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This paper deals with a two-stage cluster sampling problem. At the first

stage k clusters are drawn at random, and then at the second stage n

^-dimensional correlated observations are chosen under each cluster, which may-

be linearly related to certain covariates. The data of this type can be repre-

sented by a cluster regression model with suitable distributional assumption for

the errors. In this paper, it is assumed that the error vector of the linear model

follow an np-dimensional elliptically contoured /-distribution. Many elliptical

distribution theory results are developed in the literature under the assumption

that these n p-dimensional errors are uncorrelated. But, in the case of cluster

sampling, errors are usually assumed to be equicorrelated. We, therefore, intro-

duce a suitable np X np covariance matrix for n p-dimensional errors which

takes the common intra-cluster correlation into account. We then study the like-

lihood inferences for the regression parameters (coefficients of the covariates) of

the (linear) cluster regression model. Maximum likelihood estimators (m.l.e.)

of the regression parameters are found to be more efficient than the generalized

least squares estimators for smaller values of the degrees of freedom parameter of

the elliptically contoured /-distribution. The asymptotic {k —> oo) distribution

of the m.l.e. of the regression coefficients is also given.

Further, a factor analysis model is studied. Based on the assumption that

Π p-dimensional observations are uncorrelated and they follow np-dimensional

elliptically contoured /-distribution, we have developed Neyman's partial score

test for testing the suitability of the number of factors. The test statistic has

asymptotically X distribution with suitable degrees of freedom. Moreover, the

test is asymptotically optimal.

1. Introduction. Elliptical distributions have been employed in two
general approaches yielding somewhat different results. In one, ̂ -dimensional
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random variables Yi, , Yj, , Yn are regarded as being distributed accord-
ing to an np-dimensional elliptical distribution having the p.d.f. of the form

where YΊ, ,Yn are pairwise uncorrelated but not necessarily independent.
This elliptical class of distributions (1.1) have been studied by many authors.
The null robustness of certain test statistics for testing hypotheses regarding
μ and Λ (or Σ) has been studied, among others, by Kariya and Eaton (1977),
Dawid (1977), Chmielewski (1980), Fraser and Ng (1980), Jensen and Good
(1981), Kariya (1981a,b), Anderson, Fang and Hsu (1986). The optimality
robustness of certain tests for μ and Λ (or Σ) concerning uniformly most
powerful invariance (UMPI), and locally best invariance (LBI) properties has
been treated by Kariya and Eaton (1977), Kariya (1981) and Kariya and Sinha
(1985), among others. Similarly, the non-null robustness of certain tests has
been studied by Kariya and Sinha (1985), among others, for the elliptical class
of distributions (1.1).

It is well-known that many important test statistics which are developed
based on normality are not non-null robust for the elliptical class of distribu-
tions (1.1). For example, the classical F-test for testing linear regression, and
discriminant criteria to classify an observation into one of some of the ellipti-
cal populations, are not non-null robust. Then the question arises: how the
power properties of the test are affected when the data really comes from a non-
normal elliptical population. A general answer to this question is not possible,
since the power properties usually depend on the specific alternative distribu-
tion. As there are many situations where the distributions involved may have
heavier tails than those of the normal distribution, Sutradhar (1988, 1990) has
considered the sub-class of elliptical /-distribution (a special case of (1.1)) as a
parent population of the data and have shown the effect of non-normality on
the power properties of certain tests. More specifically, it has been shown in
Sutradhar (1988) that the power of the classical jP-test for testing the linear
regression depends on the degrees of freedom of the /-distribution. Sutrad-
har (1990) has shown that the probabilities of misclassification based on the
well-known Fisher's linear discriminant criterion are generally smaller than the
normal based misclassification probabilities. Thus, if a sample really comes
from a /-population with i/(< oo) degrees of freedom, say, the evaluation of
classical classification error rates by normal-based probabilities would unnec-
essarily make an experimenter more suspicious.

The estimation of the location and scale parameter for the elliptical class
of distributions (1.1), as well as, certain exact sampling distributional prop-
erties of these estimators, have also been discussed by many authors, among
whom are Anderson, Fang and Hsu (1986), Sutradhar and Ali (1989), Kelker
(1970), Thomas (1970), Strawderman (1974), Srivastava and Bilodeau (1989).
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In the second approach, ϊ i , ,Yn are regarded as being independent

and identically distributed according to the p-variate elliptical distribution.

Thus, the likelihood function for μ and Λ is given by

Hw-M)}. (1.2)

Under the joint distribution (1.2), a number of situations were found, where

certain corrected tests (correction for kurtosis of the elliptical distribution) for

testing hypotheses regarding Σ (covariance matrix) in particular, retain their

normal theory results. See for example, Browne (1982, 1984), Tyler (1982,

1983), Shapiro and Browne (1987), Browne and Shapiro (1987), Muirhead

(1982), Muirhead and Waternaux (1980), and Satorra and Bentler (1988).

In Section 2, we propose a general likelihood approach which includes the

above two approaches as special cases. The outline of the paper is also given

in the same section.

2. General Likelihood. Let Y — (Yί, , Y?, ,Yn) be a sample

of size ra, where Yj = (Yji, , YJΛ, * , Y?>)' 1S a p-dimensional vector. Also

let y * = (1Y, ••" 5^jV" >^n)' denote the np- dimensional vector formed by

stacking the n p-dimensional variables Y\ , , 5 ^ , - " ,yn . Now consider k

independent np-dimensional observations y\, , ?/*, , pjξ, where j / * , for all

i = 1, ,fc, is the ith realization of y*. Suppose the joint density function

of k np-dimensional observations y*[, , j/£ is given by

®A-1)(y^ln®μi);u}, (2.1)
2 = 1

where v is a shape parameter (usually a suitable function of the kurtosis

parameter). Assuming that the covariance matrix Σ = h(u)A exists, where

h(v) is a positive scalar function of z/, one may then reparametrize (2.1) by

replacing Λ with /ι~1(z/)Σ, which yields the likelihood function of the form

ί -In® μi)\ln ® Kv)^1)^ -ln® μi);u]. (2.2)

The likelihood function (2.2) has been used by Shapiro and Browne (1987),

among others, for the case with n = 1, in the context of covariance structures

analysis. Further, when k = 1 in (2.2), one deals with the np-dimensional

elliptical contoured distributions [cf. Anderson, Fang and Hsu (1986)].

Recently, Sutradhar (1993) has used the likelihood function (2.2) for the

sub-class of elliptical /-distributions with n = 1 and large &, in the context

of testing the hypotheses concerning Σ. In this paper, we deal with a multi-

variate cluster regression model with elliptical /-errors with their joint p.d.f.
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analogous to the form (2.2). The regression model and the inferences about

the regression parameters are discussed in Section 3. In Section 4, we provide

an asymptotically optimal test for the goodness of fit of the factor analysis

model where the common factors and the errors have elliptical /-distributions.

3. Cluster Regression Model with Elliptical t Errors. Con-
sider two-stage cluster sampling in which k clusters are drawn at random

at the first stage, and then at the second stage, n ^-dimensional elements

are chosen under each cluster following an up-dimensional elliptically con-

toured /-distribution. Let yι = ( y ^ , - " iViji'" ->y'in)' be a vector of n p-

dimensional observations from the ith cluster on a response variable j/, where

Vij = (Vijif'" jyyΛj ^Vijp)^ Vijh being the hth. (h = 1, ,p) variate of

the jth. (j = 1, , n) observation under the ith (i = 1, ,&) cluster. Also

let X{jh = (xijhii * * jXijhc) be the associated values of c covariates a?i, , xc

which may or may not have influence on y. For example, in a zoological study

one may be interested to know the effect of c = 2 covariates (age and weight,

say) of the Jfaltica oieracea flea beetles on their p = 2 response variates,

namely, the length of elytra and the length of the second antennal joint (mi-

crous). Suppose n beetles are trapped in each of k independent geographical

regions. The data of this type may be modelled as

(3.1)

where

Xn ipxpci

ipxpc

-Xi

β =

•βi

βh

with

X ijl 0'

<i2

0' Ί

0'

0' 0'

βhl

βh2

Lεijp

0' being the 1 X c null vector. It is customary in two-stage cluster analysis to

assume that the observations in a cluster are equicorrelated. For example, in

the context of the illustration on flea beetles, given above, it may be reasonable

to assume that n beetles under a specific geographical region will be equicor-

related. This leads us to assume that Si in (3.1) has np-dimensional zero mean



BRAJENDRA C. SUTRADHAR 373

vector and npxnp covariance matrix ϋ(/>)(g)Σ, where ® denotes the Kronecker
product, and R(p) = (1 — p)In + pUn is the nxn equi-correlation matrix, p be-
ing the common intra-cluster correlation, In and Un being the rc x n identity
and unit matrices respectively. For other choices of the correlation matrix,
the methodology developed in the paper for testing the covariance matrix has
fairly immediate generalizations. We further assume that ε» in (3.1) has the
np-dimensional elliptically contoured /-distribution with v degrees of freedom.
Then the likelihood function for the linear model may be written as

k

^ ά (3.2)

where ?ί(ι/) = 1 + [v - 2)~ι{yi - Xiβ)'(R(p) ® Σ ) " 1 ^ - Xφ), C(y, Ar, n,p) is
the normalising constant given by

C(v,k,n,p) = [{(v - 2)ΪΓ(Ϊ/ + np)/2}/{π^T(u/2)}]k, v > 2.

The likelihood function (3.2) is a special case of the likelihood function (2.2)
of the np-dimensional elliptical contoured distributions. This /-model (3.1-
3.2) accomodates the usual multinormal model by letting v —• oo, but, does
not include the multivariate cauchy model for which neither the mean nor the
variance exists.

3.1. Maximum Likelihood Estimate of β.

3AΛ. Case of Known v, p and Σ. Let /* = logF* denote the log-
likelihood function, where F* is the likelihood function given by (3.2). Then
solving the pc score functions df* jdβ = 0, one obtains the maximum likeli-
hood estimate of β as the solution of

(3.3)

where q{ = 1 + (i/ - 2)-1(yi - Xφ)\R{p) ® Σ ) " 1 ^ - Xφ) as in (3.2), Q< =
X [R(p) ® Σ ] " 1 , Pi = QiXi. Let β denotes the solution of (3.3) for β. For
the normal case when v -» oo, or for the single cluster (k = 1) case with any

v > 2, β reduces to /3QLS = (Σi=i Pi) Σf=i QiVi-> where ^QLS denotes the
well-known GLS (generalized least square) estimate of β for the linear model
(3.1). The GLS estimate is unbiased for β and has covariance matrix given by
( Σi=i Pi) - I n ^ e following theorem, we examine the relative efficiency of
the maximum likelihood estimate β to the GLS estimate /3GLS

THEOREM 3.1. Let V\ denotes the pc X pc covariance matrix of
β and V2 denotes the pc x pc covariance matrix of /?GLS Then V^V^ =
{y{y + np)l(v - 2)(v + np + 2)}/pc, where Ipc is the pc x pc identity matrix.
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PROOF. By direct computation, it may be shown that

Then the theorem follows from the fact that V2 = (Σi=i -f*)

It is clear from the theorem that for large np such that np ~ (rap+ 2), the

relative efficiency of β to /?GLS is v/{y — 2). Thus, for small z/, the maximum

likelihood estimate of β will be highly more efficient than the generalized least

square estimate of β. For large z/, β and /5GLS are identical, which is obvious.

Notice that the iteration procedure to solve β from (3.3) usually requires

an intial estimate of β. Suppose /?GLS is used for β initially in qι to compute

β by (3.3). Let β be this estimate which is given by

(3.4)

where §ά = 1 + (1/ - 2)- 1(y i - X;/?GLS )'(#(/>) ® Σ ) " 1 ^ ; - XiβGLs) If the iter-

ation procedure is discontinued and one uses β as the final estimate, efficiency

is lost to a greater extent, which is shown below.

3Λ.1Λ. Relative Efficiency ofβ to /?GLS We express β in (3.4) as

( k \ ~ 1 / k \

where 8% has rap-dimensional elliptically contoured /-distribution with zero

mean, R(p) ® Σ covariance matrix and v degrees of freedom. If qi is assumed

to be known, for example, q{ is replaced by E{q{) = πii (say), then β would

be less efficient than the Gauss-Markoff estimator /3GLS AS it is shown below,

also for unknown qiy the first step estimator β is less efficient than /3GLS

Rewrite (3.5) as β = β + g ( ^ , , qk, ε[, ,εk). Then an approximate

formula, up to second order, for the variance of β can be obtained by using

the Taylor series expansion of g(q1, ,qk,ε[, ,ε'k) evaluated at E(q{) = m;

and E(ε[) = 0' : 1 X rap for all i = 1, , fc. After some algebra we obtain

where

= 1 + (1/ - 2)- 1 trace {lnp - 2WH + WuW'i} + J^ trace {WUWU}
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with Wti = (R(p) ® Σy^Xe^ΣUiPi) xί(R(p) ® Σ)~*> f o r & ',* =
1, ,*.

Notice that when mi = m for all i, /3 reduces to /?GLS NOW to show that

β is less efficient than /?GLS> it is sufficient to consider the case mi = m ± δ,

rri2 = . . . = rπk = m and examine the change of Var(/3) due to change in m\

because of δ. It can be shown that

θ Var(/3)

fc - i 1

2(ΣPj)~1Pi ( Σ Pi) i1 ) w h e n m i

] when
i—l

Since m > 1 always and P t 's are positive definite, it follows that Va,τ(βu) >

Vφu^i.s) for all u = 1, ,pc, where /3n and /3U,GLS are the uth. components

of β and /?GLS respectively. As it is shown in Theorem 3.1, the final m.l.e. of

β is, however, more efficient than /?GLS

3.1.2. Case of Unknown v, p and Σ. In practice */, p and Σ are rarely

known and β must be estimated simultaneously with the estimation of */, p

and Σ. In this case, the maximum likelihood estimates /3, Σ, p and z> of /?,

Σ, /> and ^ respectively, are obtained by solving simultaneously the likelihood

equations for Σ, p and v along with the likelihood equation for β given in

(3.3).

3.2. Asymptotic Distribution of β. Using /?GLS as an initial estimate for

/?, the solution for β after first iteration is given by β (3.4). By (3.5) it is easy

to show that β is also (similar to /3GLS) unbiased for β. Using similar argument

at every stage of the iteration procedure, it follows that β (m.l.e.) is unbiased

for β. Further in (3.1), yi, , y^ , yk are independent vector observations.

Now by applying Theorem 3.1 and the well-known central limit theorem, we

can state the asymptotic behaviour of β as in the following theorem.

THEOREM 3.2. Tie asymptotic distribution of the maximum likelihood

estimator β is multivariate normal with mean vector β and covariance matrix

{(v-2)(v + np + 2)/v(v + np)} (ΣΪ=ιXiiR(p) ®Σ]~lχi)~\ w h i c h CΆn b e

consistently estimated by {(z> - 2)(/> + np + 2)/v{y + np)} { Σ ? = 1 Xl[R(β) ®

4. Factor Analysis Models. Consider the factor analysis model

yij = Xijβ + Az + eij, (4.1)
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where yij is the p-dimensional jth observation (j — 1, , n) in the ith (i =
1, , &) cluster, Xij is the p X pc design matrix, β is the pc X 1 regression
coefficient vectors as in Section 3, Λ is a p X m matrix of unknown factor
loadings, z is the m X 1 vector of unobservable common factors and e^ is a
p x 1 vector of errors or residuals. In classical factor analysis, a maximum
likelihood estimation factor analysis is carried out under the assumption that
each of z and e^ has multinormal distribution. Instead of normality, it is now
assumed that j/ i, ,Έ/;J, ,2/in (i.e. n > 1 observations in the ith cluster)
have the joint up-dimensional elliptical ^-distribution

f(y'n,--- ,y'in) = K^n^lI^ΣrHφ)}-1^, (4.2)

whereφ) = l+ί^-2)"1 trace {Σ"1 E;=i(^-*;/)(2/;;-*i/)'} with Σ =
ΛΛ' + φ, where E(eij6ij) = φ = Diag (^i, , φp). Note that unlike Section 3,
n observations of the ith cluster have been assumed to be uncorrelated in model
(4.2). For the case with n = 1, that is, when each cluster contains a single
p-dimensional observation, and when /(•) is the p.d.f. of a general elliptical
distribution of the form (2.2), Browne and Shapiro (1987) have proposed a
correction to the normal based minimum discrepancy test for testing the null
hypothesis Σ = Σo, where Σo = ΛΛ' -f φ, Σ being the covariance matrix of
the elliptical distribution, Λ and φ being the suitable estimates of Λ and φ
respectively. See also Satorra and Bentler (1988) for a similar but different
scale correction to the normal theory maximum likelihood discrepancy test.
Their correction takes the kurtosis of the elliptic distribution into account,
and, in practice, the kurtosis parameter involved in the corrected statistic is
replaced by its consistent estimate.

We remark here that although Browne and Shapiro's result is developed
for general elliptic distribution, in practice we usually encounter with normal
elliptic or ̂ -elliptic or cauchy elliptic data. Our as well as Browne and Shapiro's
results are not useful for cauchy elliptic data since we assume the existence of
the covariance matrix. Otherwise, the corrected test statistic of Browne and
Shapiro (1987) has asymptotically χ2 null distribution. But, in general, the
power properties of this test is not known.

In the following section, we develop the score test due to Neyman (1959).
There are two main reasons to propose this test. First, this test is asymptoti-
cally locally optimal, and also asymptotically equivalent to the likelihood ratio
and Wald's tests (cf. Moran (1970)). Second, the likelihood ratio and Wald's
tests require the maximum likelihood estimates of the parameters which may
be cumbersome to obtain by solving the likelihood equations mentioned in
Section 3.1.2. Unlike the likelihood ratio and Wald's tests, the score test,
however, requires only y/k-consistent estimates for the nuisance parameters,
which need not necessarily be the maximum likelihood estimates.
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4.1. Neyman's Partial Score Test for Σ = Σo Let σ = vec(Σ), where
vec (Σ) denotes the {p(p + l)/2} x 1 vector formed by stacking the distinct
elements of Σ. Also let Dσ be the p X p symmetric matrix obtained from
the likelihood equation (3.2) for Σ after putting p = 0. Then, for ί > h,
h,l = 1, ,p, the p(p + l)/2 score functions for σn, ,σ^, ,σp p are
computed by stacking the distinct elements of the p x p symmetric matrix
Dσ. Let dσ denote this {p(p+ l)/2} X 1 score vector. Similarly, we construct
pc score functions for the elements of β after putting p = 0 in the likelihood
equation. Let this pc X 1 score vector be denoted by dp. Next the score
function for i/, dv (say), is obtained from the likelihood function for v after
puting p = 0. Further, let /?* and v* be the consistent estimates for β and */,
which are not necessarily the maximum likelihood estimates. The derivation
of these consistent estimators is provided in Section 4.1.2. Now for testing
σ = σo (σo being the {p(p + l)/2} X 1 vector formed by stacking the distinct
elements of Σo) Neyman's partial score test statistic (cf. Neyman (1959)) λ*
(say) is given by

λ*=T' Dσσ - (Dσβ Όσv)
Dββ D

βυ

- 1

D'σv)

- 1

(4.3)

where

is the pc x 1 residual vector evaluated at σ = σo, β = β*, and v = i/*, and
where, for example, Dσσ is the (σ, σ) section of the information matrix

D = Dββ (4.4)

evaluated at σ = σo, β = β*, and v = u*, with

fdHogF
Dσσ = -E

V dσdσ'

F* being the likelihood function obtained from (4.2). The other sections of
the D matrix are defined similarly.

Under the null hypothesis σ = σo, the test statistics λ* has approxi-
mately χ2 distribution with p(p+ l)/2 degrees of freedom. This test, at least
approximately, is asymptotically unbiased in estimating a pre-assigned level
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of significance (cf. Bartoo and Puri (1967)). Also the test is locally asymp-
totically most powerful and asymptotically equivalent to the likelihood ratio
and Wald's tests (cf. Moran (1970)).

4.1.1. Computation of D. Differentiation of dσ with respect to σ vector
and the direct evaluation of the expectation of the second derivatives based
on the elliptical /-distribution (4.2) yields the Dσσ matrix in (4.4) as

2?σσ = [d(l,l) d(l,2)...d(Λ,/)..-d(p,p)], (4.5)

where, for I > h, h,l = 1, ,p, d(h,£) is a {p(p + l)/2}-dimensional column
vector formed by stacking the distinct elements of the pxp symmetric matrix

Dhti = Y [{σh ® (σ*)'> - 1/(1/ - 2)~\v + np + 2)" 1 trace {σh ® (σ£)'}Ip} ,

where σh denotes the Λth column of Σ " 1 .

By similar calculations, we obtain

-Qβdβ\ = {1/(1/ + np)/(u - 2)(i/ + up + 2)} ^ Pu (4.6)

where P{ = X/[/n ® Σ ] " 1 ^ , and

(i/ - 2)2}

- ΛI//2(I/ - 2) [2/(1/ + np) - (i/ + 2)/{(i/ - 2)(i/ + up + 2)}],

where φf(z2) and φ'(zι) are the derivatives of the digamma functions φfa)
and φ(z\) with respect to 22 a n ( i ^i respectively. The (σ,β) section of the
information matrix can be shown to be the null matrix of order {p(p+1)/2} X
pc. Also, Dvβ can be shown to be the null vector of dimension p(p + l)/2.
Finally, the (σ, v) section of the information matrix is formed by stacking the
distinct elements of the pxp matrix

k

-{1/2(1/ + up)}{1 - I//(I/ - 2)(i/ + up + 2

where P» is the same matrix as in (4.6).

4.1.2. Consistent Estimates for Nuisance Parameters. In testing Σ = Σ o ,
β and v are considered to be the nuisance parameters. The ordinary least
square (OLS) estimator, /3OLS, may be shown to be a consistent estimator of
β. This is simple to compute too. In the present set up,
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with its variance given by

- 1
\ ( \

var (/?OLS) = Σ X i ' X i Σ W('n ® Σ)X<> Σ X i ' X i '
\ / \ /

i = l

where X{ is the npxpc design matrix and y\ is the np-dimensional observation

vector. Writing Σ)*= 1 X%Xχ as X'X, where X is the &np x p matrix, one

obtains

trace {var (/?OLS} = trace [(X'X)-1X'(Ikn ® Σ)X(XfX)~1]

= trace [(Ikn ® Σ)X(X'X)-2X']. (4.7)

Under certain mild conditions, that is, when the largest eigenvalue of Σ is

bounded, also when the smallest eigenvalue of X1 X is very large, one may

show that [cf. Amemiya (1985, Chapter 6)] trace{ var (/?OLS)} converges to

zero, showing that /?OLS is consistent for β. In the notation of Section 4.1, we

therefore have β* = /?OLS

In order to construct a consistent estimator v* for z/, one may proceed as

follows. Following Mardia (1970), the multivariate measure of kurtosis of the

elliptical /-distribution may be written as

β2 = J[(yi - Xφ)'(In ® Σ " 1 ) ^ - Xiβ)]dF*, (4.8)

where F* is as in (3.2) after putting p = 0. By direct integration we obtain

where

h=l

2 { ^ ^ ' Λ ' ^ ' 2 } ] (4-9)

and where σhh and σhh are the (h,hf)th element of Σ " 1 and Σ respectively.

Then, by using

1 k

Σ [(W " *iβ*)Vn ® S-'Xyi - Xiβ*)}\ (4.10)

a consistent estimator for βi, one obtains the consistent estimator for v as

v* = 2[2/?2* - f(n, s)]l\βl - f(n, s)], (4.11)
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where /(n,s) is computed by (4.9) after replacing Σ by 5, S being the sample
covariance matrix given by

k n

S = Σ Σtoi - WXVii ~ χijβ*

5. Concluding Remarks. Elliptical distributions have been employed
in two general approaches. In one, a n n x p data matrix is regarded as being
distributed according to an up-dimensional elliptical distribution. Elements
in different rows (i.e. n p-dimensional observations) are regarded as uncorre-
lated but not independent. In the second approach rows of the data matrix
are regarded as being independent and identically distributed according to
a p-variate elliptical distribution. In the present paper we have provided a
more general approach which contains the above two general approaches as
special cases. More specifically, we have considered k independent clusters
(groups), where each cluster has n p-dimensional observations regarded as be-
ing generated according to an np-dimensional elliptical distribution. It has
been assumed that the p x p covariance matrix exists. Since in practice, we
mostly encounter normal or t elliptic data (with suitable covariance matrix)
and because distribution theory is well-developed for normal data, we have
concentrated, in this paper, to elliptical J-data only. In Section 3, likelihood
inference is given for the regression coefficients of a cluster regression model
assuming that the rows of the n x p data matrix, that is, n observations in a
cluster are equicorrelated. Section 4 deals with a factor analysis model based
on the assumption that the rows of the n X p matrix in a cluster are uncorre-
lated. In contrast to Browne and Shapiro's (1987) discrepancy test (for testing
the covariance matrix) we have discussed Neyman's partial score test which
is asymptotically locally most powerful. A simulation study could be done to
examine the large as well as small sample performance of the Neyman's partial
score test compared to the Brown-Shapiro (1987), Satorra-Bentler (1988) and
the normal theory based tests but such a study was not chosen in the present
paper.
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