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Assume noisy measurements are available and that an edge or boundary

is given which induces a partition of the domain into two subsets. The regres-

sion function on one subset is equal to a constant Cχ} on the other subset to a

constant C2 Each measurement is made within a regular pixel. The problem

we consider is the estimation of the edge or boundary curve (change curve), for

the case that the domain is in ϊt . We propose to seek boundary estimates as

maximizers of a weighted squared difference statistic where we maximize over

unions of cubes of aggregated pixels. Rates of almost sure convergence of this

procedure are established. Its central advantage is its numerical feasibility, as

the number of cubes of aggregated pixels to be investigated for inclusion in one

of the partitioning sets can be kept small. A numerically efficient "cube split-

ting" ("CUSP") algorithm is suggested which implements this proposal: Start

with an iteratively grown union of big cubes of aggregated pixels to find a first

approximate edge/boundary estimate on a coarse level of approximation. Then

split those cubes falling near the boundary into smaller cubes and check their

allocation to one of the partitioning sets in order to obtain a more refined bound-

ary estimate. This cube splitting (refinement) step may then be iterated until

the desired level of resolution is achieved.

1. Introduction. Our main concern in this article is a numerically
efficient way of estimating edges, i.e., discontinuities, of a regression function
in higher dimensions. We also discuss asymptotic rates of almost sure conver-
gence for one such estimation method. Our basic idea is to aggregate data into
larger blocks ("cubes") and to assume that the true "edge" is also anchored
on such larger blocks. The edge to be estimated therefore depends on the
sample size w, reflecting the intuition that increasing sample size should allow
for increasing degrees of resolution of the edge estimate.

The problem of edge estimation in higher dimensions recently found some
interest among statisticians (see for instance the various approaches discussed
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by Carlstein and Krishnamoorthy (1992), Korostelev and Tsybakov (1993),
Mύller and Song (1993), and Rudemo and Stryhn (1991) and also the previous
work by Brodskii and Darkhovski (1986)). This problem has been around for
some time in digital image processing, where edge estimation is an important
tool for automatic image segmentation. Common methods there focus on
binary images and the assumption of a Markov random field (see for instance
Geman and Geman (1984)), and apparently methods related to statistical
change-point models and their properties have not been much considered. The
edge estimation problem considered here may also be referred to as estimation
of a multidimensional change-point, boundary, change curve, or break curve,
the latter name being particularly suited for regression models (as this problem
is a natural extension of the one-dimensional break point regression model to
higher dimensions).

We work in the context of the following fixed design regression problem: A
sample of n measurements is available which are made at fixed locations X{i7l 6
[0, l]d on a regular grid, i.e., n = J\ j = 1 n^, i = ( i x , . . . , i d ), 1 < %ι < n^ 1 < ί <

d, mini<^<d τi£ > cn1^ for a constant c > 0, and X{,n — ί '*"* ,..., %d~^ ) €

[0, l]rf, where d > 1. Then assume

Vi,n = g(Xi,n) + U}n (1)

with errors 6;>n.

If d = 2, we could view the data yijTl as noisy values of an image which
are available on regular-sized "pixels". It is assumed that g (the "regression
function" or "true image") has a simple structure: g = C\ on one side of the
"edge" Γn, and g = C2 on the other side, where Γn divides [0,1]^ into two

subsets. The edge Γn depends on the sample size n. The jumpsize Δ = Δ n =

C2 - c\ may also depend on n.

In the following section, more precise definitions and assumptions are

given and our main result on the rate of almost sure convergence when ag-

gregating pixels into bigger blocks (cubes) is stated as a Theorem. Section 3

introduces an efficient cube splitting (CUSP) algorithm, which is based on the

idea to first seek a coarse approximation to the edge based on big cubes of

aggregated pixels which are less subject to random fluctuations. The approx-

imation is then iteratively improved as the cubes are split into smaller and

smaller subcubes. The performance of this algorithm is demonstrated for the

two-dimensional case in an example discussed in Section 4. Section 5 contains

the proof of the Theorem.

2. Convergence of Edge Estimate. The proposed edge estimator is a

global method, i.e., the estimate is selected from a pool of candidate edges Γ n .
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As we consider only edges which divide [0, l]d into two subsets, we identify from
now on the edge estimation problem with the equivalent problem of estimating
a connected "plateau set" J9n, enclosed by Γn, which may depend on n, where
Γn = dBn. Assume for the regression function g in model (1),

g{x) = cil{ar€Bn} + c2l{xeBc}. (2)

Let An be a collection of "candidate plateau sets" each of which deter-
mines an edge Γn, and which are subsets of β([0, l]d), the Borel sets in [0, l]d.
Consider the test statistic

Tn(A) = [X(A)λ(Aψ2

(3)

where λ is the Lebesgue measure in β([0, l]d), and #A denotes the number
of points Xi}Tl with the property #z ? n G A. Related statistics in a univariate
distribution change-point problem within a maximum likelihood framework
were considered by Bhattacharya and Brockwell (1976). Our estimator for the
plateau set Bn is then

2?n = argmax|Γn(A)|, (4)
AA

compare Mϋller and Song (1992). This is the candidate plateau set which
provides for the maximal weighted difference of means inside and outside the
plateau set.

We need some further notation. Let (,Dj,n)j=i,...,n be a partition of [0, l]d

into "pixels" D^n such that XjiTl G £,>, Xi,n £ DjiU for i φ j , and the JDj,n's

are cubes with volume £ and edges parallel to the coordinate axes. Let φn

be the "anchoring mapping" which anchors a given set on the pixels DjyTl, in

the following sense: For a set F G #([0,l]d), let φn{F) = \JFnDjn&
Dά,*'

Then define "aggregated pixels" C^\ m < n, where (Cffi)j=i,...,m, forms

a partition of [0, l]d such that the CΪ ™' are cubes with edges parallel to the

axes and cffl = Ψn(Cffl), i.e., the cff are "anchored on the pixels". The
number of cubes (C-^ ) is m = m(n), so that

and we note that for consistency of the plateau estimate, a minimum require-
ment is that m^logn/n -+ 0 according to (8).

We require the following assumptions (A1)-(A5), defining ψn as the

"anchoring mapping" which anchors sets on cubes of aggregated pixels CΪ ™\
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e.g., for sets F <Ξ β([0, l]d), let

(Al) The sequence of plateau sets Bn satisfies Bn = ψn{Bn) and η <
λ(Bn) < 1 — η for a constant 77, 0 < η < 1/2, which is independent of n.

One way a sequence Bn satisfying (Al) can be constructed from a fixed

plateau set B G #([0,l]d) is to assume that Bn = ¥>lm)(£), n > 1. If B is

sufficiently "regular", ψn (B) [ B as n —• 00. A further requirement is

(A2) All candidate plateau sets An G Aι satisfy An = φn(An), and
with η as in (Al), η < λ(Λn) < 1 - 7/ and λ(An Π 5 n ) > ?/, λ(A^ Π 5^) > r/.

Conditions (Al), (A2) reflect the basic idea to anchor true and candi-
date plateau sets on cubes of aggregated pixels. The last part of (A2) is an
identifiability constraint.

(A3) The errors 6i)7l are i.i.d. with E€, jn = 0, E6?n = σ2 < 00, and
^kz,n|s < °° f°Γ some s > 4.

(A4) The jumpsize Δ = Δ n = c2 - c\ satisfies Δ = 7" 1 for a sequence
ηn which might be a sequence of constants (constant jump size case).

(A5) For an r with 4 < r < θ,liminfn_oo n~2/r(n/m log n) 1/ 2 > 0;
n/(ralogn) —> 00.

As measure of distance between 2?n and Bn we take the Lebesgue measure
of the symmetric set difference, BnABn = (Bn Π B%) U (5^ Π Bn).

THEOREM. Under (A1)-(A5),

a.8. (7)

The proof of this result is in Section 5. We notice that as m gets larger,
i.e., the size of cubes C^™? which have volume ~ gets smaller and the degree of
resolution of the estimate thus better, the rate decreases. For fixed m and fixed
jump size, the rate is [logn/n]1'2. The estimator Bn is strongly consistent for
Bn as long as

m 7

2 logn/n->0. (8)

For fixed jump size this requires that the edge length b = m~1ld of cubes Cj™'
satisfies
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3. The Cube Splitting (CUSP) Algorithm. Computation of the
plateau set estimate Bn (4) (and therefore of the edge estimate) requires in
principle the evaluation of the statistic Tn over all candidate plateau sets in Λn-
As the number of elements grows approximately as 2m, this becomes quickly
unmanageable if m ~ n; even for the case m ~ log n, when the problem is
polynomial, the number of calculations can be extremely large for practically
relevant sample sizes. We therefore propose here an iterative algorithm to
find the estimate (4). The idea is to first seek an approximate solution on a
reduced set of candidate plateau sets which is then refined iteratively along its
boundary.

Assume that n = (2d)pίdkd, for integers k,£,p > 0, and let the small-
est cubes (Cjtn )i<j<m> defining the most refined level at which we want to
estimate, correspond to m = {2d)qld, where 0 < q < p. Here, the desired
"level of resolution" m is defined in (5). Assume we start at a coarser level
of resolution m1 = (2d)qild, where 0 < qλ < q. Note that the finest "level
of resolution" m considered corresponds to an edge estimate which is a union
of cubes (CJn )i<j<m each of which consists of (n/m) = (2d)p~qkd pixels,
whereas the coarser starting level mi corresponds to an edge estimate based
on cubes (CJ™ ), 1 < j < m^ each of them containing (2d)p~qikd pixels.

Consider the finite sequence m1 = (2d)qHd, m2 = (2d)qi+1£d,...,mr =

[2d)qίd — m, where r = q — q\ + 1, and corresponding partitions of [0, l]d into

cubes {Cj™ι'}i<j<mi, 1 < i < r, where cubes C^1' have volume ^- with

edges parallel.to the coordinate axes. Each cube C™^ contains exactly 2d

cubes of the partition {CJ^ t + l )}. For a given cube C^\ consider the (2d)

cubes in {Cj™''}i<j<m<, which share a hyperplane with CJ 7 ^ as the neighbors

of CJ™ . For any set E with E = φn'(E), i.e., which is anchored on cubes

Cj™ a c c°rding to (6), define the collections Λ^mi\E) of all sets with one

neighboring cube outside the boundary of E added to JB, and V^mi\E) of all

sets with one cube at the boundary, neighboring the outside of E, deleted.

Formally,

= {EU C^i] : C^ι) C Ec and CJ™0 is a neighbor of a cube

Cffi C E}9 V^\E) = {E\c(™>] : cffl C E and C^° has a neighbor

Cffi with C^ C Ec, X(E\CW) > 0, and each cube d Γ } C E\C^ has

a neighbor Cp\ ^ ]

The proposed cube splitting (CUSP) algorithm starts with the following
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initial step:

Bu = argmax |

i.e., the "best" single cube at level of resolution πi\ (first level) is selected.
The aim at this first level is to find the best plateau set estimate anchored on
cubes {CJ™1'} by iteratively adding the respectively "best" neighbors to the
current plateau set estimate. "Best" means maximizing |Tn( )|. Accordingly,
given BΎj,

J9 = argmax |

and choosing B\ = Bu whenever Bu = -Si,/+i provides then the plateau set
estimate at the first level.

At the second level, we split each cube CJ™ m^° s m a l l e r cubes of the col-

lection {Cj™2'} and consider alternating rounds of deleting and adding these

smaller cubes along the periphery of the current estimate. Formally, noting

t h a t Bι = ψrΓ2 (Bl)i B21 = Bl, ̂ 2, j+l = a rgmaxAG^m2)(J321)u2>(m2)fJ92,) I^n(-A)|?

and J?2 = B21 if B2i = B2/+1. The estimate at the second level is determined
whenever adding or deleting a cube CJ™ is either not possible or will not
improve the statistic Tn. This process is now iterated for levels 6 + 1 = 3,..., r:

argmax |
m s + 1 ) ( B s + l j ) u 2 > ( m s + 1 ) ( S s + i ^

Bs+\ = Bs+ij if Bs+i^t = J55+i^_|_i,

until

B = Br

is reached at the r-th level of the algorithm. This estimate then has the desired
level of resolution m.

The rationale behind the algorithm is that gross errors in the general
location of the initial (level 1) "big blocks" Bι are unlikely as these blocks
average over many pixels, keeping the random variation down. Successive
refinement along the periphery then leads to B. The procedure depends on a
sensible choice of m\ and m = mr. The choice of m\ has to be small enough
to ensure that the initial "big block" estimate is approximately correct and is
not critical. The last level of resolution on which B can be anchored is more
difficult to determine. If m is too small, there may be a bias problem if one
intends to estimate a "smooth" boundary. On the other hand, choice of a
relatively large m may lead to improved resolution and bias but at the same
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time to increased variance and randomness in the location of the cubes at the

periphery of B.

A good choice will depend on the unknown signal-to-noise ratio of the

data where the "signal" corresponds to the jump size Δ, whereas the noise is

quantified by the error variance σ2. One possibility to approach this problem

would be to first choose m conservatively, i.e., rather small, to carry out the

algorithm and to obtain the natural jump size estimate

(10)

and at the same time a coarse estimate of σ2, based on

u 2

a\A)= l

so that with B1 C B, BcI C Bc being "interior" sets of B, Bc, we obtain

σ2 = aσ\BI) + (1 - a)σ2(BcI) (11)

with properly determined weight α, 0 < a < 1, reflecting unequal sample sizes

in J57, BcI.

We can then use 5 , Δ and σ2 to simulate the procedure and develop

reasonable choices of m from such a Monte Carlo approach. As the CUSP

algorithm is relatively fast, this approach is not prohibitively expensive.

4. A Two-Dimensional Example. The above algorithm was applied

to a lattice of 60x60 regular pixels located equidistantly in [0,1]2. The edge

was defined by the circle (x - 0.5)2 + (y - 0.5)2 = 0.252. The measurements

for pixels inside the circle were generated as Λ/ l̂ + |Δ|,1) pseudo random

variables, those outside the circle as Λ/"(l, 1) pseudo random variables. Thus

σ2 = 1.0, and three different jump sizes with values |Δ | = 1.5,1.0 and 0.5 were

considered.

Observing that n = 3600 = 425232, we choose m1 = 25, m2 = 100, and

πts = m = 400 in the notation of Section 3 so that at the first level each

aggregated cube consists of 144, at the second level of 36, and at the third

level of 9 observations (pixels). At the third level, each cube is a square with

edge length ^ .

The results for the three cases |Δ | = 1.5,1.0 and 0.5 utilizing each time

the same pseudo-random numbers are shown in Figure 1-3. These are "in-

termediate" cases, being neither particularly good or bad. In the upper left
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corner is an "image plot" showing the pixeled data (the darker, the higher the

value). The result of the first level (B\ in the notation of Section 3) is displayed

in the right upper corner, the result of the second level (#2) in the left lower

corner and the result of the third level (#3 = B) in the right lower corner. The

jump size estimates (10) for the three cases are |Δ| = 1.4978, |Δ| = 1.0254

and |Δ | = 0.5690 for the true jump sizes of |Δ | = 1.5, 1.0, 0.5 respectively.

Note that for |Δ | = 1.5, the fit of B is very good, though not completely

symmetric (for |Δ | = 3.0, the algorithm in most cases achieved a perfect fit).

For |Δ | = 1.0, the estimate is still quite good, but it starts to show some

random variation along the periphery. This random variation is considerably

stronger for the case Δ = 0.5. Note that in the image plot the circle is extremely

hard to discern due to the low signal-to-noise ratio in this case.

Our conclusion is that the CUSP algorithm works very well, at least in

the examples we have seen, and is able to track edges in unfavorable signal-

to-noise situations. The algorithm is also quite fast and numerically efficient.

It is therefore possible to apply it in computer-intensive methods for the con-

struction of confidence regions and the selection of the level of resolution m,

like bootstrap methods or the Monte Carlo procedures outlined in Section 3.

5. Proof of the Theorem. In the following, indices n will be omitted

whenever feasible. Denote the collection of cubes CJ7^ by Cn. We use the

abbreviations

p(A) = [λ(A)λ(Ac)]1/2, AB = A Π B,

R(A) = p(A)

for any sets A , 5 G #([0, l]d). The complement Ac of a set A is defined as

Ac = [0, l]d\A, so that X(AC) = 1 - \(A). || | | d denotes the Euclidean norm in

3?rf. We require the following lemmas. Define the edge length b = bn = m~1ld

for cubes CJ9^ of volume ^ and let an = [logn/^fc^)]1/2. The assumptions

for the Theorem are required to hold.

LEMMA 5.1.

sup \^j^2^i\ = O(an) a.s. (12)

PROOF. We apply (A3) and first show:

a s
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Figure 1: Cusp algorithm for Δ = 1.5
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Defining €t = *tl{|Cί|<(t n)i/r}, where r is as in (A5), and W{β - (nbd)~1

l{Xi£C} f° r C € Cn, we observe

s u p \Tr Σ € l - s u p I Σ Wiβ(€i ~ €t)l

+ sup \J2wiίC€i\ = 1 + 11.
cecn ^

For term / , we apply the same arguments as in Lemma 5.2 in Miiller and
Stadtmiiller (1987) to show that

sup I TWi,c(ei - ei)\ - 0 (n2'r sup \WifC\) a.s.9
ceCn *-** \ cecn )

and observing s u p ^ \W%fl\ ̂  l / ( n ^)> we obtain from (A5)

I — 0(an) a.s.

Using the fact that supC(ECn # {Wiβ Φ 0} = O(nbd), we find supCeCn[Σ wϊ,c

logn] 1/ 2 = O(an), which implies

II=O(an) a.s.

as in Miiller and Stadtmiiller (1987). Observing that by (13),

#^/#c 0 ( o" ) ° s

the result follows from (A2).

LEMMA 5.2. For any sets A, B G /?([0, l] d),

PROOF. By direct calculation, (1) and (2) yield

Tn(A) =
#A C #A

#(AB)

which implies (14). For more details, see Miiller and Song (1993).

Define for A,B e B([0,l]d),

Qo(A,B) = p{B) - [p(A)]-1 \X(Ac)λ(AB) - X(ACB)X(A)\.
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LEMMA 5.3.

|Γ n (5 n ) | - \Tn(An)\ = \A\Qo(An, Bn) + O (αn) a.s. (15)

PROOF. Applying Lemma 5.1 and Lemma 5.2 for A = An,B = Bn, one
finds

\Tn{Bn)\ - \Tn{λn)\ = P(Bn)\A\ -

+ 0{an) a.s.,

and therefore (15). I

To prove the Theorem, we find by some set algebra for any sets A, B G
B([0, l]d), defining Q(A, B) = \{ABC)\{ACB)λ{AcBc) + X(AB)λ(AcB)λ(AcBc)
+ X(AB)X(ABC)X(ACBC) + X(AB)X(ABC)X(ACB), that Q(A, B) + [X(AB) -
X(A)X(B)]2 = X(A)X(AC)X(B)X(BC), and furthermore,

Observing (Al), (A2), we obtain

Q(A,B) > 2η2λ(AAB).

With (14) and (16), this implies,

\Tn(Bn)\ - | Γ n ( l n ) | > \A\η2λ(AnABn) + O(an) a.s. (17)

As by definition, | Γ n ( I n ) | > \Tn(Bn)\ a.s., it follows that λ(AnABn) =
0(α n / |Δ | ) a.s. and thus the Theorem follows with (A4).
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