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In image processing the assumption of independent errors is not always

realistic. Therefore we consider the problem of change curve estimation when

the error process is in a class of stationary random fields. This class contains

ARMA fields as special cases. A speed of a.s. uniform convergence is obtained.

1. Introduction and Outline. In this paper a nonparametric method
will be discussed to detect the curve along which a random field in the plane is
supposed to change its average level. Let us assume that we observe random
variables

Xij = μiJ + Eifi9 (t,j) e {i,...,n}2, (l.i)

defined for all i , j , and n on one and the same probability space (Ω,W,iP).
The indices (i, j) divide into two groups: within each group the μt j are con-
stant but between groups they are different. The error terms E{j form a
stationary asymptotically decomposable random field; such random fields in-
clude in particular linear random fields and more specifically ARMA fields as
special cases. Further specifications will be given below. The assumption that
the indices i and j have the same range is purely a matter of convenience.

For a further specification of the numbers μ j as well as for asymptotic
considerations it turns out to be useful to rescale the two-dimensional "time"
and to define the observable process (n £ JV, t = (̂

Xn(t) = Xij9 for - < ίi < - , < t2 < 3-, (ij) e {l,...,n}2, (1.2)
n n n n

on (0,1]2. It may occasionally be convenient to define Xn = 0 elsewhere.
Similarly we may construct μn(t) and En(t) for t = (0,1]2 from the μij and
the Eijj setting them 0 elsewhere.
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The curve Γ is assumed to be the graph of a sufficiently smooth mono-

tonically nonincreasing function from α t o 6 ( 0 < α < 6 < l ) . We also assume

that (0,1]2 \ Γ is a disconnected set with two components C\,C2 having in-

teriors C\^C\ and closures Cι,C2. We index these sets in such a way that

(0,0) G Ci, (1,1) G C 2; n o t e that ~CX UC2 - [0,1]2. These assumptions entail

in particular that, for any t G Γ and ε > 0,

Γ (0,1]2 Π [<χ - ε, *i] x [t2 - ε, t2] C Ci,

1 (0,1]2 Π [*!,*i + ε] x [ί2,t2 + ε] C C 2.

For μn, we assume that

μn(t) —> μ(t) = c i/ C l ( ί) + c 2/σ 2(t), as n -> oo, t G (0,1]2\Γ, (1.4)

where /(•) denotes the indicator function.

The assumption that the E{j form a stationary asymptotically decom-

posable random field means that there exist parameters />,σ, r G (0,oo) such

that for every n £ IN the following holds: there exist r(n) > 1, η(n) G (0, oo),

£(n) G (0, oo) and decompositions satisfying

with C(Eij), C(E\y) independent of ( i , j )G {l,...,n}2;

E $ x 4 ? for aU (*>./)> (fc'^) G ί 1 * - ^ } 2

 ( L 6 )
with |i - Jb| V I j - ^| > r(n);

i *(^); ( i 7)

r(n) = O(n 2 p ) , 7(w) = O ( n " 2 σ ) , δ(n) = O(n~ 2 ~ τ ) , as n —• oo. (1.8)

If the jBjj happen to be independent, the conditions are trivially satisfied with

all the E\j = 0. For applications it is convenient to further specify the orders

in (1.8). We will assume that

0 < p < i , σ > l , r > l . (1.9)

Although at first sight the definition of asymptotic decomposability might

appear rather technical, the conditions are tailor-made and typically fulfilled

for random fields with a Volterra expansion of finite order (Priestley (1981))

and thus it covers a wide range of interesting random fields. By way of an

example, let us give simple sufficient conditions for a linear random field to
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satisfy the conditions; a proof can be found in Puri and Ruymgaart (1991).
Let ξijj (i,j) G Ή2, be i.i.d. random variables with

ii,jV < oo, for some 0 < v < 1, (1.10)

and let us consider the linear field

i* = Σ
where the real numbers α ^ satisfy

| α M | = O((kVί)-χ), as h V ί-+ oo, for some A> T + σ i / + 2 p . ( L 1 2 )

Then the field satisfies the asymptotic decomposability conditions (1.5)—(1.9).
Of course the conditions will also be satisfied for v > 1 in (1.10) but we
focussed on the interesting case where not even a first moment might exist.
See also Chanda et al. (1990), Chanda and Ruymgaart (1991), and Ruymgaart
(1991) for further information about asymptotic decomposability.

Having specified the assumptions regarding the random field, let us now
turn to the problem that we want to consider, viz. the construction of es-
timators for the change curve Γ and investigation of the convergence of the
estimators. Rather than estimating the curve itself our procedure boils down
to constructing a sequence of stochastic processes {Γn, n G IN} on (0,1]2.
For almost every ω G Ω there appears to exist n{ω) G IN such that Γn is 0
everywhere except on a strip around the curve Γ, provided that n > n(ω).
As the sample size tends to oo the width of these strips tends to zero. On
Γ itself the processes fn are almost everywhere uniformly close to the dif-
ference in level c\ — c2 in the case where the error distribution is symmetric
about 0. Various methods are proposed in the literature to detect change but
usually for one-dimensional time and i.i.d. errors; see, e.g., Pettitt (1979),
Wolfe and Schechtman (1984), and Csδrgδ and Horvath (1989). Van de Geer
(1988) considers, more generally, change in regression including some results
for multidimensional regression but with independent errors. For independent
variables and one dimensional time, Carlstein (1988) proposed a very general
method not restricted to differences in location. Recently Tsybakov (1991)
studied the problem of image estimation, which subsumes multidimensional
time, but also this author assumes the errors to be i.i.d.. A closely related
reference is also Carlstein and Krishnamoorthy (1992). See Parzen (1991) for
general remarks regarding the analysis of change.

The method proposed here consists in reducing the model to a "nearly
black object" as studied in Donoho et al. (1991). The procedure consists of
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three steps where the first is a robust smoothing of the data like in Tsybakov

(1991). See also the survey paper by Pitas and Venetsanopoulos (1992) on

nonlinear smoothing and the use of linear combinations of order statistics.

The smoothed field is supposed to be pretty much stabilized around a certain

fixed value on C£ and around a different fixed value on C\. In the second step

the smoothed process is convoluted with a special type of kernel, having an

effect similar to differentiation but applicable to any function. Consequently

the result of this convolution is supposed to be a process which is close to 0

everywhere except for a strip around the curve Γ. In fact a more sophisticated

form of this second step is known as a wavelet transform. In the recent liter-

ature such wavelet transforms are extensively studied. For the relation with

change detection in a deterministic setting we refer in particular to Mallat

and Zhong (1992). The purpose of the third step is to further enhance the

features of the last process by replacing each value by 0 except when it exceeds

a certain suitably chosen threshold. The use of such a threshold is intuitively

clear and can be mathematically justified as arising from a nonlinear (£i~)

penalty function in a least squares setting (Donoho et al. (1991)).

Section 2 is devoted to a precise description of the procedure sketched

above, and in Section 3 we present results on the speed of uniform almost

sure convergence and some other asymptotic results. In Section 4 we briefly

comment on the results and the assumptions.

2. Description of the Estimation Procedure. At stage n, let us
choose ε = εn G (0,1) such that

lim nδl2ε = 1, for some 0 < δ < 2
n^oo ^ (2.1)

and, for convenience, n ε, ε" 1 E IN.

See below for a choice of δ. We divide (0,1]2 into intervals

Tn(i,j) = (ε(i- l),e<] x (ε(j - l),εj], (i,j) e {l,...,l/ε}2. (2.2)

Let us introduce the index sets

In,r = {(ij): Tn(i,j) DTφφ}; note that #I n , Γ < 2 nδl2; (2.3)

ntΓ, for α = 1,2. (2.4)

Of course we have I n > r U Xn,i U Tn$ = {1,..., n}2. It will also be convenient to

define the subsets

Γ ε = (J Tn(i,j); (2.5)
(i,i)€Xn,r
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Ca,ε= U Γn(i,j), for α = 1,2. (2.6)

(t,j)€Γn,α

It should be noted that

Γ β | Γ , C α , ε TC°, for α = 1,2, as n Too. (2.7)

Step 1. Let J : [0,1] —• [0,oo) be a score function which is 0 in neigh-

borhoods of 0 and 1 (but not identically equal to 0) and which has a bounded

continuous first derivative on (0,1). We define

for t € Γn(i, j ) and (i,j) € {1,..., 1/ε}2. This is the empirical d.f. for the block
of observables with (k,£) € {(i —l)ε n + l,...,iε n} x {(j —l)ε n + l , . . . , j ε n},
containing (ε n)2 elements. The original process Xn will now be replaced with

Yn(t) = / F-t\s)J(s)ds, t e Γ n(i,i), (ί,i) € {1,..., 1/ε}2. (2.9)
Jo

This process is a step function with constant values on the Tn(i,jί).

For t e Cα j £, the Xn(ί) have a common d.f. Fa, say, and the Yn(t) are

robust estimators of j Q F~x(s)J(s)ds, a = 1,2. The precise values of these

location functionals is not important: the only thing that matters is that

they are different. Under the present assumptions Fι and F2 are obviously

translates of each other and hence we have indeed

rl rl

/ F^(s)J(s)dsφ / F21

Jo Jo
(s)ds. (2.10)

More specifically if F\ is continuous and symmetric about some point (so that
F2 enjoys these properties as well) we even have

/ F~1(s)J(s)ds = c a = 1 2 (2.11)

io
provided that J is symmetric about 1/2, where the ca are defined in (1.4).

Step 2. For the same ε as in (2.1), let us define the kernel Kε : M2 —• JR

by

Kε(t) = — {/[0,e«]2 (<) - /[_egfOp(<)} = #ί(<) - ΛΓ7(<), < € iR2, (2.12)

for some 0 < 9 < 1, a suitable value of which will be given below. This func-
tion is particularly well suited to detect discontinuities along curves running
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"northwest", like the present curve Γ, when used as a convolution kernel. It
satisfies Kε * c = 0 for any constant function c on M2 and it has the property
that Kε * μ, with μ defined in (1.4), will be 0 outside a strip with a width of
order εq = εq

n (as n -» oo). The smooth process Yn that stabilizes around the
two values in (2.10) is now replaced by the process

Zn(t) = Ke*Yn(t)9 * G ( 0 , l ] 2 , (2.13)

Zn = 0 elsewhere. The present choice of kernel is easy to work with but

a smooth version with essentially the same properties might occasionally be

more desirable since convolution with a smooth kernel yields a process Zn that

is also smooth.

Step 3. The process Zn is likely to reveal the position of the change curve
Γ by a ridge in its surface. It is possible to further improve on the signal
to noise ratio by applying a nonlinear Xi-smoothing technique employed by
Donoho et al. (1991), leading to

f n (ί) = zn(t)i[XniOo)(\zn(t)\), < e (o, i ] 2 , (2.14)

for a suitably chosen threshold λn € (0,oo). It is intuitively clear that fn

should usually better display the change curve than Zn.

3 Some Asymptotics. The following facts about linear combinations
of order statistics that turn out to be expedient in the analysis of the process
Yn can be found in Boos (1979); see also Ruymgaart (1981). Let T denote the
class of all d.f.'s on M and consider the functional θ \T" —• IK, defined by

n
Θ(F)= / F~1(s)J(s)ds, F€f. (3.1)

Jo

Note that Yn(t) = θ(F€it). For any F G T we have

Yn(t) - Θ(F) = Γ {Pεit(x) - F(x)\ J(F(x))dx + Rε%u (3.2)

where the remainder Rεj equals

1 f°° ( - ^2
Re,t = ̂  / \Fe,t(x) ~ F(x)\ J'(Fε,t(x))dx, (3.3)

z J-oo κ J

with Fεj(x) between Fej(x) and F(x) for every x € M.

ASSUMPTION 3.1. It will be assumed, often without explicit reference that
(1.4)-(1.9), as well as (2.1) and the assumption that Fι and F2 are continuous,

are fulfilled.
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LEMMA 3.1. Provided that 0 < ζ < (1 - ρ)/2 we have, for α = 1,2,

n
(2 °K (3.4)

PROOF. Recall that t ι-> F€yt(x) is constant for t G Tn(i,j). Let us take
Tn(i,j)cCα}e &nd observe that to prove the present asymptotic properties we
may as well assume that cα = 0 so that we are dealing with the Eij. Each
Fεj being based on (ε n)2 observations, it follows from a modification for two-
dimensional indices of Chanda and Ruymgaart (1991, Theorem 2.1) that, for
any c G (0,oo),

P ({sup n<2-*K|Fβft(a0 - F a (z) | > c | Π Ω n) (3.5)

< Cn2-δexj> (-Ac2^

where Ωn = {max^j \E\^\ < 7(71)} (see (1.7)) and A,C G (0,oo) are fixed
numbers (independent of n).

Writing (iε,jε) = ίt j , it follows that

I sup sup n(2-^|Fβ |t(a?) - Fβ(x)| > c 1 Π Ωn ) (3.6)
cR ) )

tiiJ(x) - Fα(x)\ > c j Π Ωn
nδ

Because iP(Ω£) = 0(n~ 2 τ ), as n -* 00, and by assumption ( 2 -
0 the claimed almost sure convergence follows. I

LEMMA 3.2. For 0 < ζ < (1 - ρ)/2, the processes Yn satisfy

^W sup \Yn(t) - θ(Fα)\ m 0, asn^oo. (3.7)

PROOF. For each t G Cα ) ε, the absolute value of the first term on the
right in (3.2), with Θ(F) replaced by θ(Fα), is obviously bounded by

roo

sup sup\Fe,t(x) - Fα(x)\ / J(F(x))dx
teCα,t x€ft J-00

= o[n v ; s 1 , as n -» oo, a.s.,
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according to (3.4). For jRn>ί in (3.3), let us note that the assumptions on J

entail that J' = 0 on [0, a] U [1 - α, 1] for some 0 < a < | . Since F€yt is between
Fej and Fa, it follows once more from (3.4) that the integration in (3.3) is
effectively restricted to an interval contained in [F~τ(a/2), F~τ(l - a/2)] for

n sufficiently large, a.s. It follows that

sup \R€%i\ < \ \ sup sup \Fe,t(x) - Fa(x)\2 I (3.9)
C [ * C R J

x {F-\l - a/2) - F-\a/2)} sup \J\s)\
α/2<s<l-α/2

as n —* oo, a.s.

Hence the order in (3.8) prevails. I

Let us define strips

Tε,k = \J [h- kεq, h + kεq) x [ί2 - kεq, t2 + kεq], k € IN, (3.10)
(ti,t2)er

around the curve and briefly write

fβ>fc = (0,l]x(0,l]\Γ e , f c . (3.11)

Lemma 3.3. For 0 < ζ < (1 — p)/2, the processes Zn satisfy

rS2"8^ sup \Zn(t)\ - ^ 0, as n -^ oo. (3.12)
*GΓe,2

Proof. According to (3.7), there exists a measurable N C Ω with

F(N) = 0, and cn = cn(α;) j 0 (as n -^ oo) for each α; € Ω \ JV such

that we have

θ(Fα) - cnn-(2-δK < Kf * (fl(Fα) - cnn-(2-δK) (3.13)

< JSΓf * Yn < Kf * (θ(Fα) + cnn-(2-*K) < θ(Fα) + cnn-^^,

for t e Cα,ε Π f£,2. This entails

\Zn(t)\ < 2 CnτΓl2-*K9 ί €f β | 2 , (3.14)

and the lemma follows. I

In order to investigate the behavior of the estimators at points / on the

curve Γ we need some further preparations. First of all it should be noted

that all we have been doing so far for the observations Xij could also be

done - mutatis mutandis - for the absolute values |-Xt*,j| Let us denote the
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successive processes based on the absolute values by |X|n(ί), |F|n(Z), and
\Z\n{t), t € (0,1]2, and let us write |f|β for the d.f. of \X\n(t) for t € Cβ,e. In
particular we have

sup ||y|n(«)-0(|nθ| ^ 0, as n-oo, (3.15)

and of course |yn(t)| < \Y\n(t) for all t.

For an arbitrary t € Γ let us write

(3.16)

(3.17)
= [h-ε*,t1-ε]x[t2-εi,t2-ε],

= [h + ε,ti + ε9] x [t2 + ε,t2 + ε9].

Note the relationship between the S\yε(t), S2,ε(t) and Γ£)i. Finally, let us write

ΓW = Γ Π [ ε 9 , l - ε 9 ] 2 , (3.18)

for the part of the curve that doesn't come too close to the boundary of the
unit square and let us note that

Ca,e D Sa,ε(t) Π Tc

ε D Qa,ε{t), (3.19)

LEMMA 3.4. For 0 < ξ < δ(l — q)/2 Λ (2 — δ)ζ, the processes Zn satisfy

nξ sup \Zn(t) - {Θ(F!) - Θ(F2)}\ ^ 0, as n-+oo. (3.20)

PROOF. First observe that, for t £ ΐ(ε\

\Zn{t) - {θ{Fλ) - Θ{F2)}\ (3.21)

Us)ds-Θ(F1) -2< [I Yn(s)ds - Θ(F2)

Since both terms on the right in (3.21) can be dealt with similarly, let us focus
on the first one. Application of (3.7), (3.15), and (3.19) yields that, almost
surely,

fn(s)ds-θ(F1) (3.22)
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< / / Yn(s)ds - fl(fi) + ε~2* I I \Y\n(s)ds
J •/«!,«(*) J Jslί€(t)\Qlt€(t)

<f JΊ c~<^(i(c(l cΛ2\ Q( TP ̂  _L c"^'(l(c(l cΛ2/r>~(2"~^K I c~^(l I I IVΊ (*\Λ*

S ( l - ε (ε* - ε) ΪV{1Ί) + ε *{ε*-ε)n v ; s + ε H\ I \Y\n{s)ds
JJs1>ε(t)\Q1>ε(t)

^ o^l—Qύf IP \ i n^ — (2—δ)ζ i ^—2σ / / | v Ί /^\^7«

< 2ε *0(i<ij + n v + ε / / | r | n (θ)cίθ.
y V51)£(<)\Qi,e(t)

It remains to obtain an a.s. upper bound for the process |Y|n(θ) for

s £ Tε. For any such s, this process is based on (εn) 2 sample elements \X{j\ a

fraction of which has d.f. li^li and the remainder fraction of which has d.f. \F\2.

Since all observations are nonnegative, so is the linear combination of order

statistics. By completing the fractions to two samples each of size (εrc)2, and

one with sample elements having d.f. | F | i and the other with sample elements

having d.f. \F\2, we may add the corresponding linear combinations of order

statistics and arrive at a process |Y*|n(s) which clearly satisfies, for almost

every ω G Ω,

o < | y | n ( ί ) < |y |n(«) < Θ(\FU) + Θ(\F\2) + c*n(ω)n-^-^, (3.23)

where c*(ω) | 0, as n —> 00, and where s G Γ ε. It follows that, almost surely,

\Y\n(s)dβ

(3.24)

Θ(\F\2)

The range for £ is easily obtained by combining the orders of magnitude ap-

pearing in (3.22) and (3.24). I

THEOREM 3.1. Let Assumption 3.1 be satisfied. Then for almost every

ω G Ω ,

Γ there exists n(ω) such that sup ί Gpe 2 |Γ n (0l = 0, for n > n(ω),
< Λ ' (3.25)
{ sup ί G Γ ( £) n^|Γn(ί) - iθ(Fχ) - Θ(F2)}\ — . 0, as n ^ oo,

for any 0 < ζ < (1 - p)/2, and 0 < ξ < δ(l - q)/2 Λ (2 - δ)ζ, provided that

we choose the threshold λn = \n~η, for some 0 < η < (2 - δ)ζ and 0 < λ < 00.

PROOF. This is immediate from the lemmas. For t 6 Tε,2 we have

| f n (£) | <! |Zn(0l s o that the first part of the equality in (3.25) is immedi-

ate from (3.12). We see from (3.20) that for n sufficiently large \Zn{t)\ >

\θ(Fι) - ^( i^) ! - n~^ uniformly for t G Γ ^ , a.s. Hence eventually we have
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\Zn(t)\ > λn for all / G Γ(£) simultaneously, meaning that fn(ί) = Zn(t), a.s.,
for all t e ΐ(ε) simultaneously provided that n is sufficiently large. I

The theorem enables us to eventually identify the strip Tε$ in which Γ(e)
must lie. As an estimator of Γ(e) we might take any curve in this strip that
satisfies the prior assumptions. Since the width of the strip is of order n~δq'2,
as n —> oo, this settles a speed of almost sure convergence. For practical pur-
poses data-driven parameter selection is one of the problems that remains to
be considered. Although a slow convergence rate of the process Zn due to
strong dependence (i.e. large p) doesn't seem to affect the order of ε asymp-
totically, it is very likely to have an impact on the constants determining the
actual strip width.

4. Some Comments.

1. The curves Γ that we consider here run "northwest". When we know
this we should choose kernels that run "northeast". Conversely, curves that
run "northeast" can be better detected by kernels running "northwest". When
we don't know what kind of curve we are dealing with, or when the regions
of constant values are separated by a simple closed curve we might screen the
entire domain twice: once with a northeast and once with a northwest kernel.

2. As we observed already in the introduction, the asymptotic de-
composability condition is trivially fulfilled in the case of i.i.d. errors. Under
mild assumptions, linear random fields satisfy the conditions, as we have seen.
Since bilinear processes for one-dimensional time are shown to be asymptoti-
cally decomposable (Chanda and Ruymgaart (1991)) we may conjecture that
bilinear fields also satisfy that condition, in which case an important class of
nonlinear processes would be included. Of course, asymptotic decomposability
in its present generality is hard to verify. Our main purpose was, however, to
show that our search procedure has rather good asymptotic properties for a
broad class of error fields that goes far beyond the i.i.d. case.

Acknowledgments. We are grateful to Manny Parzen for sending a reprint
of his paper and to David Donoho for pointing out the usefulness of kernels
like those in (2.12) to detect boundaries and for sending a copy of his paper.
We would also like to thank Ed Carlstein for some useful remarks.
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