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THE ANALYSIS OF CHANGE-POINT DATA
WITH DEPENDENT ERRORS
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We consider abrupt mean-change models for data with dependent, sta-
tionary, errors. No specific distributional assumptions, other than the existence
and summability of cumulants, are made. A consistency property of the least
squares estimator of the change-point is derived. This leads to the construction
of consistent, asymptotically normal and efficient estimators of the error spectral
density function and covariances. The application of these results in testing for
the existence of a change is discussed. A test for uncorrelatedness of the errors
is also given. An application is made to the detection of changes in the period
of a variable star. The relationship between cusum charts used in statistics and
O-C diagrams used in astronomy is pointed out.

1. Introduction. In the last decade the statistical literature has seen
a steady increase in the number of published results dealing with so-called
change-point problems. In their simplest form these are problems concerning
the detection of sudden, often discontinuous, changes in the mean of a series
of observations X i , . . . , Xn. To be more specific, a model of the form

Xt = f(t/n) + €t; ί = l , . . . , n (1.1)

is assumed to hold and the question concerns the possibility that / suffers

jumps or sudden changes of slope, for example, at one or more of the points

t/n; t = 1,..., n. A parametric form is often assumed for /, as in the simple

abrupt (- or step) change model

f(t/n) = μ + Δ/(m < t < n) (1.2)

with m an integer, 1 < m < n - 1, and / denoting the indicator function.

The error series {et} in (1.1) is usually assumed to consist of independent and

identically distributed (i.i.d.) random variables with zero means and finite

variances.
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The primary purpose of this paper is to consider certain aspects of the
problem when the {et} are a stationary, not necessarily independent, sequence.
In particular, we consider the estimation of the change-point m in (1.2) and
of some characteristics of the error series {et} in (1.1). The main results are
formulated and discussed in Section 2. In particular, a consistency property
of the least squares estimator (l.s.e.) of m is established. Estimation of the
spectral density function (s.d.f.) of the error series is considered together
with a test for uncorrelatedness of the errors. The role of these results in
the construction of tests of the null hypothesis Ho : Δ = 0 is discussed. In
Section 3 the results are illustrated in an analysis of some data from the field of
variable star astronomy. A brief discussion is also given of the "0-C diagram"
used by astronomers and its relationship to the cusum chart is pointed out.
Proofs of the main results are given in Section 4.

Our proofs require the summability of cumulants of various orders. Cu-
mulants are defined in Section 2.3 of Brillinger (1975) to whom we refer the
reader for a survey of relevant results and for further details. The joint
cumulant of random variables Yi,...,Yr is denoted by cum(Yi,.. . ,Yr) and
if γt = . . . = Yr = Y by cum r(y). We have cum2(Y) = var(Y) and
cum(Yχ,Y2) = cov(Yi,Y2) The error series {et} is called weakly stationary
to order k(> 1) if

cum(etl . . . , eu) = cum(e0, et2-ti > ,€tr-h)

for all — oo < t\,..., tr < oo and 1 < r < k. In this case we shall write

cum(e0, €U1,..., eUr) = ct(uλ,..., ur).

2. Statement of Main Results.

2.1. Point Estimation of the Change-Point. For every fixed m, 1 < m <
n - 1, the l.s.e.'s of μ and μ + Δ in the model (1.2) are

* a n d Xrn,2 = (n - m)" 1

so that m, the l.s.e. of m, is the minimizer over fc, 1 < k < n — 1, of

k n

The well-known ANOVA decomposition

n

ϊt - X? = SSw(k) + SSB(k)
ί = l
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where X = n" 1 Σt=i Xt and

SSB(k) = fc(XM - X) 2 + (n - k)(Xk,2 - Xf,

shows that m is the maximizer of SSβik). Simple algebra yields

ί k

. (2.1)

A plot against k of the quantity in curly brackets at the extreme right in (2.1)
is commonly referred to as a standardized cusum plot.

We assume that m varies with n in such a way that the ratio m/n remains
bounded away from 0 and 1 for all n.

PROPOSITION 1. Assume that the error process {et} is weakly stationary
to order 4. Then

m = m + 0p(l) as n —> oo. I

This is possibly the strongest form of "consistency" one can hope for.
From a theoretical point of view one important consequence of Proposition 1
is that in asymptotic inference regarding the other parameters in the model
(1.1), (1.2) one can effectively proceed as if m were known. This is illustrated
by Propositions 2 and 3 below.

It should be noted that m can be rather sensitive to outliers occurring
among observations with indices close to 1 or n. The example in Section 3
illustrates this well. Thus, it will often be sensible to trim the data series by
omitting the first and/or last few observations.

Proposition 1 is not true when Δ = 0. In this case it can be shown that

m/n -> V in distribution where Pr[V = 0] = Pr[V = 1] = 1/2. (2.2)

2.2. Estimation of Dependence Characteristics. In the case Δ = 0 it is
well known how to construct consistent and asymptotically normal estimates
of ^ ( λ ) and ce(^), the sdf and covariance at lag I of the error series; see e.g.
Brillinger (1975, Theorems 5.6.3 and 5.10.1).

Proposition 1 suggests that et will be closely approximated by

where
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It is therefore natural to expect consistent and asymptotically normal
estimates of Se(X) and ce(ί) to result upon replacing et by et in the aforemen-
tioned estimation formulas. Proposition 2 justifies this procedure. To state
the result we define the periodogram

Je(λ) = n- 1 (2.3)

and estimated covariances

n-l

i > o (2.4)

of the error series. An estimate of the sdf St(X) is defined in terms of a
bounded weight function W(x) which is even, vanishes for \x\ > π and satisfies
J*πW(x)dx = 2π, and in terms of a sequence, {δn}> of bandwidths which
satisfy bn —> 0 and nδn —> CXD as n —>• oo. The estimate is

n-l

5e(λ) = n-1 Σ ^ ( n ) ( λ - to^/eK ) (2.5)
3=0

where Wj = 2πj/n and W^n\x) is the periodic extension of the function
b~1W(x/bn) to (-00,00). The quantities /e(λ),ce(^) and Se(λ) are defined by
replacing e by e in (2.3), (2.4) and (2.5).

PROPOSITION 2. Suppose the error series {et} is strictly stationary with
cumulants satisfying

< oo for ail fc > 1.

Then

(<) (nbn)ϊ(Se(\)-St(λ)) = op(l) uniformly in X

and

(ii) ri* (cg(^) — Ce(̂ )) = °p(l) uniformly in ί |

The proof is given in Section 4.2.

2.3. Hypothesis Tests. There exists a rather staggering variety of large-
sample tests of the hypotheses Ho : Δ = 0 in the case of independent error
series {ct}. Unfortunately, an up-to-date review is not available. We therefore
refer the reader to Brillinger (1989), Csόrgo and Horvath (1988), Lombard
(1987) and MacNeill (1974) for a sampling of the tests in question. One



198 CHANGE-POINT DATA WITH DEPENDENT ERRORS

feature these tests have in common is that they are based on functions Tn of
the cusum process {kln,Sk), where

Sk = n"2 J^(X t - X) and X = n~ι ] Γ Xt,

and reject i?o whenever Tn/σ is too large. Here σ2 is a consistent estimator
of σ2 = var(ci). The asymptotic theory often relies on the fact that the
scaled process (k/n^σ~1Sk) approximates to a Brownian bridge B. Now this
approximation also holds for dependent error processes satisfying our moment
conditions provided σ2 is replaced by ^(O). It follows that the aforementioned
tests remain valid for these error processes if σ is replaced by 5^(0)2 in the
expression for the test statistic.

One well known statistic is

Tn = max \Sk\. (2.6)
Kk<n

Here Tn/Se(0)ϊ —• suPo<s<i l^( s)l m distribution under Ho : Δ = 0 and

P( sup \B(s)\ > u) w 2exp(-2w2) for large u. (2.7)
0<s<l

A set of tests with some attractive features are those based on Fourier
analysis ideas (Eubank and Hart (1992), Lombard (1988)). With independent
data one such test, proposed by Eubank and Hart (1992), rejects HQ : Δ = 0
when

1 k

max - ̂  nφϊ/σ2

3=1

is large, where φj = n~x Σ r = i Xr cos(π jr/n), j = l , . . . , n . Eubank and
Hart (1992) provide evidence that their test is unusually powerful in detecting
multiple change-points.

2.4. Detecting Autocorrelation in the Error Process. One can use Propo-
sition 2(ii) together with known results regarding the asymptotic distribution
of ce(ί) to test the hypothesis Ho : ct(t) = 0 for each individual I > 1 or, for
any given fc, to test the joint hypotheses Ho : ce(l) = = ct(k) = 0. We
close this section by considering global tests of uncorrelatedness. The basis
of these tests is the fact that the errors are uncorrelated if and only if their
sdf S€(X) is constant. Also, it follows from theorem 4.3.1 of Brillinger (1975),
under the conditions of Proposition 2 above, that

max
0<ωj<π
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as n —> oo. Asymptotically then, testing uncorrelatedness is equivalent to
testing constancy of the means of the periodogram ordinates. In Section 2.3
it was pointed out that many such tests of constancy are based on a cusum
process. If we use Ie as surrogate for Je the relevant cusum process is

( ' e K ) - J e ) , 0 < λ < l
0<tι/j<πλ

where Wj = 2πj/n and

0<Wj<π

The requirement that this process approximates to a Brownian bridge is also
fulfilled.

PROPOSITION 3. If the error series {βt} is stationary and uncorrelated
with vαr(et) = σ2, then (S^^e(λ)/Ϊe^ 0 < λ < 1) converges in distribution to
a standard Brownian bridge (in the uniform topology of the space -D[0,1] -
see Billingsley (1968, page 150)). I

The proof is given in Section 4.3.

3. An Example. The circles in Figure 1 are a plot of the n = 172 times
(in days) between 173 successive maxima on the light curve of the variable
star T Centaurus. A question of interest to astronomers is whether the mean
times between maxima are changing in a systematic fashion. The standardized
cusum chart is shown in Figure 2. The sensitivity to the "outlier" at the
extreme right in Figure 1 is clear from Figure 2 - strictly according to definition
we would have m = n — 172 for the l.s.e. of m in a simple step-change model.
If the last observation is omitted, m = 94 results! The solid lines in Figure
1 represent the fitted model: μ = 90.2, Δ = 1.6, m = 94. The periodogram
of the residuals together with an estimate using the simple "boxcar" weight
function W(x) = 1 for \x\ < 1; = 0 otherwise, and bandwidth b = 4/172
is shown in Figure 3. This yields ^(O) = 8.3. We also used bandwidths
b = 8/172, b = 2/172 and obtained 5e(0) = 5.7, 5e(0) = 10.52 respectively.
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Figure 1: Times (in days) between light curve maxima of
the variable star T CENTAURUS.
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Figure 2: Standardized cusum of T CENTAURUS data.
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It is pretty clear that constancy of the sdf is not a tenable hypothesis in
this case, notwithstanding the large variability of the periodogram ordinates.
For the data in question we get

sup |5; i β(λ)|//β = 2.713
0<λ<l

with an asymptotic P-value of 0.0006 - see Proposition 3 and (2.7). The esti-
mated autocorrelations at lags 1,.. .,5 are -0.38, -0.09,0.09,0.01 and -0.07.
To test HQ : Δ = 0 we use the Tn in (2.6) and 5e(0) = 10.52. The test statistic
is Tn/5e(0)2 = 1.63 with an asymptotic P-value of 0.01.

Were the dependence in the data to be ignored, a startlingly different
P-value results. For then one would use n"1SS\v(f^) = 29.1, the variance of
the residuals, as scale factor in place of Se(0). Then Tn/Se(0)ΐ = 0.98, and a
P-value of 0.29 results. This type of phenomenon is, of course, well-known in
statistics.

200

0

0.1 0.2 0.3

frequency

0.4 0.5

Figure 3: Raw (stars) and smoothed (solid line) periodogram
of estimated residuals for T CENTAURUS data

We close this section by bringing to the reader's attention the fact that
astronomers routinely make use of a device, known as an O-C chart, which
is nothing but the cusum chart which is so well known to statisticians. As
such, the use of cumulative sum charts by astronomers probably predates
their use by statisticians. Sterne and Campbell (1937) give a brief review of
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O-C methodology and refer to Sterne (1934) who gives a statistically sophisti-
cated discussion of certain pitfalls in its application. Here we give only a brief
explanation of the method, leaving it to the interested reader to pursue the
matter further.

Let YQ < Y\ < . . . < Yn denote successive times of maxima observed
on the light curve of a variable star. The times between maxima are then
Xt = Yt — Yi-i,l < t < n. If the mean period is constant, the Y's should
fluctuate around a line of slope /?, the unknown period. A crude estimate,

β = (Yn- Y0)/n,

of β is used to obtain estimated values under the no-change assumption:

Ϋi = Y0 + βi 1 < i < n.

The differences, Yi — Y{, between the Observed and Calculated values are
plotted against i to give the 0-C chart. Simple calculations now reveal that

the cusums of the residual times between maxima. Unfortunately, astronomers
generally seem to have treated the residuals Y{ — Y{ as independent random
variables, a rather dubious assumption in view of the representation (3.1). This
has led to a number of identifications of period changes which are unlikely to be
justifiable by generally accepted statistical criteria. One such case is discussed
by Lombard and Koen (1992).

4. Proofs.

4.1 Proof of Proposition 1. We need to show that

lim lim sup P[\fh — m\ > r] = 0.
r-+oo n _ o o

For this it is sufficient to show that

lim lim sup P[m < m - r] = 0 (4.1)
r-KX> n _ , o o

since the result involving the opposite inequality fh > m + r will follow from
(4.1) by simply reversing the direction on the time axis. Define Xk = Xk,\ for
each fc, let an = Δ(l - m/n) and observe that

X - μ - an = e
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while, for 1 < k < ra,

Xk - μ = ek.

Observe also that m < m - r implies SSB(TΠ) < SSβ(k) for at least one
k 6 {1,..., m - r}. Hence

m—r

P[m<m-r]<Σ P[SSB(m) < SSB(k)]. (4.2)
k=l

Furthermore, from the definitions, SSB(TΠ) < SSβ(k) if and only if,

(Xm - X)2m/(n -m)< (Xk - X)2k/(n - k),

that is, if and only if,

(em - 6 - an)
2rn/(n - m) < (ek - e - an)

2k/(n - k).

After some algebraic manipulation, the last inequality is seen to hold if and
only if,

<*n ̂  (^ ~ έ)2 * {k(n ~ m)/n(m - k)} - (em - t)2 {m(n - k)/n(m - k)}

- (*h - t)

• {2k(n — m)/n(m — k)} an + (em — e) {2τn(n — k)/n(m — k)} • an

= (ek - e)2(k/(m - *))(αn/Δ) - (em - e)\(n - k)/{m - k)){l - o n /Δ)

+ (m - k)-1 ^ (et - e) • 2a2

n/Δ + (<fTO - c) 2αn(l - α n /Δ)
t=k+l

4
Zhk, say.

Now

f ) [ | ί | Λ | < o£/4] C ]
i=l Li=l J

so that, from (4.2),

4 m—r

P[m<m-r]<ΣΣ P[\ZiJt\ > a2j4}. (4.3)

The following Lemma pertaining to the moments of Z,-,* is required in order
to bound the probabilities on the right hand side of (4.3).

LEMMA 4.1. Under the conditions of Proposition 1, E(ek — ̂ )4 ^ Ck~2

for some constant C not depending on k or n.
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PROOF. Set aSyk = I(s < k) — k/n and note that \aSik\ < 1 for all s and
1 < k < n. We have

n

ek-e = A;"1

whence

|cum4(€fc - e)| = k~4

s = l

cum(e S l , eS2, eS3, eS4) J J aSiik

<k ~3

and, similarly,

Ck'1.

The Lemma now follows upon substitution of these inequalities into the well
known formula

0 < E(ck - e)4 = - e))2.

Let 0 < δ < 1 be given. With the help of Lemma 4.1 we will now show

for i = 1,.. .,4 that

k=ι

for all sufficiently large r. Below, C denotes a generic finite, positive, constant.
We have

k=l

m—r

- k)~2 <

j=r

for all sufficiently large r. The term involving \Z2,k\ is handled in exactly the
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same way. Next

TO—r m—r m—r

Σ P[\Z3,k\ > all A) <CΣ E(zlk) <CΣ(m- k)~2

k = l A ; = l A : = l

and the result follows as in the case of |Zi,fc|. Finally

4,fc| > an/4] <C-(m-r) πΓ2 < Cm'1 —>- 0 as n -> oo. |

PROOF OF (2.2). We give the proof for i.i.d. errors {^t}. Set

k

and observe that

t=l s=k+l

so that (1.1) of Csδrgo and Horvath (1988) holds with the antisymmetric
function h(x,y) = x — y. We can therefore apply the results in their Section
4. Careful scrutiny of the proof of their Theorem 4.3 (see also their Theorem
2.3) reveals that P[An] + P[Bn] -> 1 as n -• 00 where

An = [(logn)3 <m< n/(\ogn)2] and Bn = [ra-n/(logra)2 < fh < n-(logn)3].

Reversing the direction on the time axis makes it clear that P[An] = P[Bn]\
hence the result. I

4.2. Proof of Proposition 2. The residuals are

where

rt = -6 χ ~ - Δ(l - (m Λ m)/m)) 1(1 < t < m Λ fh)

- t2m~~ Δ(m - (m V m))/(n - m)) /(m V fh <t < n)

- €j JJJ — Δ(n - m)/(n - m) /(m + 1 < ^ < m)

- e2 - + Δm/fh J(ra + 1 < / < m),

and we have

) - Ie(wj)\ < Ir(wj) + 2{Ie(Wj) Ir(Wj)}ϊ (4.4)
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for j = 1, . . . , [ra/2]. The following lemma will be used.

LEMMA 4.2.

l<j<[n/2]

PROOF. From Proposition 1 and a central limit theorem for stationary
sequences (Brillinger (1975, page 94)) we see that both €χ ~ and e 2~ are

Op{n~ΐ). Thus, we can write

rt = βlnl(l < t < mAm)+β2nI(mVm < t < n)+(β3n+A)I(mΛm < t < mVm)

where, for i = 1,2,3, β{n — Ov{n~ϊ) and does not involve t. Then,

n πiAm

rtexp(-iwjt) = (βιn - β2n) ^ exp(-iwjt) + 0p(l)
ί=l

^ e x p ( - z ^ )

Furthermore,

mΛm

whence, using the inequality

Ia+b(w) < /α(w) + Ib(w) -

we see that

T (wΛ < Π (λ λ 7~2 4- O (r)~^Λ 4- O Γ?7~ 2" ^ . 7*""1J-T\UJj) ^ IVp̂ -L^ J T̂  v-'p^"' y I {Spy'*' £ ) J

with the Op-terms all independent of j . I

(i) Returning to (4.4), set L = n6n and let £ = ^n —»• oo in such a
way that ί/L -> 0. We have, using the inequality (α + fe)2 < 2α2 + 262, the
Schwarz-inequality and Lemma 4.2,
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L L

j=e+i j=e+i

i , t

3 = 1 KJ=l

L L .

+ ί^-O/n
j=e+i

= o(l) 0,(1) {0(1) + o(l)} Op(l) + OP(l){o(l) + o(l)} OP{1) = op(l).

Also,

Σ Σ 1 + Λ "'} °P(!) = ̂ "*OP(1) = op (1)

Thus

This completes the proof since

(ii) Using essentially the same technique as in (i), it can be shown that

n - * V | / e K ) - / £ ( W j ) | = op(l). (4.5)

The result is now a direct consequence of (4.5) and of the fact that

dx(k) = / XΓ(

7 —7Γ

for a: = e,£.
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4.3. Proof of Proposition 3. Set

y n ( λ ) = n - 2 £ (Ie(Wj) - σ2) 0 < λ < π .

0<WJ<\

It is an easy consequence of (4.5) above and of (the univariate version of)
Theorem 7.6.3 of Brillinger (1975) that

where the latter process is Gaussian with zero mean and covariance function

cov(Y(λ),Y(μ)) = σ2

Since

the continuous mapping theorem implies that Yn(
m) — Yn(π) -~+c Y(') ~~ ^ ( π )

The latter process is Gaussian with zero mean and covariance function σ2

(min(λ,μ) — λμ). The proof is completed by observing that ϊe is a consistent
estimator of σ2. I
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