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CHANGE-POINT MODELS FOR HAZARD FUNCTIONS
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A review is presented of parametric and nonparametric models and corre-

sponding estimation procedures for change-points in hazard functions where the

data are possibly subject to random censoring. In particular, we discuss non-

parametric models and the application of nonparametric smoothing techniques

for change-point estimation and estimation of a hazard function when a change-

point is present. Preliminary theoretical results are mentioned and a simulation

study provides further insight.

1. Introduction. Change in distribution at an unknown time point
arises in quality control problems and has been studied extensively. Another
related type of problem is a change-point in a hazard function which may
occur in medical follow up studies after a major operation, e.g. bone marrow
transplantation. There is usually a high initial risk and then the risk settles
down to a lower constant long term risk. A simple mathematical model is the
following

MODEL 1: PARAMETRIC CHANGE-POINT MODEL. The hazard function λ of
a failure time variable T is of the form

I J. 7 —_ 7

λ(ί) = . (1.1)

with constants λi,λ2 > 0.

There are three parameters (λi,λ2 and r) in this model, τ is called the
change-point. We refer to this model as the three-parameter change-point
model. A short review of the pertinent literature is given in Section 2. In
most of the published work to date the mathematical theories were developed
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for a time variable T which is observable, i.e., an i.i.d. sample Γi,...,Tn of T
is available. This is of course rarely the case in reality, e.g. in the example
given in Matthews and Farewell (1982), which was subsequently analyzed by
Worsley (1988) and Achcar (1989), data on 33 out of the 84 acute nonlym-
phoblastic leukemia patients were censored. Of those, 24 were censored at
182 days, when the patients were randomized to an experimental protocol.
In another example in Matthews, Farewell and Pyke (1985), 11 out of the 31
advanced non-Hodgkin's lymphoma patients were still alive at the last time of
follow up and were thus censored. Matthews and Farewell (1982) claimed that
dropping the 24 censored observations at 182 days did not affect significantly
the outcome of the likelihood ratio test, and most subsequent work develops
theory for the case of observable time variables and in applications the cen-
sored observations are either discarded or the likelihood function is modified
for censored data. Loader (1991, pp. 751-2) presents a discussion of the ef-
fect of censorship. Section 2.3 below contains more discussions on the issue of
censoring under Model 1.

It should be noted that Model 1 is only a simplification of and approxi-
mation to the true model. More complicated parametric change-point models
(possibly allowing for several changes) may be needed in reality. In view of
the technical difficulty for even the simplest three-parameter model in (1.1)
and the complications due to censoring, nonparametric change-point models
may be an attractive alternative.

In this article, we examine two types of nonparametric models and discuss
some of the practical issues associated with estimating the change-points and
the hazard function based on randomly censored data.

MODEL 2: NONPARAMETRIC CHANGE-POINT MODEL. Assume that the haz-

ard function λ G Ck([0,τ]) Π Ch([τ,oo]) , for some integer k > 1, and for

0 < j < k let λ+ (x) and λ_ (x) be the respectively left- and right-hand limit

of\(j\ thejth derivative ofλ, and let Δj = \+\τ)--\z\τ), where we assume

without loss of generality that Δo > 0.

That is, λ is k times continuously differentiate with the exception of the
change-point r, where an isolated discontinuity occurs. Note that this includes
Model 1 as a special case where the continuous parts of the hazard function
would be constants. It is also possible to extend Model 2 to a more general
case where Δ/ > 0 for some / > 1 and Δj = 0, for 0 < j < /, i.e., change-points
in the /th derivative. However, for simplicity we shall assume here Δo > 0.
Inference for the more general case was discussed in Mϋller and Wang (1990b)
and models where change-points occur in a derivative of a hazard function
were also discussed independently by Antoniadis and Gregoire (1991), who
assume in their approach that the location of the change-point is known.
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An alternative approach was discussed in Miiller and Wang (1990a). Ap-
proximate (1.1) by a smooth function, say g. The change-point r in (1.1) then
corresponds roughly to the location of the extremum of the first derivative of
<7, i.e., T is the point where the "most rapid change" in g occurs. We refer to
this approach as "smooth approximation model".

MODEL 3: SMOOTH APPROXIMATION MODEL. Assume that the hazard
function X £ Cfc([0,oo]) for some k > 2 and there exists a point τ such that
| λ ( 1 ) ( r ) |> \\^\x)\ for all x φ T .

Thus no actual discontinuity occurs but rather a "point of most rapid
change" r exists. Kernel methods for estimating the change-point r under
random censoring in both Model 2 and Model 3 are discussed in Section 3. For
the Smooth Approximation Model (Model 3) r is estimated via the location
f where the estimate of λW attains its maximum (cf. (3.1) and (3.3)). As
for Model 2, as |λ+(x) - λ_(x)| = Δol{J7=τ}, it is natural to estimate τ via
the location τ of the maximal difference of one-sided kernel estimates of λ (cf.
(3.2) and (3.4)). Preliminary results for these estimates are summarized in
Propositions 1-4 in Section 3.

In a practical problem, one might not know which of these models actually
applies. The two kernel methods are seen to be surprisingly similar in Section
3.3, and both adapt naturally to the actual change-point model, which will
then only affect rates of convergence and asymptotic confidence regions. Once
T is estimated, one can then estimate the hazard function with a modified
kernel method which employs boundary kernels to adapt to the estimated
change-point (Section 3.4). The results of a simulation study assessing the
practical effects of bandwidth and kernel choice are discussed in Section 4.

2. A Review of Parametric Modeling. As mentioned earlier, most
of the results for the Parametric Change-point Model (Model 1) are based on a
sample of i.i.d. observed failure times T\, ...,Tn with hazard function λ as spec-
ified in (1.1), where TH\ < ... < T/n\ denote the ordered observations. Model 1
was first postulated by Miller (1960) as an alternative to the constant hazard
(exponential lifetime) model commonly used in life testing experiments. Miller
assumed the change-point r to be either known or known to be in a specified
interval [α, b] and did not consider inference for r. For the three parameter
change-point model the first inference procedure appeared in Matthews and
Farewell (1982) and was motivated by the analysis of survival of leukemia
patients.

2.1. Testing Hypotheses. It may be of interest to test a constant haz-
ard rate against the change-point alternative for a group subjected to a new
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therapy. The hypotheses are thus:

Ho: Xι = λ2 (or r = 0) v s 5 i : λx φ λ2 (or r > 0). (2.1)

Basically three types of test procedures have been proposed: (1) Likeli-
hood Ratio type tests (LRT) and modified versions; (2) Score test; (3) Bayesian
test. We discuss now each of these types of test.

(a) Likelihood Ratio Type Tests. References include Matthews and
Farewell (1982), Worsley (1988), Henderson (1990) and Loader (1991). It
should be noted that the classical asymptotic results for LRT do not apply
here due to the discontinuity of the likelihood function at r in Hi. The log-
likelihood function based on observations TΊ, ...,Tn is:

/(λi, λ2, r) = N(τ)lnλ1 + [n- N(τ)]lnλ2 - λiS(r) - X2[S - S(τ)], (2.2)

where

t),

(2-3)

is the number of failures observed up to time /,

is the total time on test up to time /, and

(2.5)

Nguyen, Rogers and Walker (1984) observed that the likelihood func-
tion in (2.2) is unbounded unless λi > λ2. In this case the MLE for λχ,λ2

and T can be computed by numerical algorithms as in Matthews and Farewell
(1982), where the critical regions were simulated for several sample sizes. Oth-
erwise, pseudo-MLE's were considered as an alternative. For fixed r, (2.2) is
maximized by

~ _N(τ) j. n-N(τ)
Xl~^)' λ2~ S-S(τY ( 2 < 6 )

Substituting (2.6) into (2.2), we have

l(r) := /(λ1?λ2,r) = N(τ)ln^ + [n- N(τ)]lnj^j& - n. (2.7)
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Here, l(τ) is unbounded if r tends to T(n). An estimate f of r is obtained

by maximizing /(r) over a restricted interval [α,fe], i.e.,

T = arg max l(τ). (2.8)
α<τ<6

For example, Yao (1986) used a = 0,6 = T(n_!). Worsley (1988) suggested in

addition to use respectively the pth. and (1 — p)th sample quantiles for a and

6, and Loader (1991) chose a and b by u = S(a)/S, and 1 — u = S(b)/S.

Other methods to cope with the singularities include Matthews and

Farewell (1985), who modified the likelihood function by using the probability

F(Ti + e) - F(Ti - e) instead of the density at Γt , and Worsley (1988), who

suggested to artificially censor the largest observation so that /(r) is always

finite.

Note that for the pseudo (or restricted) MLE's (λi, λ2,f) defined in (2.6)

and (2.8), the restricted log likelihood ratio statistic for the hypotheses (2.1)

is /(?). Hence Ho is rejected if l(τ) > c, where

a = Pro{l(τ) > c} (2.9)

and Pro is obtained under the null hypotheses of an exponential distribution

with constant rate λo With Loader's choice of [α,δ], the test is invariant

under scale transformation and (2.9) is independent of λo The critical value

c was then derived by large deviation approximation of the boundary crossing

probabilities of a Poisson process with rate λo

Worsley (1988) derived the exact critical values for three situations: (i)

[α,6] equal to [0,T(n_!)], (ii) [α,6] equal to [sample pth quantile, sample (1 -

p)th quantile], for p = .1, .2, and (iii) artificially censored largest observation.

Henderson (1990) noted that the LRT is not sufficient and modified it by

weighting and standardizing the likelihood ratio l(τ) at r 6 {T(^,Γ(Z ) - : i =

1, ...,n— 1}. Exact critical values are also derived for this modified LRT.

(b) Score Test. Matthews, Farewell and Pyke (1985) considered tests

based on maximal score statistics. They consider a variant of model (1.1) by

reparametrizing using (λ,£, r) with λi = λ, and λ2 = (1 — £)λ, and testing the

hypotheses that

H'o : ζ = 0 vs H'a : 0 < ξ < 1. (2.10)

Note that (2.10) corresponds to adding the restriction λi > λ2 to model (1.1).

Let /(λ,f,r) denote the log likelihood function in (2.2) with (λi,λ 2) re-

placed by (λ,£). The normalized score statistic for a given r and λ is then

(2.11)
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n

1-1/2= n
i=l

Matthews et al. show that for a given λ and any b < oo, the score statis-
tic process {Zn(τ, λ) : 0 < r < 6} converges under HQ weakly to the
Ornstein-Uhlenbeck process {Z(r, λ) : 0 < r < 6} with mean 0 and covari-
ance exp{-(λ/2)|ri - r2 |} which is a Brownian motion normalized to constant
variance 1.

Thus if it is known that a < r < 6, a suitable test for (2.10), when λ is
known, is to reject HQ for Mn(a, 6, λ) > c or equivalently T(c, λ) < 6—α, where
Mn(a, 6, λ) := sup Zn(r, λ) and T(c, λ):= inf{r > 0 : Z(r, λ) > c} is the first

a<r<b

passage time and c is the upper α-quantile of sup Z(r, λ). Approximation
a<τ<b

of c can be found in Mandl (1962) or Keilson and Ross (1975); a more easily
accessible and very accurate approximation is provided by James, James and
Siegmund (1987). Further numerical tables can be found in DeLong (1981).

When λ is unknown, the normalized score statistic Zn(r, λ) in (2.11)
should be replaced by

9 r^\ ?L
(d2ι/dξd\)2

d2ι/d\2

r,λ) | λ = s T n (2.12)

where λn = nj Σ T{ is the MLE of λ under HQ.

Setting Z*(ί) := Zn(τ) with^ί = e- λ τ , for 0 < ί0 < h < 1, Z*(t)
converges uniformly over [<0, h] to Z*(ί) := WΌ(t)[t(l-t)]'1f2 with probability
one, where W° is the standard Brownian bridge and Z* is thus a Brownian
bridge normalized to variance 1.

(c) Bayesian Test. Owing to the the drawback that the null distribution
of LR type tests and Score tests depends on preassigned bounds a and b for
the change-point r, Yao (1987) proposed another type of test for the change-
point alternative, by connecting the classical change-point problem in quality
control (mentioned in the beginning of Section 1) with the parametric change-
point problem in hazard functions. More precisely, consider the following two
problems:

Problem A: Observe TΊ,...,Tn with hazard function λ as in (1.1). We
want to test:

-ffo : λα = λ2 vs HI : \λ > λ2. (2.13)
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Problem B: Independent random variables Yχ,...,Yn are observed with
Y\,..., Yk distributed as an exponential distribution with rate λi, and Y^+i,..., Yn

distributed as an exponential distribution with rate λ2, where k is the unknown
change-point. The problem is to test the hypotheses in (2.13).

Setting T(!) = 0, define the normalized spacing to be D{ — (n - i +
l)(T ( l ) - T(t _i)), i = l,...,n. Denote K = N(τ) in (2.2), then K is binomial
(rc,/>), with p = 1 - e " λ τ . Yao (1987) showed that Du...,Dn in Problem A
play the role of Yi,..., Yn in problem B, with K in Problem A corresponding
to k in Problem B. For Problem B with random change-point &, Hsu (1979)
generalized a Bayesian test for (2.13) of Kander and Zacks (1966) with uniform
prior on k.

Based on the connection between the two problems, Yao (1987) ex-
tended Hsu's test to Problem A which rejects Ho if Sn is large, where Sn =
ΣΓ=i ^{i)l ΣΓ=i Γ(t ). Exact levels of significance can be computed based on
properties of order statistics and are given in Table 1 of Hsu (1979). Yao (1987)
derived the asymptotic normality of Sn under Ho and local alternatives and
showed that the asymptotic Pitman relative efficiency (ARE) of Sn with re-
spect to the score test is ARE(τ) = 3/)(l - p). The ARE(τ) thus attains its
maximum .75 at p = 1/2 (i.e., r is the median), and it decreases to 0 as p tends
to 0 or 1. Thus the score test is more efficient than this Bayesian test based
on 5 n , especially when the change-point occurs either very early or late. The
Bayesian test has the advantage that it is computationally simple and may be
useful when the possibility of an early or late change-point is excluded.

2.2. Point Estimation and Confidence Sets. The first attempt to esti-
mate the three parameter change-point model (1.1) was implicit in Anderson
and Senthilselvan (1982), where model (1.1) appears as a special case of an
extended Cox proportional hazards model. Anderson and Senthilselvan (1982)
were motivated by a cancer mortality study in which some covariate effects
may decay with time, and proposed a two-step proportional hazards model
which allows time-varying covariate coefficients. The hazard function for an
individual with covariate z € 3ftp is assumed to be λ(ί, z) = X0(t)
where

( Qtj, fθTt<B

βj(t) = |

This yields a two-step regression model with

J λo(t)eαT*, for t < B

o(t)e^Tz, for t > B,
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which includes Model (1.1) as a special case with λi = eα, λ2 = e7, B = τ
and Xo(t) = 1. Following Cox's (1972) suggestion, the parameters α, 7 and B
are first estimated using conditional log-likelihood l(a,η) given the value of B;
then the baseline hazard function λo(t), is estimated by the penalized maxi-
mum likelihood method, conditioning on the estimates δ,7, and B. However,
in the one-sample case as in model (1.1), l(a,η) = — ΣΓ=i ^n(n — i + 1) is a
constant. This method thus fails to produce estimates for the parameters in
model (1.1).

(a) Maximum Likelihood Type Estimtors. Independently, Matthews and
Farewell (1982) consider MLE's for model (1.1) in the context of deriving
the LRT. No distributional results are given. As Nguyen, Rogers and Walker
(1984) pointed out later, /(λi,λ2,r) may not be bounded unless λi > λ2
However, for a given r, λi and λ2 can still be estimated as in (2.6). Using the
observation that the density function corresponding to model (1.1) is a mixture
of a truncated (on the right at r) exponential (with rate λi) distribution and
an exponential (with rate λ2) distribution with delay r, Nguyen, Roger and
Walker (1984) construct a stochastic process {Xn(t),t > 0} for which Xn{r)
converges to 0. An estimate r should thus satisfy Xn(j) — 0. Using such a f
for r, they showed the strong consistency of the estimators for r, λi and λ2
The asymptotic distributions were not derived.

Yao (1986) avoids the singularity by restricting the MLE f to be in the
interval [0,Γ(n_!)], i.e., f = arg sup /(r), with l(τ) defined in (2.7). He

also notices that f G {T^)-,!1^), ...,?(„,_!)-, T^.j)} so that it is sufficient to
maximize /(r) over 2(n — 1) points only. Consistency of f was established by
connecting this model to the aforementioned model in Problem B. Following
arguments by ChernofF and Rubin (1956), Yao showed that n(τ - r) converges
in distribution to a similar limit as the MLE in Problem B, two independent
random walks depending on λχ,λ2, and r. Also y/n{\\ — λi), y/u(X2 - λ2)
and n ( f - r ) are asymptotically independent, and the limiting distributions of
the former two are normal .

Pham and Nguyen (1990) extended the result of Yao (1986) by maximiz-
ing /(r) over a random compact set [Ln, C/n], 0 < Ln < Un < T^ny However,
they recommend Yao's choice of Ln = 0, Un = T^n-i)- Under additional
assumptions, they showed the strong consistency of f from which the strong
consistency of λx and λ2 follows. Limiting distribution results as in Yao (1986)
were also derived.

(b) B&yes Estimator. Bayes estimators were proposed in Achcar (1989)
where it is assumed that the change-point r is a discrete random variable with
prior probability TΓQ. The mode of the respective marginal posterior density is
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used to estimate r, λi, and λ2 No asymptotic results are available for these
Bayes estimates.

(c) Confidence Regions. Note that the asymptotic distributional results
in Yao (1986) and Pham and Nguyen (1990) can be used to construct approxi-
mate confidence intervals for λi, and λ2 Loader (1991) adapted the likelihood
ratio method of Siegmund (1988) to derive approximate confidence regions of
the form

ii = {*:/(*)> sup f( t)-ci}
a<t<b

for r; the selection of a and b was discussed earlier. Approximate joint confi-
dence regions for r and jump size δ = /n(λ2/λχ) were obtained by

I 2 = {(t,ί) :/(* !«)> sup
6

2.3. Censored Data. To conclude this brief review, we note that very
little is known on the parametric hazard change-point model under the im-
portant case of random censoring. The Bayes estimator in Achcar (1989) can
accommodate fixed (nonrandom) censoring but no sampling results are derived
for this Bayes estimator. Worsley (1988) showed that the null distribution of
his test statistics is unchanged for Type II censoring. As for other types of
censoring as occurring in the leukemia data in Matthews and Farewell (1982),
Worsley (1988) simply excluded the 33 (out of 84) censored observations from
the analysis following the suggestion of Matthews and Farewell (1982) that
moderate censorship has little impact on the null distribution of the likelihood
ratio. Notice that this approach may create biases in the procedures even in
cases of moderate censoring. Another approach, e.g. in Matthews, Farewell
and Pyke (1985), is to adjust the likelihood function by incorporating contri-
butions from censored observations and then to apply sampling results based
on the uncensored case. Since the sampling results under censoring may differ
from those of the uncensored case such an approach is questionable.

Loader (1991) noted that, under random censoring, the log likelihood
functions denoted by /c(λi, λ2, r) and lc(τ) are obtained from (2.2) and (2.7) by
replacing N(t) and n respectively by Nc(t) and nc, where Nc(t) = ΣΓ=i A^* —
/? Si = 1), is the number of uncensored failures at time t, and nc = Σ™=11(δi =
1), is the total number of uncensored observations. The ML type estimators
λi, λ2, and T can then be obtained as in (2.6) and (2.8) with this modification,
and

- Nc(τ) - nc - Nc(τ) ^

where S(τ) and S are defined as before in (2.4) and (2.5).
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Loader (1991, p.752) suggested how to approximate the significance level
by conditioning on nc and the censoring status of the largest observation Z(ny

Explicit sampling and asymptotic results for inference procedures based
on censored data will be of keen interest.

3. Kernel Methods.

3.1. Change-point Estimates. In this section we discuss estimates for the
change-point r and the hazard function λ(x) under both Model 2 and Model
3. The lifetime variables are subject to random censoring in the sense that
there is a sequence of i.i.d. censoring variables Ci,...,Cn and one observes
only (Xijδi), i = l,...,n, where X{ = m i n ^ C ; ) , δ{ = /(Γt < d). We
assume that T{ is independent of Ct , and denote the survival function of Xt ,
by S(x) = 1 - H(x), where H(x) = P(Xi < x). The following considerations
can be extended to cover change-points in a derivative (cf. Miiller and Wang
(1990b)).

Let K £ SΠMΠC be a kernel function, i.e., a real function which belongs
to a class of functions with well-defined support 5, to a class M satisfying
certain moment conditions, and to a class C satisfying certain smoothness
conditions. We will consider the following special classes:

M(0) = {f: J f(x)dx>0},

M ( i / , k) = { f : ί f ( x ) x j d x = 0 , 0 < j < k , j φ v ,

J f(x)x"dx = (-l) V!, J f(x)xkdx = βv,k φ 0},

for integers */, fc, 0 < v < fc;

C(α,/J) = {/ : J \df\ < oo, / i s Lipschitz continuous and min(α,/?)
times continuously differentiate on 5(g), f^\-q) = 0, 0 < j < α, f^α\—q) >
0, f^\l) = 0, 0 < j < /?}, for nonnegative integers α,β.

Note that C(α,β) C C(α',/?') if α < α and β < β'. We are now in a
position to define the required kernel estimators:

and

Σ iΓ± ( ^ ) ^ V ϊ / / ^-(«)ώ fi» λ±( A (3.2)
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for λ±(#), where λ+(x) = limλ(y), and λ_(#) = limλ(y). Here, b = b(n) is a

sequence of bandwidths (smoothing parameters) and we use kernels satisfying
(as minimum requirements) Kv 6 5(1)(ΊM(z/, fc)(ΊC(0,0),for a k > v, K+{x) —
K-(-x) and K- <Ξ 5(0) Π C(0,l) Π Af(0). Let Q = J K-(x)dx. Under the
stronger requirement JΓ_ G 5(0) Π C(0,0) Π M(0,2), we find Q = 1.

In the Smooth Approximation Model (Model 3), r = argmaxλ^^x), and
it is suggested in Mϋller and Wang (1990a) to estimate r by

τ = argmaxλW(z); (3.3)

in practice, τ may be determined as a zero of λ(2)(a;). The obvious estimator
for Model 2 is:

T = argmax{λ+(x) — λ_(#)}. (3.4)

3.2. Asymptotic Properties. The following result is shown in Mύller and
Wang (1990a).

PROPOSITION 1. Assume that λ(.) is four times continuously diίferentiable,

\(3\τ)H(τ) φ 0, Kx e 5(1) Π M(l,3) Π C(3,3), and 6 -> 0, nb6 -* oo?

nb9 —> d2, where 0 < d < oo, as n —• oo, then

Contrasting this with the Model 2 estimator f, we first show in complete
analogy to the proof of Lemma 4.1 in Miiller (1992), substituting a result like
that given by Yandell (1983) for the uniform convergence of derivatives of
hazard kernel estimates:

PROPOSITION 2. Assume that λ( ) is two times continuously differentiable,
K- e 5(0) Π Λf(0) Π C(μ,μ) for some μ > 1, b -> 0, -^ψ -• oo, then

The following functional limit theorem is proved by verifying tightness and
multivariate weak convergence and requires an i.i.d. representation of the
kernel estimators λ±(x)

PROPOSITION 3. Assume that the assumptions of Proposition 2 are satis-
fied with μ = 3 and that nb3 -*• d2, where 0 < d < oo. Then the processes

ηn(x) = ( n 6 )a/3 [ { λ + ( r + *( JL)i/β) _ λ_(r + 6 ( ^
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converge weakly on C([-R,R]) for any R > 0 to the continuous Gaussian
process

η(x) = - ^ Δ 0 z 4 ϋ l 3 ) ( 0 ) + AlXd + Zx,

x € [—R,R], where Z is a random variable with

,H{τ)-λ{\+(τ) + λ_(r)} /K { l\v

From Propositions 2 and 3, we infer

PROPOSITION 4. Assume that the assumptions of Propositions 2 and 3
are satisfied. Then

Note that Propositions 3 and 4 provide an invariance principle for esti-
mated change-points, when the jump size Δo is fixed. It has been suggested
that kernels which are discontinuous at 0 (and therefore not covered by the
assumptions of Propositions 3 and 4) may yield faster rates of convergence.
While for hazard functions under random censoring, this is still an open prob-
lem at this point, it is to be expected that better rates will not lead to an
invariance principle as long as the jump size Δ o is fixed, in analogy to Cher-
noff and Rubin (1956). Invariance principles are then only obtainable in the
"contiguous" case where Δo —* 0 as u —• oo.

3.3. Model Adaptive Change-point Estimation. The two estimators τ
and τ for r appear to be quite different, f being motivated by the Smooth
Approximation Model (Model 3), whereas f is motivated by the Nonparamet-
ric Change-point Model (Model 2). However, it is easy to demonstrate that
these two types of estimators are closely connected and actually are applicable
in both models: Assume f utilizes a kernel Kι € 5(1) Π M(l,3) Π C(3,3) as
required in Proposition 1. Note that we may require K\ to satisfy K\(x) =
-Kι(-x). Defining K+ = ifil[_i,o]> K- - -^il[o,i]> w e ^ ^ * ' i a t f°r ^
based on J^JL, lf_, f = τ. Within the framework of Model 2, this follows
from {l/b}[h+(x) - h-(x)] = h^ix), noting that K+(x) = K-(-x) and
K- G 5(0)nM(0)ΠC(l,3), which means that Proposition 2 applies for μ = 1,
so that f is consistent not only within Model 3 (according to Proposition 1),
but also within Model 2.



236 CHANGE-POINT MODELS FOR HAZARD FUNCTIONS

If Model 2 applies, one may achieve Op-rates (log n)2/n for small band-
widths, see Proposition 2. If Model 3 applies, the Op-rate is n~2/9, which is
considerably slower. In this sense the estimator τ is adaptive to the under-
lying model. Of course, the construction of confidence regions still requires
knowledge of the correct model, and also (for both models) knowledge of aux-
iliary quantitieslike K{τ), {λ+(r) + λ_(r)} for Model 2 and λW(r)/λ(3)(r),
λ(r)/{λ(3)(r)2if(τ)} for Model 3. Substituting f, these quantities can be
estimated consistently.

Consider now f based on K. G 5(0) Π C(3,3) Π Λf(0), such that R =
JK-(x)xdx > 0, JK_(x)x3dx φ 0; let K+(x) = K.(-x), and define Kx =
{ϋf+ - K-}. Then f = f, when f is based on K\. This follows from
(l/2jR)ίΓi 6 5(1) Π C(3,3) Π M(l,3). Therefore, f when based on a smooth
kernel is also model adaptive.

3.4. Estimating the Hazard Function. In applications, the problem may
not be restricted to estimating r, but may include the estimation of the hazard
function. In this case, assuming Model 2, a two-step procedure is a natural
approach: First estimate r via τ or f and an initial bandwidth b\. Then
adapt the hazard function estimate employing a second bandwidth 62 to this
estimated change-point which assumes the role of an endpoint. Within the
interval [ f-6,r + 6], special "boundary kernels" with asymmetric support can
be used to obtain good global consistency properties in analogy to Section 4
in Mϋller (1992); unmodified kernel estimators will be strongly biased near
the discontinuity at r and will produce a curve estimate which is deceptively
"smooth".

Define a family of kernels ϋΓ+(.,g), 0 < q < 1, which should vary
"smoothly" in q and satisfy K(.) = ϋf_(.,l), K+(x,q) = ϋf_^-x,g), where
K(.) is the (symmetrically supported) kernel to be used in λ(.,ϋf) outside
[f - b2,τ + b2] and λ(.,UΓ) denotes estimator (3.1) using kernel K. Requiring
K e 5(1) Π C(/x, μ) Π M(0,2), # ( . , q) e S(q) Π C(μ - I, μ) Π M(0,2), the final
estimate of λ(.) in Model 2 is then

λ(x) =

X(x,K), \x-τ\>b2

λ(z, # - ( . , g)), T - b2 < x < f, q = (f - z)/&2 >

λ(x,ίf+(.,g)), f < x < f + fe2? q = (% -τ)/b2

where λ employs bandwidth 62 and τ is determined with bandwidth fci.

4. A Simulation Study on Effects of Kernel and Bandwidth. A
simulation study was carried out to explore the influence of bandwidth and
kernel choice on the mean squared error of the change-point estimate. The
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following kernels were used: Kι = ^(x3 - x) K2 = η£(x7 - 3x5 + 3z3 - x) as
kernels for estimating the first derivative as needed for f, and

X)1[O,I], and K-4 = x3(l - x)3P4(z)l[o,i],

where the linear polynomials p$, p± are chosen in such a way that ϋί_3, K-4 6
M(0,2) (which determines the two coefficients uniquely), as kernels for esti-
mating one-sided limits in f.

Note that K-! 6 5(0) Π C(0,0) Π M(0), K^2 6 5(0) Π C(0,1) Π M(0),
ΛΓ-3 ^ 5(0) n C(o,i) n M(o,2), ϋr^4 e S(o) n C(3,3) n M(o,2), KX e
5(1) Π C(l, 1) Π M(l, 3), and tf2 € 5(1) Π C(3,3) Π M(l, 3). ϋΓ_i - K_4 are
therefore one-sided kernels, where if_i, iί_2 do not satisfy particular moment
conditions and K-2 is continuous at the endpoint of its support opposite to
the possible change-point, whereas K-\ is not. ϋf_3 and K-± have differ-
ent smoothness, Ks being discontinuous at the endpoint near the possible
change-point whereas ϋΓ_4 is very smooth at both endpoints. Both K-% and
K-± satisfy Λf(0,2) and provide therefore consistent estimates of one-sided
limits, in contrast to K~ι and K-2- Antisymmetric kernels K\ and K2 are
both in M(l,3) and therefore yield consistent derivative estimates, but differ
in their smoothness at the endpoints, K2 being very smooth, while K\ is just
continuous on the real line.

The following two cases were considered for the hazard function:

Case A: λ(x) = 0.3, 0 < x < 3, \{x) = 0.05, x > 3;

CaseB: \(x) = 0.1a:, 0 < x < 3, X(x) = 0.05 + 0Λ(x - 3), x > 3,

so that Model 2 applies with a change-point at 3.0. Each simulation was based
on 200 Monte Carlo runs and n = 200 data. Independent random censoring
was applied with exponential distribution (λ = 0.1). The outcome of one
typical sample run for Case A is shown in Figure 1: The estimator r based on
K-2 and &i=1.75 is τ = 2.96 for this sample and the modified hazard function
estimator λ(.) (3.5) was then constructed with boundary kernels K-(x,q) =

- x)(x(2q - 1) + (3?2 - 2q + l)/2), where K-(x,0) = K^(x) and
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Figure 1: True hazard function (solid) and estimated hazard function (dashed)

The simulation results are given in Table 1 for Case A and in Table 2 for

Case B in terms of the mean squared error (MSE) of f (with kernels K\, K2)

and of τ (with kernels K-\ — K-±).

Table 1: Results of a Monte Carlo study for Case A, based on 200 simulations.

Entries are mean squared errors for various change-point estimators, using

bandwidths b and kernels K\ or K2 for the derivative based estimator f, K-\ -

ϋί_4 for the estimator f based on one-sided kernels. For more details and

kernels, see text. No result is reported if in more than 15% of all simulations

the change-point could not be located.

b
0.25
0.75
1.25
1.75

2.25
2.75
3.25
3.75
4.25

Kernel

Kx

0.219
0.066
0.069
0.086

0.097
0.077
0.079
0.286

-

0.249
0.090
0.042
0.052

0.060
0.069
0.052
0.049
0.106

K-χ

0.243
0.061
0.067
0.058

0.054
0.024
0.062
0.319

0.439

K-2
0.262
0.098
0.062
0.056

0.058
0.037
0.024
0.026

0.653

K-3
0.263
0.281
0.224
0.143

0.092
0.086
0.100
0.094

0.077

0.320
0.269
0.216
0.219

0.165
0.175
0.371
0.415
0.272
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Table 2: As Table 1, but for Case B.

b

0.25
0.75
1.25
1.76
2.25
2.75
3.25
3.75
4.25

Kernel
Ki

0.085
0.036

-
-
-
-
-
-
-

0.111
0.036
0.029
0.024

-
-
-
-
-

0.084
0.027
0.035
0.061

-
-
-
-
-

K-2
0.114
0.018
0.020
0.020
0.037

-
-
-
-

K-3

0.244
0.130
0.062
0.024
0.019
0.012
0.013
0.011
0.011

K-4

0.242
0.177
0.193
0.168
0.092
0.128
0.166
0.190
0.243

Notice that bandwidth and kernel choice strongly influence the MSE of
the change-point estimates. Kernel K2 appears to be consistently better than
ϋΓi, and "smooth" kernel K-4 is often worse than the other methods. In
Case A, discontinuous kernels K-\ and K-2 appear to be slightly better than
continuous kernel ϋΓ_3, as ϋf_3 € Af (0,2) is subject to an additional constraint
which increases the variation of the kernel and ultimately the variance of the
corresponding estimates. In the more interesting Case B however, kernels
ίfi, ^ 2 , ^ - 1 , and K-2 a r ^ not useful, as for many bandwidth choices the
change-point could not be located within the interval [2,4] on which a change-
point was sought; the apparent reason is that exactly these four kernels out of
the six kernels do not provide asymptotically unbiased (in the case of ϋΓi, iΓ2,
implicit) estimates of the one-sided limits of λ(.). This shows that certain
discontinuous kernels do have a disadvantage.

Our recommendation is therefore to use kernel 7^-3, which places rela-
tively large mass towards the vicinity of a possible change-point and at the
same time retains the moment conditions M(0,2). To keep variances down,
it is also advisable to choose relatively large bandwidths. It remains an open
problem to devise and motivate more specific bandwidth choice procedures for
nonparametric hazard change-point estimation.
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