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NEARLY OPTIMAL GENERALIZED SEQUENTIAL LIKELIHOOD
RATIO TESTS IN MULTIVARIATE EXPONENTIAL FAMILIES*

BY TZE LEUNG LAI AND LI MIN ZHANG

Stanford University

A simple class of generalized sequential likelihood ratio tests is introduced

for testing hypotheses in multivariate exponential families. These sequential tests

have asymptotically optimal frequentist properties and also provide approximate

Bayes solutions with respect to a large class of prior distributions.

1. Introduct ion. Let Xi,X2? ' ' be i.i.d. p x l random vectors whose

common multivariate density (with respect to some nondegenerate dominating

measure u) belongs to the exponential family

fΘ(z) = exj>{θ'x-φ(θ)}. (1.1)

Thus, EΘX = Vφ{θ), COYQX = V2φ(θ), and the Kullback-Leibler information

number is given by

7(0, λ) = Eθlog{fθ(X)/fλ(X)} = (θ-λ)fVφ(θ) - (φ(θ) - φ(λ)). (1.2)

LetSn = X1 + > + Xn, Xn = Sn/n and let Θ = {θ e Rp : / exp(θ'x)dv(x) <

oo} be the natural parameter space. Consider the problem of testing sequen-

tially HQ : θ (Ξ Θo versus Hi : θ E Θi, where Θo,Θi are disjoint subsets of Θ

such that

Δ = inf {||λ - 0|| : θ e Θo,λ ε θ i } > 0 , (\\θ\\ = y/ϊθ). (1.3)

Let ^ b e a nonnegative function on (0, CXD) such that for some ξ G i2,

.logt'1 and g(t) > logt'1 + ξloglogt'1 as t -+ 0. (1.4)
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As in Lai (1988b), we shall restrict ί t o a convex subset A of Θ such that

inf λm i n(VV(0)) > 0, sup λm«(VV(*)) < oo,

and V2ψ is uniformly continuous on Ap for some p > 0, (1-5)

where Ap = {λ e Rp : mΐθeΛ \\θ-λ\\ < p} and λmin, λ m a x denote the minimum
and maximum eigenvalues of a symmetric matrix. Define the stopping rule

n

N(g, c) = inf [n > 1 : θn € Ap, max ( £ l o g / - (X;)
ί = 1 " (1.6)

- sup

where θn is the maximum likelihood estimator that maximizes Σ™=1 log f
(= n(θ'Xn-φ(θ)) over 0 <Ξ Θ. Noting that ^n = (Vφ)-\Xn) if X n G
we can express the statistics in (1.6) as

=n I (θ'nXn - φ(θn)) - sup (θ'Xn -

= inf nJ(βn,β), (1.7)

in view of (1.2), at least when θn G Ap. When stopping occurs at stage n, we
use the terminal decision rule δ* that rejects Hi or ϋΓo according as ln,\ > ίn$
O Γ ^n,i < n̂,o This is a multivariate extension of the generalized sequential
likelihood ratio test (GSLRT) proposed by Lai (1988a) in the univariate case
p = 1, and Lai and Zhang (1993) showed that in the multivariate case such
GSLRT has the following asymptotically optimal frequentist and Bayesian
properties for testing Ho : θ £ θ0 versus Hi : θ G ©i.

THEOREM 1. For the test (N(g,c),δ*), in which g satisfies (1.4) for
some ξ E R, let oy = sup^€θi Pθ{(N(g,c),δ*) rejects Hj} (j = 0,1). Let
T(αo,αi) be the class of all sequential tests (T, δ) such that supβ G θ . P^{(Γ, δ)
rejects Hj} < αj for j = 0,1. Let Δ be the distance between ©o and ©i as
specified in (1.3) and define

J(θ) = max j inf 1(0, λ), mf I(θ,j)\ . (1.8)

(i) For fixed Δ > 0, as c -s- 0,

EθN(g,c)~ | logc|/J(0)~ inf EΘT as c -»• 0,
(T,δ)€T(αo,αi)
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uniformly in θ G A with J(θ) < DCJ for any positive numbers Dc -* oo such

that Dc = o(logc) as c —> 0.

(ii)As c -> 0 and Δ -> 0 such that Δ2/c -> oo,

sxιpEΘN(g,c)~ τ δ inf s u p ^ Γ - j s u p ( J ( ^ ) ) - 1 | log(Δ2/c).

(iii) Let G be a probability distribution on A. Let r(T,δ) be the Bayes

risk

r(T,δ)=c I EθTdG+ I £(θ)Pθ{RejectH0}dG
Jθ Jθo

+ I £(θ)Pθ{RejectHι}dG, (1.9)

of a test (T,S) of Ho versus Hi. Suppose that the loss function ί in (1.9)

for wrongly rejecting the true hypothesis satisfies s u p ^ G Θ o U Θ l l(θ) < oo and

inf 0eθouθi l>{β) > 0, that G(S Π Θj) > 0 for every p-dimensional ball S with

center belonging to θj, j = 0,1, and that ζ > p/2 in (1.4). Tien as c —• 0,

r(N(g, c), δ*) ~ c | logc\ I {J{θ))~1dG(θ) - inf r(T,δ).

Theorem l(iii) shows that (N(g,c),δ*) is asymptotically Bayes risk ef-

ficient as c —> 0 for fixed Δ > 0. In Sections 2 and 3, we shall show that

(N(g,c)yδ*) is still asymptotically Bayes risk efficient as Δ —> 0 when Ho,Hi

are one-sided hypotheses about some real-valued function of 0, and we shall

also extend this kind of tests to the case when there is no indifference zone, gen-

eralizing Lai's (1988a) theory of nearly optimal sequential tests in univariate

exponential families. The derivation of these results in Section 3 uses trans-

formation techniques in multivariate analysis and certain geometric properties

of multivariate exponential families.

2. Asymptotically Bayes risk efficient GSLRT when 0AΔ -> o as

c - > 0 o r when there is no indifference zone. In this section we consider

the Bayes problem of minimizing the Bayes risk (1.9), in which l(θ) = 1 for

θ E Θo U Θi C A (the 0 - 1 loss), G is a prior distribution on A and Ho, Hi are

one-sided hypotheses about some real-valued function z(θ) of the parameter

vector θ. Let z : Ap —• R and y : Ap —> RV~Ύ be continuously differentiate

functions such that

ζ : Ap -» Rp is one-to-one, where ζ(θ) = ί ) , and

I ) (I) ί < °°' (2-1)
inf λ m i n

0€AP {(I) (!)]>»•
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The notation dζ/dθis used to denote the Jacobian matrix (dζi/dθj)ι<ij<p.
In view of (2.1), the restriction of ζ to A is a diffeomorphism from A onto
ζ(A) and therefore we can regard ζ as a reparameterization of A in lieu of
θ. The one-sided hypotheses HQ,HI can be conveniently stated in terms of
this reparameterization as HQ : z < z0 versus Hi : z > z0 + €u(y) (with
an indifference zone whose width may depend on y) or Ho : z < ZQ versus
Hi : z > z0 (without an indifference zone), with the component vector y of ζ
treated as a nuisance parameter.

To test HQ : z < ZQ versus Hi : z > zQ + εu(y) with cost c per observation
and the 0 - 1 loss, we again use the GSLRT with stopping rule N(g,c) and
terminal decision rule δ*. In Theorem l(iii) dealing with the case of a fixed
distance Δ between Θo and Θi, g is assumed to satisfy (1.4) with ξ > p/2.
This condition on g still suffices for the Bayes risk efficiency of (JV((7,c),#*)
when ε —• 0 as c -» 0 such that ε2/c -> oo, as will be shown in Theorem 2
below. However, in the case of no indifference zone or in the case ε2 /c —> 7
(finite), we require a particular choice of g which agrees with the stopping
boundary for a continuous-time optimal stopping problem that arises from
Wiener process approximations to random walks.

Let wη(t),t > 0, be a Wiener process with E(wη(t)) — ηt and Va,τ(wη(t)) =
t. Lai (1988a) studied the problems of testing H : η < - 7 versus K : η > 7
and if' : η < 0 versus Kf : η > 0, with the 0 - 1 loss and a cost of t for observ-
ing the process for a period of length /, assuming a flat prior (i.e., Lebesgue
measure) on η £ R. Given 7 > 0 (the case 7 = 0 corresponds to Hf versus ϋf'),
the optimal stopping rule is of the form τΊyΎ] — inf{£ > 0 : 1^(4)1 > hΊ(t)}, and
the terminal decision rule is to accept H (or H1) iff wη(rΊ) < 0. Lai (1988a)
computed numerically the boundaries hΊ(t) for certain values of 7, and used
these numerical results and an asymptotic analysis of the free boundary prob-
lem for the heat equation associated with the optimal stopping problem to
derive simple closed-form approximations to hΊ(t) for all 7 > 0 and t > 0. He
also showed that the optimal Bayes risk is finite, i.e., for 0 < 7 < 00,

00 > 6(7) := / E(τΊ<η)dη + / P(wη(rΊ>η) < 0) dη
J — OO J^f

+ ί P(wη(τΊ,η)>0)dη. (2.2)
«/— OO

For the problem of testing Ho : θ < 0 versus #1 : θ > 0 (or Ho : θ < -Δ/2
versus Hi : θ > Δ/2) for the mean θ of a univariate normal population with
known variance 1, let

t = en, wη(t) = y/ΪSn. (2.3)

Since y/cθn — ηt,wη(t) is a Wiener process with drift coefficient η and with t
restricted to the set {c, 2c, }, which becomes dense in [0, oo) as c -^ 0. For
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7 > 0, let
gΊ(t) = (hΊ(t) + Ίt)

2/2t. (2.4)

Since I(θ, λ) = (θ — λ) 2/2 and θn = Xn for the normal distribution, it follows

from (2.3) and (1.7) that for the above hypotheses on a normal mean,

> hΊ(t) <=» (1^1 + Δn/2)2/2n > gΊ(cn) ^ max£n > j > gΊ(cn).
j=0,l

Theorem 3 below shows that the GSLRT with stopping rule T(goyc) defined

in (2.7) is asymptotically Bayes risk efficient as c —> 0, not just for testing

the hypotheses Ho : θ < 0 versus Hi : θ > 0 for the mean θ of a univariate

normal distribution, but much more generally for testing Jϊo •' z{θ) < zo versus

Hi : z(θ) > ZQ for real-valued functions z(θ) of the parameter vector θ of

the multivariate exponential family (1.1). Theorem 2(ii) proves an analogous

result for the test (N(gΊ,c),δ*) of HQ : z < ZQ versus Hi : z > zo + εσ(y)

as c —> 0 and ε —> 0 such that c~1/2ε/2 -» 7, where σ(y) is defined in (2.6)

below. In the univariate exponential family with z(θ) = θ and ZQ = θo,σ(y)

reduces to (d2φ(θ)/dθ2\θ=:θo)~1^2' This factor of ε in Hi was inadvertently

omitted in the statement (but not the proof) of Theorem l(iii) of Lai (1988a).

While Theorems 2 and 3 focus on the 0 - 1 loss, their proofs and results can

be extended to more general loss functions of the form l(θ) = β \ z(θ) — ZQ]01

(a > -1,/? > 0), using the ideas of Lai (1988c) in the case of univariate

exponential families with z(θ) = θ.

Since ζ defines a reparameterization of θ G A, we can express a prior

distribution G of θ with support in A as a prior distribution of ζ(= (z,y)).

We shall assume that for some d > 0, [ZQ - d, ZQ + d] C z{ A) and that the prior

distribution G, as a distribution of (2,2/), satisfies

G has density function ΈQ with respect to Lebesgue measure

in the region [z0 - d,z0 + d] x y(A)(c ζ(A)), (2.5a)

πG(z,y) -> πG(z0,y) as z -+ z0, uniformly in y G y(A), (2.5b)

7ΓG(^O,2/) is continuous in y G y(A) and

0 < / πG(zo,y)dy < 00. (2.5c)
Jy(A)

THEOREM 2. Let G be a probability distribution on A satisfying

(2.5a)-(2.5c). Let r(T,S) be the Bayes risk (1.9) of a test (Γ, ί) ofH0 : z < z0

versus Hi : z > ZQ + εu(y) with the 0 — 1 loss and cost c per observation,

where ζ = (z, y) is a reparameterization satisfying (2.1) and u is a real-valued

function on y(A) such that supy G 2 /(A) u(y) < 00 and i n f ^ ^ ) u{y) > 0. For

y G y(A), define

y. (2.6)
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Then supyey{A) σ(y) < oo and infy€y(A) σ(y) > 0.

(i) Let g be a nonnegative function on (0,oo) satisfying (1.4) for some
ξ > p/2. Then as c —> 0 and ε —> 0 such that ε2/c —> oo,

{4 /
[ Jy(Λ)

(ii) Suppose that u{ ) = σ( ). Let 0 < 7 < 00 and define 6(7) and # 7 by
(2.2) and (2.4). Then as c -> 0 and ε -• 0 suci ίΛat \e/y/c -> 7,

r(ΛΓ(flf7, c), δ*) - inf r(Γ, ί) ~ Vc6(7) / σ(y)πσ(^o, y) dy.
τ>δ Jy(A)

THEOREM 3. Suppose that G is a probability distribution on A sat-
isfying (2.5a)-(2.5c) and that ζ — (z^y) is a reparameterization satisfying
(2.1). Let r(T,δ) be the Bayes risk (1.9) of a test (T,δ) ofH0:z<z0 versus
Hi : z > zo with the 0 — 1 loss and cost c per observation. Define go by (2.4)
and

T(go,c) = inf \ n > 1 : θn G Ap and

fθ(Xi)>go(cn)}. (2.7)- sup

Let ̂  be the terminal decision rule that accepts Ho iffz(θn) < ZQ when stopping
occurs at stage n. Then as c —> 0,

r(T(90,c),δ) /
T » Jy(A)

where b( •) is defined in (2.2) and σ( ) is defined in (2.6).

3. Proof of Theorems 2 and 3. For x 6 Λp, define

φo{x)= sup (β'sc-^(β)), (3.1)
θeΛ:2(9)=20

L(x) = φ(x) - φo(x).

In view of (2.1), given any (z,y')' G ζ(A), there exists a unique θ such that
ζ(θ) = (z,y'γ. This θ will be denoted by θy,z. Since 7(0, λ) = /o(l - t)(λ -
θ)'{V2ψ(t\ + (1 - t)θ)}(λ - θ)dt by (1.2), it follows that

- λ | | 2 < J ( 0 , λ ) < f ? | | 0 - λ | | 2 foraU θ, λ e Ap, (3.2)
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where

b = \ inf λm i n(VV(0)), B = sup λm a x(VV(0))
^ Θ ^ A θA

LEMMA 1. For ye y(A), let μy = Vψ(θy,Zo), Σy = V2ψ(θy,Zΰ), Jy =
dθ/dζ\θ=θyι,o. Then

(3.3)

where σ(y) is defined in (2.6). Consequently, uniformly in y G y(A), as x —• μy

with x G Ap,

Z(z) = { ( V ^ j y Σ ; 1 ^ - μ3/)}2/(2σ2(2/)) + o(\\x - μy\\2). (3.4)

PROOF. Let Uy — dθ/dy\θ=θy,zo Using Taylor expansions and the
inverse function theorem, it can be shown that

V2φ0(μy) = Uy(UyΣyUyΓ
1Uy, (3.5)

cf. Lemma 3.2 of Zhang (1992). In the remainder of the proof we shall fix y
and denote Σy,Uy,Jy simply by Σ, ί7, J. Letting Iq denote the q x q identity
matrix, note that

(3.6)
Vp-l/

where

22

We first show that the (1,1) element of Γ α is σ2(y). Since Γ x is the co-
variance matrix of J~1Σ~1Xχ, its (1,1) element is the variance of the first
component of J" 1 Σ~ 1 Xi Since J " 1 = dζ/dθ\θ=βy ZQ by the inverse function
theorem, the first component of J~1Σ~1Xi is (Vz(θyiZo))fΣ~1Xι^ which has
variance σ2(y). By (3.5) and (3.6),

j'Σ(V2φ0(μy))ΣJ =

_ /

Since V2φ(μj) = Σ " 1 and L = φ - φ0, (3.3) foUows from (3.6) and (3.7),
noting that ( Γ n - Γ ^ I Y ^ i ) - 1 is the (1,1) element of Γ"1, cf. Rao (1973).
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Since L(μy) = 0 and VL(μy) = 0 by Lemma 3.1 of Zhang (1992), it
follows from (3.3) and Taylor's expansion around μy that as x —*• μy with
x G Ap,

L{x) =(x - μy)
fVL2(μy)(x - μy)/2 + o(\\x - μy\\2)

={(ΣJ)~1(x - μy)}'{JrΣ(VL2(μy))ΣJ}{(ΣJ)"1(x - μy)}/2

+ o(\\x ~ μy\\2)

={first component of J~1Σ~1(x - μy)}2/(2σ2(y))

+ o(\\x-μy\\2). (3.8)

Let x = Σ^τ(x - μy). Since J " 1 = dζ/dθ\θ=θyZQ, it follows that the first
component of the vector J~λx is simply (V^(02/^o));^ Hence (3.4) follows
from (3.8).

LEMMA 2. With the same notation as in Lemma 1, define
υy = (σ(y))~1 Σy

1'2Vz{θy^ZQ) and let Zy be apx(p-1) matrix whose column
vectors are orthonormal and are orthogonal to υy. Let Sn = X\ + h Xn-
For c > 0 and y G y(A), define

if t = cn (n = l ,2, ), (3.9)

and define WCiy{t) by linear interpolation for en <t< c(n+l). Let {wη(t),t >
0} denote a one-dimensional Wiener process with drift coefficient η and let
{B(t),t > 0} be a 1 x (p — 1) vector Brownian motion, with EB{t) — 0
and CovB(t) = t/p_i, that is independent of {wη(t),t > 0}. Then for every
T > 0 and M > 0, the process {Wc,y(t),0 < t < T} converges weakly to
{(wη(t),B(t))',0 <t<T} under Pθ with Vφ(θ) = μy + (yfcη/σ(y))Vz(θy,Zo),
the convergence being uniform in -M < η < M and y G y(A).

PROOF. First note that for t — en,

Covβ(WCfy(ί)) = en( J )(vy,Zy) = tlp,

since Z'yυy = 0 by definition and υf

yΣy

1/2Vz(θyiZo)/σ(y) = υ'yυy = 1. The
desired conclusion then follows by an argument similar to that used in the
proof of Lemma 4 of Lai (1988a).

LEMMA 3. (i) For Θo = {θ G A : z(θ) < z0} and Θi = {θ G A : z(θ) >
z0}, inf λ € Θ j . 1(0, λ) = inf XeA:z(\)=z0 Kθ-> λ ) for ΆnY θ £ Ap - Qj(j = 0,1).
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(ii) For Θo = {0 G A : z(θ) < z0} and Θi = {0 G A : z(θ) >

zo + εu(y(0))}9 infλGθo I(θ-> λ) = i n f λ € > M λ ) = Z o 7(0, λ) for 0 G Ap - Θ o, and

infλGθi I(θ,λ) = inίχeA:z(λ)=zo+εu(y(λ)) 1(0,λ) for 0 G Ap - Θi.

PROOF. For Θo = {0 G A : 2r(0) < ^Q}, suppose that for some

θ e Ap - Θo,mf\eβ0I(θ,\) < mfχeA:z^=Zo I(ΘJX). Then there exist λx G

Θ 0 (C A) and 0 < ίi < 1 such that {̂ 0 + (1 - ί)λi : 0 < t < tx} C Θo and

7(0, λi) = mincKί^t! 7(0,tθ + (1 — tf)λi), recalling that A is convex and that

z is continuous with z(λχ) < z§. Using (1.2) and a differentiation argument,

it can be shown that 7(0, tθ + (1 - t)λι) is a decreasing function of t G [0,1],

which contradicts that 7(0, λi) = mino^ί^t! 7(0,tθ + (1 — /)λχ). Similarly we

can prove the other assertions of the lemma.

PROOF OF THEOREM 3. Let μ(y>z) = Vφ(θViZ) = EθyιΛ(Xi). We

shall use the change of variables y = y(y, z) G Rp"1, η — 77(2/, z) G R defined

by

μ(y,z) = μ(y,z0) + Λ/cηVz(θyιZo)/σ(y), or equivalently,

(3.10)

where

Let M > 2. From (3.10), (3.2) and (2.1), it follows that uniformly in y G y{a)

and \η\ < M,

z =z0 ^ , (

(3.11)

(3.12)

For any sequential test (Γ, ί), define its risk function Rτtδ(z,y) by

Rτ,δ(z, V) =cEθT + Pθ{(T,δ) accepts Hx} if 2 < z0,

=c£ β Γ + Pβ{(T, δ) accepts F o } if z > z0,
(3.13)

where

ζ(θ) = (z,yy.

Consider the risk function of the test (T(go,c),δ). By Lemma 1,

nL(Xn) = {Vϊυ'yΣy1/2(Sn - nμy)}2/(2cn) + o(n\\Xn - μyf),
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where υy is defined in Lemma 2 and (y,η) is defined from (y,z) via (3.10).

Moreover,

= {Vz(θy,Z0))'Σy1(Xn-μy)

Hence by Lemma 2 together with (3.11), (3.12) and (2.5), as c -»• 0,

Rτ(a ni7(

σ(y)πG(z0,y){ E(τo,η)dη
Jy€y(A) ( J-M
,0 ,M

+ / P(wη(τ0,η) >0)dη+ / P(w,,(ro,η) < 0) dη \ dy,
J-M Jo > (3.14)

for every M > 2, where r0,^ = inf{ί > 0 : w2

n{t)l2t > go(t)} = inf{ί > 0 :

K(ί)l > ho(t)}.
Let H(θ) = inf AgΛ:z(λ)=20 K^i ^) By a n argument similar to the proof of

Theorem 3 of Lai (1988b), it can be shown that

EθT(go,c) =0({logic-1 H(θ))}/H(θ)) uniformly in

θeA with 2c < H(θ) < | logc| 3 / 4 . (3.15)

By (2.1), there exist K > K > 0 such that

κ\\θ - λ|| < \z{θ) - z(λ)\ < K\\θ - λ|| for aU θ, λ G Ap. (3.16)

Let θ £ A be such that 2(#) = ZQ + s with s ^ 0. If λ 6 Ap is such that

z(X) — ZQ and s have different signs (i.e., s(z(λ) — zo) < 0), then \s\ < \z(θ) —

z(λ)\ < K\\θ-λ\\ by (3.16). Hence by (3.2), H(θ) > bK~2s2. Moreover,

H(θ) < Bκ~2s2 by (3.2) and (3.16). Therefore (3.15) yields

= O((z - z0)-2log((z - zo)
2/c)) (3.17)

uniformly in θy,z e A with Me < (z - z0)
2 < | log c|2^3, for every sufficiently

large M.

By Lemma 1 of Lai (1988a), g0 satisfies (1.4) with ξ = 1/2. Let θ G A

be such that z(θ) = z0 + s with s > 0. Then by the preceding argument,

{λ G Aj> : ,z(λ) < z0) C {A G Ap : ||0 - λ|| > A ' - ^ } . Therefore, if θn G Ap

and zίβn) < z0, then i n f λ e A p i | | S _ λ | | > / ( : - i s / ( ^ n , λ ) = 0. Moreover, I(θn,θ) >

inf Ag©! l(θn, λ) = inf λeJ4:2(λ)=z01{θn, λ) by Lemma 3(i). Therefore by Lemma
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2 of Lai and Zhang (1993) (with a slight modification of the statement but
using the same proof), as c -> 0,

=O(c(z - *oΓ2{log((* - *o) 2/c)} 1 + ( p- 1 ) / 2), (3.18)

uniformly in θViZ G A with Myfc < z - z0 < | log cl1/3, for every sufficiently
large M. Clearly a similar result holds for Pβyz {z(θτ(go,c)) > zo} with z < z$.

By choosing M arbitrarily large, it follows from (3.14), (3.17), (3.18) and
(2.5) that r(T(go,c),δ) ~ Vcb(0) Jy^σ(y)πG(zo,y)dy. Note in this connec-
tion that sup0€Ap ||V*(0)|| < oo and mΐθeAp \\Vz(θ)\\ > 0 by (2.1), and there-
fore (3.2) in turn implies that supy62/(A) σ(y) < oo and infy^y(A) σ(y) > 0.

To show that mΐTiδ r(T,δ) ~ y/cb(0) Jy^ σ(y)πG(z0,y)dy, take any M >
1 and note that by (2.5), (3.11) and (3.12),

rM

-M

By (3.13) and Lemma 2, uniformly in y G y(A),

rM

M
M

inf Γ RτA<y,v)My,v))dv) dy (3.19)
τ,δ J_M

inf/

άnf I / E(τ)dη+ / P(wη(τ)<0)dη
τ l J-M Jθ

+ 1 P(wη(τ)>0)dη\, (3.20)
J-M J

noting that for any stopping time r of the Wiener process wη( ) with drift
coefficient 77, the Bayes terminal decision rule for testing H' : η < 0 versus
Kf : η > 0 with respect to 0-1 loss and uniform prior distribution on [-M, M]
accepts H1 and if' according as wη(τ) < 0 or wη(τ) > 0. Letting M -> 00
in (3.19) and (3.20) and making use of (2.2), we obtain the desired conclusion
on mίTiδr(T,δ).

PROOF OF THEOREM 2(Π). Define φ,φo,L by (3.1) and let

φε(x) = sup (θ'x - φ(θ)),
θ£A:z(θ)=zθ+εu(y(θ))

Lε(x) = max{0(z) - φo(x), φ(x) - φe(x)}. (3.21)

Here u( -) = σ( ). A simple extension of the argument used in the proof of
Lemma 1 and (3.11), (3.12) can be used to show that uniformly in y G
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as ε —»• 0 and x —*• μy with x G Ap,

Lε(x) ={\Vz(θytZ0)'Σ-1(x - μy) + εσ(y)/2\ + εσ(y)/2}21{2σ\y)}

+ o{\\x-μy\\2+ε2), (3.22)

where υy is defined in Lemma 2. Using the transformations (3.9), (3.10) and

7 = c~1/2ε/2 -f o(l) in conjunction with Lemma 2, the rest of the proof is

similar to that of Theorem 3.

PROOF OF THEOREM 2(l) . To evaluate the Bayes risk r(N(g,c),δ% we

shall use the change of variables y = y(y,z) G Rp~1 ,<s = s(y,z) £ R defined

by

μ(y,z) = μ(y,zo) + sVz(θyiZo)/σ(y), (3.23)

which is the same as (3.10) except that we replace y/cη by s. Define J(θ) by

(1.8) with Θo and Θi given by Lemma 3(ii), and define Lε(x) by (3.21). Then

under the transformation (3.23),

J(θy,z) = Lε(μ{y,z)) ~ {\s + εu(y)/2σ(y)\ + εu(y)/2σ(y)γ/2 (3.24)

as ε —> 0 and z —> ZQ, uniformly in y E 2/(̂ 4.), by Lemma 3(ii) and an argument

similar to that used to establish (3.22), noting that {Vz{θy^Zo))'Tty
1Vz{θy^ZQ)

= σ2(y) by (2.6). As shown by Lai and Zhang (1993) in the proof of Theorem

1,

EθN(g,c) -{log(c-1J(0))}/J(^) uniformly in

θ eA and dc< J{θ) < Dc, (3.25)

for any positive numbers dc —> 0, Dc —>• oo such that dc/c —> oo and Dc =

o(|logc|) as c —> 0. Combining (3.24) with (3.25), (2.5) and an argument

similar to (3.14) yields that as ε —> 0,

Eθy,,N(g,c)dG
\z-z0\<ε\\ogε\σ(y)

• /

σ(y)πG(z0,y)

{\s + εu(y)/2σ(y)\ + εu(y)/2σ(y)}2
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noting that supy€y(^A)(σ(y) + u(y)) < oo and infj,€j,(Λ) mm(σ(y),u(y)) > 0.
From (3.16) and (3.2), it follows that

> inf. I(0y,z,λ)
λζA:z(λ)=zo

>bK-2{z-zof foraU θv,g £ A, (3.27)

mf | |* - λ|| > J i r 1 ^ ) - *b) iΐθeΘu

' uiy)-z(θ)) if ^ e θ o (3 28)

By (2.5), (3.25) and (3.27), as ε -* 0,

\z-z0\>ε\\ogε\σ(y)

logεD-Mlogίc-Vj+logllogel}). (3.29)

Noting that l(θn,θ) > mfχeΘol(θn,λ) if θ 6 Θo, it follows from (3.16) that

Pθ{(N(g,c),6*) rejects Ho}

<Pθ<θne Ap,I(θn,θ) > n-ιg(cn) and

l(θn,θ)> inf l(θn,λ) for some n> l l . (3.30)
λeθi J

Moreover, Lemma 2 of Lai and Zhang (1993) (which is used to prove Theorem

1) says that

θn£ Ap,I(θn,θ) > n-χg{cn) and

l(θn,θ)> inf I(θn,X) for some n>ί\

=O((c/α 2)(log(o 2/c)) 1"€+I ' / 2) as c -> 0,

uniformly in \[TC < a < y/Έ~c and θ 6 Ap, (3.31)

where dc and £»c are the same as in (3.25). By (3.28), (3.30) and (3.31), as

/ Pey,Λ(N(9,c),δ*) rejects Ho}dG

^ 2 ) ) , by (2.5) and since ξ > p/2, (3.32)
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and a similar result holds for J θ i Pθ{(N{g,c),δ*) rejects H^dG. By (3.26),

(3.29) and (3.32),r(N(g,c),S*) ~ 4cε"1 Iog(ε2/c) fy{A)(σ2(y)/u(y))πG(z0,y)dy.

To prove the desired conclusion for infχ?<$ r(T, £), it suffices to restrict to

tests (Γ,«) such that r(T,δ) < cε"1{log(ε2/c)}2. For such tests, as ε -> 0,

(l + o(l)) / . . 7TG(^o,y)^y^{(r,i) makes wrong decision} di/Gte

1^-20 |<e| log e|

<cε~x {Iog(ε2/c)}2. (3.33)

Using the change of variables y = y(y,^), s = s(y,z) defined in (3.23), we

obtain from (3.33) by calculations analogous to (3.14) and (3.26) that for any

0 < α < 1, as <r-» 0,

/ σ(y)πG(z0,y) ί + ί
JyZv(A) J-aeu(y)/σ(y) Jε

f(l+a)eu(y)/σ(yj

-aεu(y)/σ(y) Jεu(y)/σ(y)

•Pyta{(T,δ)eΠ8}d8dy

< ( l + o(l))cε-1{log(ε2/c)}2, (3.34)

where Py,s{(T,δ) errs } denotes P^{(Γ,δ) rejects Ho} if #(= θy(y,s)yz{y,s)) ̂

Θo, and denotes Pθ{(T,δ) rejects H^ if θ e ©i. We can choose s(y) G

[-αεt*(3;)/σ(y),0] and Sl{y) E [εtz(J)/σ(J), (1 + α)εu(y)/σ(y)] such that

J — cJ-αεu{y)/σ(y) Jεu{y)/σ(y)
PyiS{(T,δ)eττs}ds

where p e(y) = PyAy) {(Γ,«) rejects Jff0}+Py)Sl(y){(Γ,«) rejects fTx}. Putting
this in (3.34) yields

αε I u(y)πG(z0,y)Pε(y){Mσ2(y)/u2(y)}dy
Jyey(A)

' ' / c ) } 2 , (3.35)

where M — {sws>yς.y(A) σ{y)Iu{v)}~2• Define a probability distribution F on
y(A) by

dF(y) = m-1(σ2(y)/u{y))πG{z0,y)dy, (3.36)

where

m= (σ2(y)/u(y))πG(zo,y)dy.
Jy(A)

We can rewrite (3.35) in the form

log / Pe(y)dF(y) < log ({(αMm)-1 + o(l)}c£-2{log(£

2/c)}2)
\Jy(Λ) )

Ίog(cε-2). (3.37)
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Let 0[J>,s] = θy,z with y = y(y,z), s = s(y,z). By Lemma 3 of Lai and
Zhang (1993), which is a restatement of Hoeffding's lower bound for EQT in
the context of (1.1),

,s),θ[y,s(y)]), i(θ[y,s},θ[y,i

- as s->0 and ε —• 0,

uniformly in y 6 y(A), where the last relation above follows from I(θ[y, s], θ[y,
s*]) ~ }(s-s*)\Vz(θy,Z0)/σ(y)YΣ;1(Vz(θy<Z0)/σ(y)) as s-s* -+ 0 in view
of (3.23). Hence, noting that s^y) - s(y) < (1 + 2α)εw(J)/σ(J), we obtain
that analogous to (3.14) and (3.26),

/ EθyzTdG
J\z-z0\<ε\\ogε\σ(y)

/
J\

/ σ(y)πG(z0,y)\\ogpε(y)\
yey(A)

(( ()( ())} dsdy
s\<ε\\ogε\

" 1 ε" 1 / (σ2(2α)"1ε"1 / (σ2(y)/u(y))πG(zo,y)\ logpe(y)\ dy
Jyey(A)

=(4 + o(l))(l + 2α)-1ε"1m / (-logpe(y))dF(y), (by (3.36))
Jy(A)

> - (4 + o(l))(l + 2α)-1ε-1mlog ( / Pe(y)dF(y)\ ,
J )
/

\y(A) )

(by Jensen's inequality). (3.38)

Combining (3.37) with (3.38) yields

r(Γ,tf) > c IEθyzTdG > (4

Since a can be arbitrarily small, r(Tyδ) > (4 + o(l))mcε~1log(ε2/c). As has
already been shown, r(7V(^,c),ί*) ~ 4mcε~1 Iog(ε2/c). Hence the desired
conclusion follows.
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