\left(T_{2}, x\right) & =P\left(T_{1}^{\prime} \cdot T_{1}<x \mid T_{2}\right) \\
& =\int_{T_{1}^{\prime} \cdot T_{1}<x} f\left(T_{1} \mid T_{2}\right) d T_{1} \\
F_{k+1}\left(T_{k+1}, x\right) & =P\left(T_{1}^{\prime} \cdot T_{1}<x, \cdots, T_{k}^{\prime} \cdot T_{k}<x \mid T_{k+1}\right) \\
& =\int_{T_{k}^{\prime} \cdot T_{k}<x} F_{k}\left(T_{k}, x\right) \cdot f\left(T_{k} \mid T_{k+1}\right) d T_{k}, \quad k=2, \cdots, n-2 .
\end{aligned}
$$

Table 1

n	α	$p=2$	3	4	5	6	7
10	0.10	8.20	10.29	12.16	13.92	15.63	17.25
		(9.00)	(11.12)	(13.03)	(14.83)	(16.54)	(18.19)
	0.05	9.75	11.93	13.93	15.81	17.59	19.28
		(10.39)	(12.61)	(14.62)	(16.50)	(18.29)	(20.01)
	0.01	13.18	15.64	17.81	19.85	21.78	23.64
		(13.60)	(16.05)	(18.23)	(20.28)	(22.21)	(24.07)
15	0.10	8.80	10.92	12.86	14.69	16.42	18.05
		(9.88)	(12.07)	(14.05)	(15.90)	(17.66)	(19.36)
	0.05	10.37	12.64	14.67	16.58	18.38	20.09
		(11.27)	(13.56)	(15.62)	(17.55)	(19.38)	(21.14)
	0.01	13.84	16.34	18.58	20.86	22.61	24.49
		(14.49)	(16.99)	(19.21)	(21.30)	(23.26)	(25.16)
20	0.10	9.16	11.36	13.32	15.14	16.89	18.60
		(10.49)	(12.73)	(14.74)	(16.63)	(18.42)	(20.15)
	0.05	10.76	13.02	15.10	17.01	18.86	20.64
		(11.88)	(14.21)	(16.31)	(18.27)	(20.12)	(21.92)
	0.01	14.27	16.78	19.00	21.11	23.09	24.98
		(15.10)	(17.64)	(19.88)	(22.01)	(23.98)	(25.91)
25	0.10	9.46	11.66	13.64	15.50	17.26	18.94
		(10.96)	(13.23)	(15.27)	(17.18)	(19.00)	(20.75)
	0.05	11.00	13.36	15.45	17.39	19.23	20.98
		(12.35)	(14.71)	(16.83)	(18.82)	(20.69)	(22.50)
	0.01	14.58	17.08	19.38	21.49	23.49	25.40
		(15.57)	(18.14)	(20.40)	(22.54)	(24.53)	(26.49)
30	0.10	9.66	11.87	13.87	15.75	17.54	19.24
		(11.34)	(13.63)	(15.71)	(17.63)	(19.46)	(21.23)
	0.05	11.25	13.60	15.70	17.66	19.52	21.29
		(12.73)	(15.12)	(17.26)	(19.26)	(21.15)	(22.98)
	0.01	14.79	17.36	19.64	21.76	23.76	25.69
		(15.94)	(18.54)	(20.81)	(22.98)	(24.98)	(26.95)
35	0.10	9.81	12.03	14.05	15.94	17.75	19.46
		(11.66)	(13.98)	(16.06)	(18.01)	(19.85)	(21.63)
	0.05	11.43	13.78	15.88	17.85	19.73	21.53
		(13.04)	(15.46)	(17.61)	(19.63)	(21.53)	(23.37)
	0.01	14.95	17.56	19.84	21.95	23.99	26.34
		(16.26)	(18.88)	(21.16)	(23.35)	(25.35)	(27.34)
40	0.10	9.94	12.21	14.24	16.12	17.91	19.66
		(11.93)	(14.27)	(16.37)	(18.33)	(20.19)	(21.98)
	0.05	11.58	13.92	16.03	18.00	19.90	21.72
		(13.32)	(15.75)	(17.92)	(19.95)	(21.86)	(23.72)
	0.01	15.11	17.72	19.99	22.37	25.92	26.53
		(16.54)	(19.18)	(21.46)	(23.66)	(25.67)	(27.68)

With $f\left(x \mid T_{k+1}\right)$ being the conditional density function given T_{k+1}, i.e., the density function of

$$
N_{p}\left(\rho_{k, k+1} \cdot T_{k+1},\left(1-\rho_{k, k+1}^{2}\right) \cdot I\right)
$$

where

$$
\rho_{k, k+1}=\left\{\frac{k \cdot(n-k-1)}{(k+1) \cdot(n-k)}\right\}^{1 / 2}, \quad k=1, \cdots, n-2
$$

Using induction, it is easy to show that, for any orthogonal matrix Q,

$$
F_{k}\left(T_{k}, x\right)=F_{k}\left(Q \cdot T_{k}, x\right), \quad k=2, \cdots, n-1
$$

So the values of $F_{k}\left(T_{k}, x\right)$ remains constant at the hyperphere $T_{k}^{\prime} \cdot T_{k}=E_{k}$, and we can write

$$
F_{k}\left(T_{k}, x\right)=\widetilde{F}_{k}\left(E_{k}, x\right), \quad k=2, \cdots, n-1
$$

The conditional distribution of $E_{k}=T_{k}^{\prime} \cdot T_{k}$ given $T_{k+1}, \quad k=1, \cdots, n-2$, is

$$
\left(1-\rho_{k, k+1}^{2}\right) \cdot \chi^{2}\left(p, r_{k}\right)
$$

where $\chi^{2}\left(p, r_{k}\right)$ is the noncentral χ^{2} distribution on p degrees of freedom with the noncentrality parameter

$$
r_{k}=\frac{\rho_{k, k+1}^{2} \cdot E_{k+1}}{1-\rho_{k, k+1}^{2}}
$$

Let $F_{1}\left(T_{1}, x\right)=\widetilde{F}_{1}\left(E_{1}, x\right)=1$. Then

$$
\begin{aligned}
& \widetilde{F}_{k+1}\left(E_{k+1}, x\right)=E\left[\widetilde{F}_{k}\left(E_{k}, x\right) \cdot I_{\left(E_{k}<x\right)} \mid T_{k+1}\right] \\
= & \sum_{i=o}^{\infty} \exp \left(-\frac{r_{k}}{2}\right) \cdot \frac{\left(r_{k} / 2\right)^{i}}{i!} \cdot \int_{0}^{x} \widetilde{F}_{k}(u, x) \\
& \cdot \frac{\exp \left(-\frac{u}{2\left(1-\rho_{k, k+1}^{2}\right)}\right) \cdot u^{i+p / 2-1} \cdot\left(\frac{1}{2\left(1-\rho_{k, k+1}^{2}\right)}\right)^{i+p / 2}}{\Gamma(i+p / 2)} d u
\end{aligned}
$$

where I_{A} denotes the characteristic function of the set A. Therefore, the error in the recursive computation of $F(x)$ is independent of dimension p. Of course, the error is dependent of sample size n.

The critical values U_{α} of test statistic U have been computed iteratively and are listed in the Table 1.

Conservative tests may be made as follows. Since E_{1}, \cdots, E_{n-1} are identically distributed as $\chi^{2}(p)$,

$$
\begin{aligned}
P(U>c) & =P\left(\max _{1 \leq k \leq n-1} E_{k}>c\right) \\
& \leq \sum_{k=1}^{n-1} P\left(E_{k}>c\right)=(n-1) \cdot P\left(E_{1}>c\right)
\end{aligned}
$$

Thus, a conservative level α critical value of test statistic may be based on the upper $\alpha /(n-1)$ fractile of $\chi^{2}(p)$. These approximations are listed in the Table 1 below the exact values. The difference between the exact value and approximate value is moderate.

2.3. Power of Test.

When the alternative hypothesis H_{1} is true, the change-point is $k, 1 \leq$ $k \leq n-1, X_{1}, \cdots, X_{k}$ iid $\sim N_{p}(\mu, \Sigma), X_{k+1}, \cdots, X_{n}$ iid $\sim N_{p}\left(\mu^{*}, \Sigma\right), \delta=$ $\mu^{*}-\mu \neq 0$. We set $\mu=0, \mu^{*}=\delta$, without loss of generality. Because the process $\left\{T_{1}, \cdots, T_{n-1}\right\}$ is still Markovian

$$
\begin{aligned}
P(U<x)= & \int_{T_{k}^{\prime} \cdot T_{k}<x} P\left(E_{1}<x, \cdots, E_{k-1}<x \mid T_{k}\right) \\
& \cdot P\left(E_{k+1}<x, \cdots, E_{n-1}<x \mid T_{k}\right) \cdot g\left(T_{k}\right) d T_{k}
\end{aligned}
$$

where $g(x)$ is the density function of

$$
N_{p}\left(-\sqrt{\frac{k(n-k)}{n}} \cdot \delta, I_{p}\right)
$$

No matter whether H_{0} is true or H_{1} is true, the sequence $\left\{T_{1}, \cdots, T_{k-1}\right\}$ has the same conditional distribution when T_{k} is given. The sequence $\left\{T_{k+1}, \cdots\right.$, $\left.T_{n-1}\right\}$ has this property as well. But, neither the sequence $\left\{T_{1}, \cdots, T_{\tau-1}\right\}$ nor $\left\{T_{\tau+1}, \cdots, T_{n-1}\right\}$ have this property when $T_{\tau}, \tau \neq k$, is given. Hence

$$
\begin{equation*}
P\left(E_{1}<x, \cdots, E_{k-1}<x \mid T_{k}\right)=F_{k}\left(T_{k}, x\right)=\widetilde{F}_{k}\left(E_{k}, x\right) \tag{2.1}
\end{equation*}
$$

We note that when H_{0} is true the sequence $\left\{T_{n-1}, \cdots, T_{1}\right\}$ obtained by taking the X_{i} in reverse order is a probabilistic replica of the given sequence $\left\{T_{1}, \cdots, T_{n-1}\right\}$. This implies that

$$
\begin{equation*}
P\left(E_{k+1}<x, \cdots, E_{n-1}<x \mid T_{k}\right)=F_{n-k}\left(T_{k}, x\right)=\widetilde{F}_{n-k}\left(E_{k}, x\right) \tag{2.2}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
P(U<x) & =\int_{T_{k}^{\prime} \cdot T_{k}<x} F_{k}\left(T_{k}, x\right) \cdot F_{n-k}\left(T_{k}, x\right) \cdot g\left(T_{k}\right) d T_{k} \\
& =E\left[\widetilde{F}_{k}\left(E_{k}, x\right) \cdot \widetilde{F}_{n-k}\left(E_{k}, x\right) \cdot I_{\left(E_{k}<x\right)}\right]
\end{aligned}
$$

where

$$
\begin{gathered}
E_{k} \sim \chi^{2}\left(p, \Delta \cdot \frac{k(n-k)}{n}\right) \\
\Delta=\delta^{\prime} \cdot \delta
\end{gathered}
$$

Therefore, $P(U>x)$, the power of test, can be calculated iteratively.
Proposition 1. The power of test, $P(U>x)$ is a increasing function of Δ.
(Proof is given in Appendix 1)
2.4. MLE of Change-Point.

The MLE \hat{k} of change-point k satisfies

$$
E_{\hat{k}}=U=\max _{1 \leq k \leq n-1} E_{k}
$$

The distribution of \hat{k} can be obtained. For $\tau=1, \cdots, n-1$

$$
\begin{aligned}
P(\hat{k}=\tau)= & P\left(E_{1}<E_{\tau}, \cdots, E_{n-1}<E_{\tau}\right) \\
= & \int P\left(E_{1} \leq E_{\tau}, \cdots, E_{\tau-1} \leq E_{\tau} \mid T_{\tau}\right) \\
& \cdot P\left(E_{\tau+1} \leq E_{\tau}, \cdots, E_{n-1} \leq E_{\tau} \mid T_{\tau}\right) \cdot h\left(T_{\tau}\right) d T_{\tau}
\end{aligned}
$$

where $h(x)$ is the density function of $N_{p}\left(a_{\tau, k} \cdot \delta, I\right)$

$$
a_{\tau, k}= \begin{cases}-(n-k) \cdot \sqrt{\frac{\tau}{n(n-\tau)}} & \tau \leq k \\ -k \cdot \sqrt{\frac{n-\tau}{n \tau}} & \tau>k\end{cases}
$$

Especially, we pay considerable attention to the probability that the MLE \hat{k} is just equal to change-point k,

$$
\begin{aligned}
P(\hat{k}=k)= & \int P\left(E_{1}<E_{k}, \cdots, E_{k-1}<E_{k} \mid T_{k}\right) \\
& \cdot P\left(E_{k+1}<E_{k}, \cdots, E_{n-1}<E_{k} \mid T_{k}\right) \cdot h\left(T_{k}\right) d T_{k}
\end{aligned}
$$

Similar to the equations (2.1) and (2.2), we have

$$
\begin{aligned}
P(\hat{k}=k) & =\int F_{k}\left(T_{k}, E_{k}\right) \cdot F_{n-k}\left(T_{k}, E_{k}\right) \cdot h\left(T_{k}\right) d T_{K} \\
& =E\left[\widetilde{F}_{k}\left(E_{k}, E_{k}\right) \cdot \widetilde{F}_{n-k}\left(E_{k}, E_{k}\right)\right]
\end{aligned}
$$

where

$$
\begin{gathered}
E_{k} \sim \chi^{2}\left(p, \Delta \cdot \frac{k(n-k)}{n}\right) \\
\Delta=\delta^{\prime} \cdot \delta
\end{gathered}
$$

Proposition 2. The probability that the MLE \hat{k} is just equal to change-point $k, P(\hat{k}=k)$ is a increasing function of Δ.
(The proof is given in Appendix 2)
2.5. Confidence Interval for the Change-Point.

The method of Cox and Spjotvoll (1982) can be modified and applied to constructing confidence interval for change-point k. The $1-\alpha$ confidence interval for the change-point k is the set of values τ for which we cannot H_{0} : different $k=\tau$ (i.e. τ is the change-point) against $H_{1}: k \neq \tau$ (i.e. τ isn't the change-point). We accept H_{0} for small values of $M_{\tau}=\max \left\{U_{\tau}^{-}, U_{\tau}^{+}\right\}$, where U_{τ}^{-}and U_{τ}^{+}are the equivalents of U evaluated for the subsequence X_{1}, \cdots, X_{τ} and $X_{\tau+1}, \cdots, X_{n}$ respectively. It is interesting to note that the distribution of M_{τ} is free of the nuisance parameters μ and μ^{*}. The exact $1-\alpha$ confidence interval for change-point k is

$$
\tilde{\mathcal{D}}_{\alpha}=\left\{\tau: M_{\tau} \leq M_{\alpha}(\tau)\right\}
$$

where $M_{\alpha}(\tau)$ is a $(1-\alpha)$-fractile of M_{τ},

$$
P\left(M_{\tau}<M_{\alpha}(\tau)\right)=P\left(U_{\tau}^{-}<M_{\alpha}(\tau)\right) \cdot P\left(U_{\tau}^{+}<M_{\alpha}(\tau)\right)=1-\alpha
$$

So, the values of $M_{\alpha}(\tau)$ can be computed iteratively.
In order to simplify the problem, let

$$
d_{\alpha}=\max _{\tau}\left\{M_{\alpha}(\tau)\right\}
$$

The conservative $1-\alpha$ confidence interval for k is

$$
\mathcal{D}_{\alpha}=\left\{\tau: M_{\tau} \leq d_{\alpha}\right\}
$$

Obviously, $\mathcal{D}_{\alpha} \supset \widetilde{\mathcal{D}}_{\alpha}$. The values of d_{α} have been calculated and are listed in the Table 2.

PROPOSITION 3. When there exists only one change-point in the sequence according to the test with level α, then $\hat{k} \in \mathcal{D}_{\alpha}$, which means that the MLE \hat{k} of the change-point k is included in the confidence interval with level $1-\alpha$ for the change-point k.
(The proof is given in Appendix 3)

Table 2

n	α	$\mathrm{p}=1$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	$\mathbf{7}$
10	0.10	5.90	8.44	10.29	12.40	14.15	15.84	17.49
	0.05	7.24	9.90	12.09	14.08	15.94	17.73	19.44
	0.01	10.30	13.26	15.69	17.85	19.88	21.81	23.67
15	0.10	6.60	9.19	11.37	13.31	15.12	16.86	18.55
	0.05	7.92	10.72	12.96	15.00	16.92	18.76	20.51
	0.01	11.02	14.07	16.60	18.81	20.87	22.84	24.73
20	0.10	6.98	9.70	11.88	13.87	15.74	17.52	19.20
	0.05	8.41	11.21	13.55	15.63	17.57	19.59	21.16
	0.01	11.57	14.65	17.14	19.43	21.53	23.51	25.41
25	0.10	7.32	10.00	12.27	14.29	16.16	19.84	18.94
	0.05	8.72	11.59	13.90	15.99	17.96	19.84	21.65
	0.01	11.88	14.98	17.58	19.84	21.94	23.94	25.87
30	0.10	7.56	10.31	21.57	14.61	16.51	18.30	20.01
	0.05	8.93	11.84	14.21	16.35	18.33	20.19	21.98
	0.01	12.14	15.31	17.86	20.16	22.30	24.32	26.25
35	0.10	7.74	10.53	12.79	14.84	16.76	18.58	20.32
	0.05	9.13	12.04	14.47	16.61	18.60	20.49	22.29
	0.01	12.38	15.55	18.10	20.44	22.59	24.61	26.56
40	0.10	7.88	10.70	12.96	15.02	16.95	18.80	20.57
	0.05	9.32	12.25	14.66	16.80	18.81	20.71	22.54
	0.01	12.57	15.74	18.34	20.66	22.80	24.83	26.79

3. Likelihood Ratio Method when Σ is Unknown. For fixed k, the likelihood ratio λ_{k} is

$$
\begin{aligned}
& \max _{\mu, \Sigma} \prod_{i=1}^{n}\left\{\frac{1}{\sqrt{|\Sigma|}} \cdot \exp \left[-\frac{\left(x_{i}-\mu\right)^{\prime} \Sigma^{-1}\left(x_{i}-\mu\right)}{2}\right]\right\} / \\
& \left\{\max _{\mu, \mu^{*}, \Sigma} \prod_{i=1}^{k}\left\{\frac{1}{\sqrt{|\Sigma|}} \exp \left[-\frac{\left(x_{i}-\mu\right)^{\prime} \Sigma^{-1}\left(x_{i}-\mu\right)}{2}\right]\right\}\right. \\
& \left.\cdot \prod_{i=k+1}^{n}\left\{\frac{1}{\sqrt{|\Sigma|}} \exp \left[-\frac{\left(x_{i}-\mu^{*}\right)^{\prime} \Sigma^{-1}\left(x_{i}-\mu^{*}\right)}{2}\right]\right\}\right\}
\end{aligned}
$$

It is easy to show that

$$
\lambda_{k}^{-2 / n}=\frac{|V|}{\left|V-T_{k} \cdot T_{k}^{\prime}\right|}=\frac{1}{1-T_{k}^{\prime} \cdot V^{-1} \cdot T_{k}}
$$

where

$$
V=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \cdot\left(X_{i}-\bar{X}\right)^{\prime}
$$

Thus, for unknown k we can regard the following statistic as the likelihood ratio test statistic:

$$
\begin{aligned}
& W=\max \left\{G_{1}, \cdots, G_{n-1}\right\}, \\
& G_{k}=T_{k}^{\prime} \cdot V^{-1} \cdot T_{k} \quad k=1, \cdots, n-1
\end{aligned}
$$

We reject H_{0} for large values of W.
The process $\left\{T_{1}, \cdots, T_{n-1}\right\}$ is Markovian. Howeven $\left\{T_{1}, \cdots, T_{n-1}\right\}$ and V are not independent and the process $\left\{T_{1}, \cdots, T_{n-1}\right\}$ is not Markovian when V is given. When Σ is unknown the critical values W_{α} of test statistic W can not be computed iteratively even if $p=1$.

It is very difficult to get the exact critical values of W. The approximate critical values of W can be obtained using simulation. These approximate values of $W_{\alpha}, \alpha=0.05$ are listed in the Table 3.

The approximate values can also be obtained using inequalities. Because G_{1}, \cdots, G_{n-1} are identically distributed,

$$
\begin{aligned}
P(W>c) & =P\left(\max _{1 \leq k \leq n-1} G_{k}>c\right) \\
& \leq \sum_{k=1}^{n-1} P\left(G_{k}>c\right)=(n-1) \cdot P\left(G_{1}>c\right)
\end{aligned}
$$

Thus, an approximate level α critical value of test statistic may be based on the upper $\alpha /(n-1)$ fractile of G_{1}.

Table 3

n	α	$p=1$	2	3	4	5	6	7
30	0.05	0.2390	0.3455	0.4130	0.4480	0.5350	0.5375	0.6157
		(0.2997)	(0.3760)	(0.4350)	(0.4857)	(0.5320)	(0.5740)	(0.6126)
40	0.05	0.2075	0.2710	0.3253	0.3715	0.4135	0.4410	0.4990
		(0.2415)	(0.3023)	(0.3505)	(0.3921)	(0.4306)	(0.4659)	(0.4993)
50	0.05	0.1720	0.2155	0.2700	0.2997	0.3497	0.3650	0.4092
		(0.2029)	(0.2540)	(0.2948)	(0.3303)	(0.3628)	(0.3930)	(0.4214)
60	0.05	0.1470	0.1930	0.2260	0.2620	0.2815	0.3110	0.3445
		(0.1761)	(0.2202)	(0.2548)	(0.2857)	(0.3146)	(0.3405)	(0.3655)
80	0.05	0.0925	0.1255	0.1605	0.1856	0.2090	0.2137	0.2456
		(0.1396)	(0.1743)	(0.2018)	(0.2261)	(0.2486)	(0.2698)	(0.2895)
100	0.05	0.0633	0.0901	0.1065	0.1195	0.1380	0.1525	0.1743
		(0.1168)	(0.1452)	(0.1672)	(0.1874)	(0.2068)	(0.2240)	(0.2408)
150	0.05	0.0506	0.0658	0.0838	0.0950	0.1028	0.1135	0.1275
		(0.0840)	(0.1031)	(0.1184)	(0.1327)	(0.1467)	(0.1586)	(0.1703)

Since

$$
G_{k}=\frac{G_{k}^{*}}{1+G_{k}^{*}},
$$

where $G_{k}^{*}=T_{k}^{\prime} \cdot V_{k}^{-1} \cdot T_{k}$ with $V_{k}=V-T_{k}^{\prime} \cdot T_{k}$, and G_{k}^{*} has Hotelling T^{2} distribution with $n-p-1$ degrees of freedom, we have

$$
\frac{G_{k}}{1-G_{k}} \cdot \frac{n-p-1}{p}=G_{k}^{*} \cdot \frac{n-p-1}{p} \sim F(p, n-p-1) .
$$

The approximate level α critical value is

$$
W_{\alpha} \approx \frac{p \cdot F_{\alpha /(n-1)}(p, n-p-1)}{(n-p-1)+p \cdot F_{\alpha /(n-1)}(p, n-p-1)}
$$

where $F_{\alpha}(m, n)$ denotes upper α fractile of $F(m, n)$ distribution. These approximations are listed in Table 1 below the values.

In order to get confidence interval when Σ is unknown, a method similar to that when Σ is known can also be applied. The approximate critical values with level $1-\alpha=0.05$ are listed in the Table 4.

Table 4

n	α	$p=1$	2	3	4	5	6	7
30	0.05	0.5307	0.6427	0.7467	0.8088	0.8717	0.8737	9502
40	0.05	0.3948	0.5307	0.5987	0.6513	0.7237	0.7628	8438
50	0.05	0.3347	0.4607	0.5288	0.5789	0.6312	0.6727	7543
60	0.05	0.2827	0.3837	0.4513	0.4957	0.5708	0.5847	6527
80	0.05	0.2443	0.2987	0.3767	0.3927	0.4507	0.4787	5197
100	0.05	0.2007	0.2437	0.3002	0.3317	0.3747	0.3929	4303
150	0.05	0.1287	0.1782	0.1998	0.2353	0.2539	0.2767	3029

4. Stepwise Discrimination Procedure. The problem with more than one change-point is complex. Here the stepwise discrimination procedure will be used based on the result of the problem with at most one change-point.

Let $\left\{X_{1}, \cdots, X_{N}\right\}$ be the ordered sample. For the ordered subsample $\left\{X_{1}, \cdots, X_{n}\right\}, n=1, \cdots, N$, the likelihood ratio statistic for the changepoint is denoted by $W(n)$ (or $U(n)$, when the covariance matrix Σ is known). Suppose

$$
N_{1}=\min _{n}\left\{n: W(n) \geq W_{\alpha}(n)\right\}
$$

where $W_{\alpha}(n)$ is the critical value of test statistic W with the level α. Thus, the sequence $\left\{X_{1}, \cdots, X_{\widehat{N}_{1}}\right\}$ is the first cluster, where \widehat{N}_{1} is the MLE of the change-point for the sequence $\left\{X_{1}, \cdots, X_{N_{1}}\right\}$. Then, we consider the ordered sample $\left\{X_{\widehat{N}_{1}+1}, \cdots, X_{N}\right\}$ and repeat the above procedure. Thus, the sequence $\left\{X_{\widehat{N}_{1}+1}, \cdots, X_{\widehat{N}_{2}}\right\}$ is the second cluster, where \widehat{N}_{2} is the MLE of change-point for the sequence

$$
\left\{X_{\widehat{N}_{1}+1}, \cdots, X_{\widehat{N}_{1}+N_{2}}\right\}
$$

where

$$
N_{2}=\min _{n}\left\{n: W(n) \geq W_{\alpha}(n)\right\}
$$

and $W(n)$ is the likelihood ratio statistic of the sequence $\left\{X_{\widehat{N}_{1}+1}, \cdots, X_{\widehat{N}_{1}+n}\right\}$. Similarly, the third, fourth, etc. clusters are obtained.

When the oil exploration experts applied the stanlanel methods to the problem of clustering an ordered sample, the results are not satisfatary. The reason is that when the ordered sample $\left\{X_{1}, \cdots, X_{N}\right\}$ is considered, the sequence $\left\{X_{\widehat{N}_{m}+1}, \cdots, X_{\widehat{N}_{m+1}}\right\}$ is a cluster, but when the ordered subsample $\left\{X_{s}, \cdots, X_{t}\right\}, 1 \leq s<t \leq N$, is considered, the sequence $\left\{X_{\widehat{N}_{m}+1}, \cdots, X_{\widehat{N}_{m+1}}\right\}$ probably is not a cluster. They are insterested in this stepwise discrimination procedure, because using this procedure the above shortcoming can usually be overcome. So in this sense,this procedure is robust.

Appendix 1

As it is well known, noncentral $\chi^{2}(p, r)$ distribution has a monotone likelihood ratio in r. Because

$$
\begin{aligned}
F_{1}\left(T_{1}, x\right) & =\widetilde{F}_{1}\left(E_{1}, x\right)=1, \\
\widetilde{F}_{i+1}\left(E_{i+1}, x\right) & =E\left[\widetilde{F}_{i}\left(E_{i}, x\right) \cdot I_{\left(E_{i}<x\right)} \mid T_{i+1}\right]
\end{aligned}
$$

and the conditional distribution of $E_{i}=T_{i}^{\prime} \cdot T_{i}$ given $T_{i+1}, i=1, \cdots, n-2$, is $\left(1-\rho_{i, i+1}^{2}\right) \cdot \chi^{2}\left(p, r_{i}\right)$ distribution on p degrees of freedom with the noncentrality parameter

$$
r_{i}=\frac{\rho_{i, i+1}^{2} \cdot E_{i+1}}{1-\rho_{i, i+1}^{2}}
$$

By induction,we can prove that $\widetilde{F}_{i}\left(E_{i}, x\right), \quad i=1, \cdots, n-2$, is a decreasing function of E_{i}.

Hence, because

$$
E_{k} \sim \chi^{2}(p, r), \quad r=\frac{k(n-k)}{n} \cdot \Delta
$$

and

$$
P(U<x)=E\left[\widetilde{F}_{k}\left(E_{k}, x\right) \cdot \widetilde{F}_{n-k}\left(E_{k}, x\right) \cdot I_{\left(E_{k}<x\right)}\right],
$$

$P(U<x)$ is a decreasing function of Δ. This implies that the power of test, $P(U>x)$ is an increasing function of Δ.

Proposition 1 is proved.

Appendix 2

When T_{k} is given, the T_{1}, \cdots, T_{k-1} have the conditional matrix normal distribution,

$$
\begin{aligned}
E\left(T_{i} \mid T_{k}\right) & =\rho_{i, k} \cdot T_{k}, \quad i<k, \\
\operatorname{COv}\left(T_{i}, T_{j} \mid T_{k}\right) & =\left(\rho_{i, j}-\rho_{i, k} \cdot \rho_{j, k}\right) \cdot I, \quad i \leq j<k,
\end{aligned}
$$

where

$$
\rho_{i, j}=\sqrt{\frac{i(n-j)}{j(n-i)}}, \quad i \leq j
$$

Obviously, for any orthogonal matrix $Q, T_{1}, \cdots, T_{k-1}$ and $Q \cdot T_{1}, \cdots$, $Q \cdot T_{k-1}$ have the same conditional distribution when T_{k} is given. Therefore, in calculating

$$
\widetilde{F}_{k}\left(E_{k}, E_{k}\right)=P\left(T_{1}^{\prime} \cdot T_{1}<E_{k}, \cdots, T_{k-1}^{\prime} \cdot T_{k-1}<E_{k} \mid T_{k}\right)
$$

we can suppose that

$$
T_{k}=\left(\sqrt{E_{k}}, 0, \cdots, 0\right)
$$

without loss of generality.
Let

$$
\widetilde{T}_{i}=T_{i}-\rho_{i, k} \cdot T_{k}, \quad i<k
$$

Then

$$
\begin{aligned}
\widetilde{F}_{k}\left(E_{k}, E_{k}\right)= & P\left[\left(\widetilde{T}_{1}+\rho_{1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{1}+\rho_{1, K} \cdot T_{k}\right)<E_{k}\right. \\
& \left.\cdots,\left(\widetilde{T}_{k-1}+\rho_{k-1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{k-1}+\rho_{k-1, k} \cdot T_{k}\right)<E_{k} \mid T_{k}\right]
\end{aligned}
$$

where the $\widetilde{T}_{1}, \cdots, \widetilde{T}_{k-1}$ have the conditional matrix normal distribution given T_{k},

$$
\begin{array}{ll}
E\left(T_{i} \mid T_{k}\right)=0, & i<k \\
\operatorname{COV}\left(T_{i}, T_{j} \mid T_{k}\right)=\left(\rho_{i, j}-\rho_{i, k} \cdot \rho_{j, k}\right) \cdot I, & i \leq j<k
\end{array}
$$

which is independent of T_{k}.
Let

$$
\widetilde{T}_{i}=\left(\widetilde{T}_{i 1}, \cdots, \widetilde{T}_{i p}\right)^{\prime}, \quad i=1, \cdots, k-1
$$

Then

$$
\begin{aligned}
& \left(\widetilde{T}_{i}+\rho_{i, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{i}+\rho_{i, k} \cdot T_{k}\right) \\
& =\left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k}}\right)^{2}+\widetilde{T}_{i 2}^{2}+\cdots+\widetilde{T}_{i p}^{2}
\end{aligned}
$$

When $E_{k 1}<E_{k 2}$, because $0<\rho_{i, k}<1, i=1, \cdots, k$,

$$
\begin{aligned}
& \left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 1}}\right)^{2}+\widetilde{T}_{i 2}^{2}+\cdots+\widetilde{T}_{i p}^{2}<E_{k 1} \\
\Rightarrow & \left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 1}}\right)^{2}<E_{k 1} \\
\Longrightarrow & -\left(1+\rho_{i, k}\right) \cdot \sqrt{E_{k 1}}<\widetilde{T}_{i 1}<\left(1-\rho_{i, k}\right) \cdot \sqrt{E_{k 1}} \\
\Longrightarrow & \left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 2}}\right)^{2}-E_{k 2}-\left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 1}}\right)^{2}+E_{k 1}<0 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 1}}\right)^{2}+\widetilde{T}_{i 2}^{2}+\cdots+\widetilde{T}_{i p}^{2}<E_{k 1} \\
\Rightarrow & \left(\widetilde{T}_{i 1}+\rho_{i, k} \cdot \sqrt{E_{k 2}}\right)^{2}+\widetilde{T}_{i 2}^{2}+\cdots+\widetilde{T}_{i p}^{2}<E_{k 2} .
\end{aligned}
$$

This implies that

$$
A_{1} \subset A_{2},
$$

where

$$
\begin{aligned}
A_{1}= & \left\{\left(\widetilde{T}_{1}, \cdots, \widetilde{T}_{k-1}\right):\left(\widetilde{T}_{1}+\rho_{1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{1}+\rho_{1, k} \cdot T_{k}\right)<E_{k 1},\right. \\
& \left.\cdots,\left(\widetilde{T}_{k-1}+\rho_{k-1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{k-1}+\rho_{k-1, k} \cdot T_{k}\right)<E_{k 1}\right\}, \\
A_{2}= & \left\{\left(\widetilde{T}_{1}, \cdots, \widetilde{T}_{k-1}\right):\left(\widetilde{T}_{1}+\rho_{1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{1}+\rho_{1, k} \cdot T_{k}\right)<E_{k 2},\right. \\
& \left.\cdots,\left(\widetilde{T}_{k_{1}}+\rho_{k-1, k} \cdot T_{k}\right)^{\prime} \cdot\left(\widetilde{T}_{k-1}+\rho_{k-1, k} \cdot T_{k}\right)<E_{k 2}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\widetilde{F}_{k}\left(E_{k 1}, E_{k 1}\right) & =P\left(A_{1}\right) \\
& \leq P\left(A_{2}\right)=\widetilde{F}_{k}\left(E_{k 2}, E_{k 2}\right) .
\end{aligned}
$$

This implies that $\widetilde{F}_{k}\left(E_{k}, E_{k}\right)$ is a increasing function of E_{k}. So is $\widetilde{F}_{n-k}\left(E_{k}, E_{k}\right)$. Because $E_{k} \sim \chi^{2}(p, r)$ have monotone likelihood ratio in r,

$$
r=\sqrt{\frac{k(n-k)}{n}} \cdot \Delta
$$

$P(\hat{k}=k)$ is an increasing function of Δ.

Appendix 3

The fact that there exists only one change-point in the sequence according to the test with level α means that there is no change-point in both the sequence $\left\{X_{1}, \cdots, X_{\hat{k}}\right\}$ and the sequence $\left\{X_{\hat{k}+1}, \cdots, X_{n}\right\}$ according to the test with level α, i.e.,

$$
\begin{aligned}
& U_{\hat{k}}^{-}<U_{\alpha}(\hat{k}), \\
& U_{\hat{k}}^{+}<U_{\alpha}(n-\hat{k}),
\end{aligned}
$$

where $U_{\alpha}(m)$ is the critical values of test with level α for samples of size m. Because $U_{\alpha}(\hat{k}), U_{\alpha}(n-\hat{k})$ and $M_{\alpha}(\hat{k})$ are the upper α fractile of the statistics $U_{\hat{k}}^{-}, U_{\hat{k}}^{+}$and $M_{\hat{k}}=\max \left\{U_{\hat{k}}^{-}, U_{\hat{k}}^{+}\right\}$respectively, $U_{\alpha}(\hat{k}) \leq M_{\alpha}(\hat{k}), U_{\alpha}(n-\hat{k}) \leq$ $M_{\alpha}(\hat{k})$. Hence,

$$
\begin{aligned}
M_{\hat{k}} & =\max \left\{U_{\hat{k}}^{-}, U_{\hat{k}}^{+}\right\} \\
& \leq M_{\alpha}(\hat{k}) \leq d_{\alpha}
\end{aligned}
$$

Proposition 3 is proved.

Acknowledgement. This work was supported by the National Natural Science Foundation of China.

We wish to thank the editors and refrees for their valuable comments and corrections, which resulted in considerable improvement of our original paper.

REFERENCES

Chen, X. R. (1988). Inference in a simple change-point model. Chinese Sci. Ser.A, 654-667.
Cox, D. R., and Spı ϕ voll, E. (1982). On partitioning means into groups. Scand. J. Statist. 9, 147-152.
Hawkins, D. L. (1989). Estimating changes in a multi-parameter exponential family. Commun. Statist. -Theory Meth. 18, 3595-3623.

Hawkins, D. M. (1977). Testing a sequence of observations for a shift in location. J. Am. Statist. Assdc. 72, 213-216.

Krishnainh, P. R., Miao, B. Q. and Zhao, L. C. (1990). Local likelihood method in the problems related to change points. Chin. Ann. of Math. 11, 363-375.

Worsley, K. J. (1986). Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika 73, 91-104.

```
Department Of Mathematical Statistics
East China Normal University
3663, Zhongshan Road
Shanghai 200062
China
Assessment Center
Institute Of Nuclear Power Operation
Wuhan, Hubei 430074
China
```

