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A RANK-CUSUM PROCEDURE FOR DETECTING SMALL
CHANGES IN A SYMMETRIC DISTRIBUTION

BY P. K. BHATTACHARYA AND HONG ZHOU
University of California, Davis

A rank-sign analogue of the Page-CUSUM procedure is introduced here
for detecting location change in a sequentially observed series of data follow-
ing a symmetric distribution. This Rank-CUSUM procedure is asymptotically
equivalent to the Page-CUSUM procedure if the score functions used in both
procedures are appropriate for the underlying density; but even otherwise, it
maintains its prescribed false alarm rate and has good detection property. Re-
sults of simulation studies comparing the Rank-CUSUM and the Page-CUSUM
procedures are reported.

1. Introduction. For the problem of sequential detection of change in
distribution, the CUSUM chart proposed by Page (1954) is widely accepted
for its simplicity. The stopping rule for the procedure also has a minimax
property as shown by Lorden (1971) and Moustakides (1986). However, one
has to recognize the fact that the method is based on strict distributional
assumptions and may perform poorly when these assumptions fail.

In this paper, we consider a rank-sign analogue of the Page-CUSUM
procedure for the situation where one wants to detect a small change in location
of a symmetric density without knowing the actual form of the density. If the
score function used to calculate the rank-CUSUM's is appropriately chosen for
the underlying density, then this procedure is asymptotically equivalent to the
Page-CUSUM procedure (based on the true density); but even otherwise, the
rank-CUSUM procedure maintains its prescribed false alarm rate and also has
good detection property.

In Section 2, the rank-CUSUM 's are introduced and the weak conver-
gence properties of both types of CUSUM are discussed. Some simulation
results comparing the performance of the rank-CUSUM procedure with that
of the Page-CUSUM procedure are given in Section 3. Technical details of
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the theoretical properties outlined in Section 2 will be provided in a separate
publication.

2. Page-CUSUM, Rank-CUSUM and Their Asymptotic Prop-
erties. Suppose that we observe independent random variables {X{} sequen-
tially, of which the Lebesgue density undergoes a location change from /(•) to
/(• - Δ) by a specified Δ > 0, starting with Xr+i? where / is an unknown
density which is symmetric about 0 and r is an unknown change-point.

The Page-CUSUM procedure attempts to detect change from a known
density /0 to a known density /i by applying a likelihood ratio test for the null
hypothesis Hk : r > k against alternative J5Γ£:0<r<fc — l a t each stage of
sampling and stops at the first time k at which the log likelihood ratio crosses
a constant boundary. In our framework of location change in a symmetric
density, this requires the symmetric density / to be known. However, in
practice, one does not know / but assumes it to be of a certain form, say #,
which is not necessarily the same as the true /, and based on this symmetric
density #, computes the log likelihood ratio at the fc-th stage as

(1)

The Page-CUSUM stopping rule resulting from this is given by

N(c,g) = min{k : Tk{g) > c} (2)

where the constant c is so chosen as to control the false alarm rate by main-
taining a specified value of E[N(c)] or P[N(c) > n] for given n when there is
no change.

In the rank-CUSUM procedure, we use the signs and the ranks of absolute
values of (Xi,..., X^), viz.,

s(Xi) = si

i2+; = rank of \X{\ among |Xχ|,..., \Xk\, 1 < i < k

to construct a rank-sign analogue of the log likelihood ratio statistic for Hk
against Hf

k. For n = 1,2,..., let

αn(ΐ, φ) = E[φ(Unύ)), l<i<n (3)
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where φ is a square-integrable function on [0,1] and Un:ι < < Un:n are the
order statistics in a random sample from uniform (0,1), and define

Sk(φ)= ^

(4)

Then the Rank-CUSUM stopping rule is given by

c}, (5)

where the constant c is chosen as in (2) to control the false alarm rate. In
practice, the score function φ will be taken to be

where g = G' is a symmetric pdf which is the assumed model for the true pdf
/. For simplicity of notation, we shall write

(7)

N*(c,g) = mm{kιSk(g)>c},

using φ(-) = φ+(-,g) in (4) and (5).

To see the connection between the Rank-CUSUM and the Page-CUSUM
procedures, let

Rfk:i = rank of \Xi\ among |Xj+i|,..., |-ϊ*|, 0 < j < i < *?,

and note that the standard approximation to the log likelihood ratio of Hf

k to
Hk for small Δ > 0, based on ranks and signs, if g is assumed to be the true
form of the density (see Hajek and Sidak (1967)), is obtained if we replace
ak{Rt.nΨ)in formula (4) for Sjk(φ) by ak-j(Rfk:i,φ+(',g)).

We now compare the Page-CUSUM stopping rule N(c,g) and the rank-
CUSUM stopping rule N*(c,g) , both based on a symmetric pdf 5, possibly
different from the true /.

Let Pn and Qn denote the distributions of (X 1 ? . . . , Xn) with joint densi-
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ties

[nθ] n

qn(xi,-.">Xn) = Y[f(xi) Π f(χi-~δ/Vn)
t=l i=[nθ]+l

corresponding to τ > n and r = [nθ] respectively, with Δ = δ/y/n, where
δ > 0 and 0 < 0 < 1. The basis for our comparison of the stopping rules
will be the weak convergence properties under Pn and under the contiguous
distributions Qn, of the normalized versions

Yn(s,t;g) =

on 0 < s < t < 1 of {Sjk(g),0 < j < k < n} and {Tjk(g),0 < j < k < n},
where /(/) is the Fisher-information of / and Skk(ΰ) = Tkk(g) = 0.

If in both Sjk(g) given by (7) and Tjk(g) given by (1), one uses g = / ,
i.e., if the score function for each procedure is based on the true /, then the
weak limits of {Yn(s,t; /)} and {Zn(s,t; /)} are identical under Pn and are
also identical under Qn. The common weak limit of the two processes is

<B(t) - B(s) - ^δy/ϊ(f)(t - θ), 0 < a < t < 1 j (8)

under Pn , where {B{t),t > 0} is a standard Brownian motion, and both
processes have another deterministic component

Sy/ϊU)[(t - θ)lm(t) -(s- θ)I(θtl](s)]

added to their common limit under Qn. Thus in the contiguous change model,
the Rank-CUSUM and the Page-CUSUM procedures have identical limiting
behavior both with respect to false alarm and correct detection, if they both
use the score function corresponding to the true /.

Now consider the case where the symmetric density g used in Sjk(g) and
Tjk(g) is different from /. In such a case, the weak limit of {Yn(s,t;g)} under
Pn is obtained by replacing y/l(f) by y/l(g) in (8) and under Qn is obtained
by multiplying the deterministic component in (9) by p(f,g) = correlation
coefficient between <£+( ,/) and ¥>+(\,<7). Note that if there is no change,
then {Yn(s,P,g)} is distribution-free in the limit, i.e., its limiting distribution
does not depend on /, as should be the case. On the other hand, if there
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is a contiguous change, then the deterministic component in (9) which drives
Sk(g) = maxo<j<fc Sjk(g) towards the decision boundary after change gets
weakened by the factor /)(/,(/). This factor p, although less than 1, may still
attain a reasonable level, and is always positive if / and g are both symmetric
unimodal. This is an improvement upon the stopping rule based on sequential
ranks considered by Bhattacharya and Frierson(1981), which is driven towards
the decision boundary by a logarithmic drift after change.

The limiting properties of the Rank-CUSUM described above only re-
quires / and g to have finite and positive Fisher-information and absolutely
continuous derivatives. However, the limiting properties of the Page-CUSUM
using g φ j hold only under more stringent conditions and the false alarm
rate itself varies drastically with the choice of 5, as will be demonstrated by
the simulation results in the next section. The actual limiting distributions of
Page-CUSUM using g φ f are somewhat complicated and will not be discussed
here.

The above weak convergence properties of the Zn-process follow in a
straightforward manner from an expansion of log{/(Xt — δn~1^2)/f(Xi)} to
the second order terms. Corresponding results for the Yn-process are first es-
tablished under {Pn} by proving the convergence of finite-dimensional distri-
butions (fdd) via Hajek-projection and using a martingale argument to prove
tightness. By contiguity of {Qn} to {Pn}> convergence of fdd's of the Yn-
process under {Qn} is then obtained by LeCam's Third Lemma while tightness
under {Qn} becomes automatic. Details will be given in a separate publica-
tion.

3. Simulation Results. In these simulation experiments we consider
Rank-CUSUM and Page-CUSUM procedures with scores based on certain
symmetric densities g and calibrate them according to certain amounts Δ
of change in location, so that their false alarm rates before a truncation time
n = 200 are controlled at certain specified levels a when the observations are
generated by the same g on which the scores are based. The calibration consists
of determining the cut-off points c in (2) and (7) empirically according to the
specifications described above. We denote the cut-off points obtained in this
manner by Cβ(α,Δ;#) for the Rank-CUSUM procedure and by Cp(a,A;g)
for the Page-CUSUM procedure. Thus

^ T ί ) > C P ( α , Δ ; 5 ) ] = α,

where Pg denotes relative frequency in 1000 runs.

Having determined the cut-off points, the Rank-CUSUM and the Page-
CUSUM procedures, truncated at n = 200, are now applied on data generated
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without change in location (null case) and with change in location at τ+1 = 51
of the amount Δ used in calibration (non-null case), from the pdf 's that the
procedures were calibrated for, and from other pdf's. We denote by / the
pdf's used in generating data. Let NR and Np denote the stopping times
of Rank-CUSUM and Page-CUSUM procedures respectively in the situations
described above.

The false alarm rates, i.e., the relative frequencies of NR < 200 and
Np < 200 in the null case when there is no change are given in Table 1 for
scores based on g = Normal, Double Exponential and Cauchy, data generated
from / = Normal, Double Exponential and Cauchy, and calibration parameters
(Δ,α) = (1,.05), (0.5,.10), and (0.2, .20). All three distributions are scaled
to make the Fisher-information 1 in each case. For the non-null case when a
change occurs, the relative frequencies of stopping before change (false alarm),
i.e., NR < 50 and Np < 50 and of stopping after change but before truncation
(true detection), i.e., 51 < NR < 200 and 51 < NP < 200 are given in Table
2, together with the conditional mean and standard deviation of NR and Np
given that true detection took place. All values given in Tables 1 and 2 are
based on 1000 runs.

Table 1: False Alarm Rates of Rank-CUSUM and Page-CUSUM: Null Case
Truncation: n = 200, Change-Point: τ = 200 (No Change)

Score (g)

Normal

Dbl. Exp.

Cauchy

Calibration
Δ

1.0
0.5
0.2

1.0
0.5
0.2

1.0
0.5
0.2

a

.05

.10

.20

.05

.10

.20

.05

.10

.20

Normal
Rank

.046

.100

.179

.038

.117

.208

.038

.094

.166

Data

Page

.041

.101

.187

.046

.137

.239

.129

.264

.356

Distribution (
Dbl.
Rank

.055

.079

.148

.047

.101

.161

.052

.087

.166

Exp.
Page

.655

.548

.575

.048

.085

.170

.109

.150

.231

/)
Cauchy

Rank

.054

.083

.158

.042

.104

.188

.036

.092

.195

Page

1.000
.998
.997

.063

.101

.194

.044

.088

.189
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Table 2: Stopping Times of Rank-CUSUM and Page-CUSUM: Non-Null Case.
Truncation: n = 200, Change-Point: r = 50, iV = Stopping Time, N and sd
(N) are conditional upon 51 < N < 200. Note: Relative Frequencies of
N > 201 are positive in some cases.

(a) Amount of Change: Δ = 1.0, Calibration: Δ = 1.0, a = .05

Score(g)

Normal

Dbl. Exp.

Cauchy

Rel. Freq..
Mean and

of N

iV<50
5KN <
N
sd(N)

N <50
51<JV<
N
sd(iV)

N <50
bKN <
N
sd(iV)

>
s.d.

200

200

200

Data

Normal
Rank

.005

.995
64.5
8.1

.004

.996
75.4
15.1

.007

.865
120.9
34.2

Page

.009

.991
62.9
6.7

.010

.990
66.3
8.3

.034

.966
64.5
8.1

Distribution (/)

Dbl. Exp.
Rank

.002

.997
73.0
15.7

.006

.993
78.4
18.7

.005

.934
108.6
33.0

Page

.214

.786
61.3
7.4

.010

.990
65.6
7.9

.021

.979
64.4
7.7

Cauchy
Rank

.005

.951
91.9
32.0

.008

.991
81.9
22.2

.007

.979
95.5
28.3

Page

.887

.113
59.0
7.6

.018

.982
65.7
7.9

.008

.992
64.8
7.4

(b) Amount of Change: Δ = 0.5, Calibration: Δ = 0.5, a = .10

Score(g)

Normal

Dbl. Exp.

Cauchy

Rel. Freq..
Mean and

of N

iV<50
5KN <
N
sd(N)

N <50
51 < iV <
N
sd(JV)

iV<50
5KN <
N
sd{N)

1

s.d.

200

200

200

Data
Normal

Rank

.004

.993
83.9
19.1

.015

.966
94.1
27.5

.016

.759
119.8
38.5

Page

.012

.985
82.1
18.8

.012

.986
86.4
22.6

.042

.957
81.0
21.1

Distribution (
Dbl. Exp.
Rank

.004

.974
98.8
29.9

.010

.979
94.2
27.8

.014

.921
103.3
32.5

Page

.126

.873
78.5
21.8

.010

.987
85.8
21.8

.022

.976
82.5
21.1

/)
Cauchy

Rank

.009

.890
111.2
36.2

.023

.964
94.7
27.3

.023

.963
96.9
28.1

Page

.817

.183
67.1
15.8

.012

.986
87.2
22.2

.014

.986
84.3
20.0
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(c) Amount of Change: Δ = 0.2, Calibration: Δ = 0.2, a = .20

Score(g)

Normal

Dbl. Exp.

Cauchy

Rel. Freq..

Mean and
of N

iV<50
51< N <
N
βd(JV)

J\Γ< 50
δl<N<
N
sd(iV)

iV<50
51<JV<
N
sd(iV)

s.d.

200

200

200

Data

Normal
Rank

.006

.853
117.9
36.1

.014

.741
118.6
37.8

.017

.528
124.3
38.7

Page

.010

.843
115.0
36.9

.020

.804
117.1
37.6

.046

.834
110.0
37.7

Distribution (/)

Dbl. Exp.
Rank

.010

.704
125.2
37.5

.018

.804
120.2
37.7

.015

.736
121.7
37.5

Page

.117

.807
104.8
37.9

.016

.826
118.5
36.3

.019

.847
113.6
37.2

Cauchy
Rank

.008

.608
126.3
39.0

.012

.776
119.2
37.8

.017

.776
118.7
37.1

Page

.763

.235
76.7
24.3

.013

.808
117.8
37.2

.014

.854
116.6
36.9

The simulation results given in Tables 1 and 2 demonstrate the following
asymptotic properties of the two procedures:

1. The false alarm rates of the Rank-CUSUM procedure are robust against
misspecification of the underlying distribution when there is no change,
but the false alarm rates of the Page-CUSUM procedure are not. The
Page-CUSUM false alarm rates become as high as twice the calibration
parameter a if a Cauchy score is used on Normal data and are practically
1 if a Normal score is used on Cauchy data. Since the Normal score is
a popular choice for Page-CUSUM , this behavior should be of serious
concern.

2. If the score matches with the data distribution, then the stopping times
of the two procedures in the non-null case resemble one another more and
more closely as the amount of change Δ to be detected gets smaller and
smaller, and are almost identical for Δ = 0.2 with a = .20.

The simulation results also seem to indicate the following tendencies in
the two procedures in Table 2:

3. When the score function does not match with the data distribution, the
Page-CUSUM procedure acts aggressively by stopping too early. This
may explain, at least partly, the higher rates of true detection and smaller
average run lengths that the Page-CUSUM procedure has in some cases.
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4. For the Page-CUSUM procedure, the Double Exponential score seems to

be a good choice. Indeed, this score can be thought of as a robust version

of the Normal score for Page-CUSUM .
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