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Consider a linear normal experiment with a fixed regression subspace

and a known covariance matrix Σ. A classical method for comparing such

experiments involves the covariance matrix of the Gauss-Markov estimator

of the regression coefficients, say V(Σ). We introduce a group action on

covariance matrices and show that a maximal invariant is V(Σ). The con-

cavity of V(Σ) in the Loewner ordering shows that V(Σ) is monotone in

the natural group induced ordering on covariances. In addition, the group

structure is used to provide an easy proof of a main theorem in the compar-

ison of linear normal experiments. A related problem concerns the behavior

of V(Σ) as a function of the elements of Σ. Some results related to positive

dependence ideas are presented via examples.

1. Introduction

In simple linear model problems, the covariance matrix of the Gauss-
Markov estimator of the vector of regression coefficients is often used to
choose between competing linear models with the same regression coeffi-
cients. Given an n x k design matrix X of rank k with 1 < k < n and
a known non-singular covariance matrix Σ, let S(X, Σ) denote the experi-
ment with an observation vector Y whose distribution is multivariate normal
N(Xβ, Σ) where β is the fc-vector of regression coefficients. The reason for
the assumption that k < n is explained at the end of Section 4.

Now, the covariance matrix of β, the Gauss Markov estimator of /?, is

(1.1) Cov(/3) = ( X ' Σ " 1 * ) - 1 .

For two experiments with the same β G Rk, say S(X{, Σ t ), i = 1,2, it is well
known that experiment £(Xi,Σi) is sufficient for

(1.2) (XίΣΓ1*!)-1 < (X'^
1 Work supported in part by National Science Foundation Grant DMS-89-22607.
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where " < " is the standard Loewner ordering on symmetric matrices (A < B
means B — A is non-negative definite). [Here, we are using sufficiency in
the sense discussed in Blackwell (1951, 1953) — that is, an experiment Z\
is sufficient for £2 if for every decision problem and prior distribution, the
Bayes risk from S\ is not greater than that from £2-] A proof of this and
related results can be found in Hansen and Torgersen (1974). A few other
relevant references include Ehrenfeld (1955), Torgersen (1972), Goel and De
Groot (1979), Stepniak, Wang and Wu (1984), Torgersen (1984), Shaked
and Tong (1990), and Torgersen (1991).

In the simple case when k = 1 and X is the vector of ones in Htn, say
X = e, replace β by θ. Thus the data vector Y is N(θe, Σ) and

(1.3)

With the further assumption that Σ is a correlation matrix, say Σ = i2, (1.3)

becomes

(1.4) φ(R) = var(0) = (e'R^e)'1.

When R is an intraclass correlation matrix with off diagonal elements equal
to p G (—(n - I)" 1 ,1) then φ(R) = n""α[(n - l)p + 1] which is increasing in
p. For this case, then, experiments can be ordered by sufficiency in terms
of p. In a recent paper, Shaked and Tong (1990) studied this and other
problems by comparing experiments with i.i.d. observations to those with
exchangeable variables. They showed that under certain conditions, positive
dependence (corresponding to p > 0 in the example above) tends to decrease
information (increase φ(R)). This raises the rather natural question of how
φ(R) behaves as a function of R when all the elements of R are non-negative.
For example, when is it true that φ(R) > φ(In) so that an experiment with
i.i.d. observations is preferred to one with correlation matrix RΊ

In Section 2 of this paper, we present a number of examples — all of which
concern the behavior of φ(R) when the elements of R are non-negative. For
n = 3, the examples show that for some iZ's with non-negative elements,
perfect estimation of θ is possible — that is, θ has variance zero. In other
cases, φ(R) first increases and then decreases as certain elements of R in-
crease. However, when R has some special structure, such as the circular
correlation structure of Olkin and Press (1969) or the special correlation
structure described in Tong (1990, p. 129), φ(R) increases as certain ele-
ments of R increase. These examples show that our rather vague intuitive
feeling that "positive correlation tends to decrease information content in an
experiment" is very far from the truth, even for rather simple normal ex-
periments with three observations. But, when R has some special structure,
our intuition may be correct.

For a general linear normal experiment S(X, Σ), the quantity

(1.5) ^(Σ) = ( X ' Σ - 1 * ) " 1
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is used to order experiments in terms of sufficiency. For X fixed, this induces
a natural equivalence relationship on Σ's — namely, Σi and Σ2 are equivalent
ifF^(Σi) = φ(Σ2) An alternative way to induce an equivalence relationship
on Σ's is to consider n X n non-singular linear transformations A which fix
the regression space (the column space of X), and then define a group action
on the set 5+ of all n x n positive definite Σ's. More precisely, suppose the
observation vector Y satisfies

(1.6) C(Y) = N(Xβ,Σ),

where £(•) denotes "the law of •". Let G{X) be the group of all n x n
non-singular matrices which satisfy AX = X (A fixes the regression sub-
space). In terms of sufficiency, Y and AY are equivalent since they are 1-1
transformations of each other. Further,

C(Y) = N(Xβ,Σ)

C(AY) = N(Xβ,AΣA').

Thus, the group action Σ -> AΣA', A G G(X), also induces an equivalence
relationship on S* which is clearly relevant for the comparison of experi-
ments. A main result in Section 3 shows that the two equivalence relations
are the same. This is accomplished by showing that φ(Σ) is, in fact, a max-
imal invariant under the action of G(X) on <S+. A basic lemma which is
used to prove that φ(Σ) is a maximal invariant is also used to give a very
easy proof that (1.2) implies that £(Xι,Σi) is sufficient for S(X2^2)-

Finally, the action of G(X) on S* induces a natural partial ordering —
namely Σ x < Σ 2 iff Σ x is in the convex hull of the G(X) orbit of Σ 2 . This
type of ordering arises in a number of problems in probability and statistics
— see Eaton and Perlman (1977) or Eaton (1987). However, unlike the case
here, only compact groups have arisen naturally in the examples familiar to
me. Because the function

Σ

is concave (in the Loewner ordering — see Ylvisaker (1964)), it follows imme-
diately that φ is decreasing in this G(X)-induced ordering on <S+. A main
result in Section 4 relates the ordering induced by G(X) to the ordering
induced by φ.

2. Examples with Non—Negative Correlations

Throughout this section, R denotes an nxn correlation matrix with non-
negative elements. With e denoting the vector of ones in iί n, the examples
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below concern the behavior of

(2.1) φ(R) = (e 'Λ^e)- 1

when R is non-singular. Cases where R is singular are also of interest and
will be discussed separately. When Y is Nn(θe,R) and R is non-singular,
then φ(R) is the variance of the Gauss-Markov estimator of θ. Marginally,
each coordinate of Y is N(θ, 1) so it is natural to ask for conditions on R
which imply that

(2.2) φ(R) > φ(In).

In other words, when is the experiment £i(e, J n ) consisting of i.i.d. obser-
vations sufficient for £2(^5^)? Clearly (2.2) holds for n = 2, since R has
non-negative elements. However, the following example for n = 3 exhibits,
what is to some, a rather counter-intuitive result.

EXAMPLE 2.1 For n = 3 consider

/ I 0 a
R= I 0 1 α 1 , 0 < α < 2" 1 / 2.

Given that a is non-negative, the condition on a is necessary and sufficient
that R be positive definite. An easy calculation shows that

(2.3) h(a) = (e'R-h)-1

is given by
1 _ 9/Ϊ2

(2.4) h(a) = L-ΪΪ-, 0 < a < 2"1/2.

Differentiation shows that h is concave, increases in [0,1/2) and decreases in
(1/2,2"1/2). The maximum value of 1/2 is for a = 1/2, and

(2.5) h(2-1'2) = 0.

In fact, when the correlation matrix is

(2.6)

Ro is singular. When

(2.7)

let c3 = (1 - 2 1 / 2 )" 1 , ci = c2 = -2" 1 / 2 c 3 , and let c G R3 have coordinates
ci?c2?c3 Then c'Y is an unbiased estimator of θ which has variance zero.

Thus perfect estimation of θ is possible when the covariance matrix is RQ.
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This example has the following implication. Given YΊ and Y2 which are
i.i.d. iV(0, 1), suppose we can further select a Y3 which is marginally JV(0, 1),
but which has correlation p with Y\ and I2, p G [O^" 1/ 2]. From a design
point of view, some intuition suggests that p = 0 may be the preferred value
of p for inferential problems concerning θ. However, the example shows that
p = 2"1/2 is the preferred value for all inferential problems since perfect
estimation of θ is then possible. •

REMARK 2.1 The above example is easily extended to correlation matrices
of the form

/ I δ ay

R =iδ 1 a
\a a 1,

where 0 < <5 < 1, 0 < α < 1, and 1 + δ - 2a2 > 0. In this case,

(1) for a fixed, a G [O^" 1/ 2), the function δ —> (e/i2~1e)~1 is increasing in

M e [0,1)

(2) for <5 G [0,1) fixed, the function a -> (e'Λe)-1 is concave on [0,((l +
ί)/2)1/2), has a maximum at a point strictly between the two end-
points, and converges to zero as a converges to the right endpoint.
When a = ((1 + 6)/2)1/2, perfect estimation of θ is again possible. •

REMARK 2.2 Extensions of Example 2.1 to higher dimensions is easy. For
dimension n, let u be a fixed n-vector of length one with non-negative
coordinates and let 6 be a real number in [0,1). Then the (n + 1) x (n + 1)
correlation matrix

R-\bu'

has non-negative elements and is non-singular. When w;e / 1, the behavior

of

b -+ ( e ' i Γ ^ ) - 1

is similar to that of h defined in (1.3). When u'e φ 1 and 6 = 1 , then R is

singular and again, perfect estimation is possible. •

The following proposition gives a sufficient condition for (2.2) to hold.

PROPOSITION 2.1 Let R be annxn positive definite correlation matrix with
non-negative entries such that Re = ce for some real number c. Then

(2.8) (e'R^e)-1 > - .
n
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PROOF Since Re = ce and R has non-negative elements, c > 1. Thus,

( , \ -l

c J n ~ n

Examples of iϊ's which satisfy the assumptions of Proposition 2.1 include in-
traclass correlation matrices with non-negative entries and the circular sta-
tionary correlation matrices (see Olkin and Press (1969)) with non-negative
entries.

The final example of this section deals with a class of correlation matrices
which might be called intra-inter-class correlation matrices as described in
Tong (1990, p. 129). For a positive integer n, let ni > n2 > > nr > 1 be
a partition of n — that is, each nt is a positive integer and

(2.9)
1

Partition a correlation matrix R into n t x nj blocks, 1 < i,j < r and assume

{
(i) Ru has intraclass correlation structure with

correlation coefficient P2 G [0,1)
(ii) for i φ j , the block Rij has all entries equal

topiG[0,/> 2].

PROPOSITION 2.2 If R has the structure given in (2.10), then

1 + Pi Z î ni\L - P2 + \P2 - Pi)n>i)

PROOF This is proved in Appendix I. D

Using the expression (2.11) it is easy to show that

(i) for fixed p2,e'R~1e is decreasing in pi for p\ G [0,p2]

(ii) for fixed pι^efR"1e is decreasing in p2 for p2 G (pi, 1).

Thus, φ(R) in (2.1) is increasing in p\ for p\ G [0,p2] and is increasing in p2
for p2 G [pi, 1). Hence we have

COROLLARY 2.3 A correlation matrix with the structure (2.10) satisfies
φ{R)>φ{In). n

REMARK 2.3 Using (2.11) it is possible to give an alternative proof of a
recent result of Shaked and Tong (1992). To describe this result, fix p\ and
P2 with 0 < pi < P2 < 1 and regard φ(R) as a function of the partition n =
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(n i ,n 2 , . . . ,n r ,0 , . . .,0) — an n-dimensional vector. Let n and n* be two
partitions such that n majorizes n* (see Marshall and Olkin (1979) for the
relevant definitions) and let R and R* be correlation matrices corresponding
to these two partitions (with the same p\ and ^2). Then, the experiment
based on Y* ~ N(θe,R*) is sufficient for the experiment based on Y ~
N(θe,R). The proof of this in Shaked and Tong (1992) is based on results
in Torgersen (1984). However, using (2.11), a direct verification that the
function φ is a Schur convex function of partitions n is not difficult. Thus if
n majorizes n*, then φ(R*) < φ(R) so the Shaked and Tong result follows. •

REMARK 2.4 It is well known that for Σ for positive definite and x fixed,
the function

is a concave function of Σ (see Section 4 for a more general result and
further discussion). Thus, on any line segment contained in the set of positive
definite matrices, the function (x 'Σ" 1 ^)" 1 is concave on that line segment.
In particular, (x'Σ^x)"1 is concave in each element of Σ, as long as Σ
remains positive definite. These remarks explain the concavity property in
Example 2.1. D

3. A Group Action on Covariances

Consider an observation vector Y in Rn which has a N(Xβ^Σ) distribu-

tion where the design matrix X is n x k of rank fc, the known covariance

matrix Σ is non-singular, and β G Rk is the vector of regression coefficients.

As described in Section 1, such experiments can be compared via the func-

tion

(3.1) φ(Σ) = (X'Σ^X)-1

which is the covariance matrix of the Gauss-Markov estimator β of β. Let

G(X) be the group o f n x n non-singular matrices A which satisfy AX = X.

Such J4'S fix the elements of the regression subspace. Then G(X) acts on

the set S+ of n X n positive definite matrices via the group action

(3.2) 5 -> ASA'.

Clearly, φ in (3.1) is invariant under this group action. A main result in
this section shows that ψ is a maximal invariant. To establish this, some
preliminaries are needed. First, each n X k X of rank k can be written

(3.3) X = TX0M
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where Γ is an n x n orthogonal matrix, M is a k x k non-singular matrix,
and XQ is the special design matrix

(3.4) *„-(*).

Also note that

(3.5) X = TVXo

where

is n X n and non-singular.

LEMMA 3.1 Given Σ G S+, ^ere e mte an A G

(3.7)

PROOF Partition Σ as

Σ = f Σ n Σ l 2 )
V Σ21 Σ22 /

where Σn is k x k and Σ22 is (n — k) x (n — k). It is clear that A G
iff A has the form

where A22 is (n - k) X (n - k) and non-singular. Now, pick A22 =
and A12 = -Σ12ΣJ21. With this choice of A, some algebra yields

AΣA'-(ΣlV2 °AΣA-{ O In.

where Σ n 2 = Σn — Σχ2ΣJ2

1Σ2i. But it is well known that

Σ π . 2 = ( X ^ Σ - ^ o ) - 1 . α

COROLLARY 3.2 The function

ψo(Σ) = (X'oΣ-'XoT1

is a maximal invariant under the action of G(Xo).

PROOF The invariance of ^0 is obvious. If ^o(Σi) = ^0(^2), use Lemma
3.1 to find A\ and A2 so that

( 0 \ _ (φo(Σ2) O
A^Ai-{ O In.J-{ 0 In-

Thus Σi and Σ2 are in the same orbit so ψo is maximal. •
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THEOREM 3.3 A maximal invariant under the action of G(X) on S+ is
ψ(Σ) in (3.1).

PROOF The invariance of ψ is clear. If ψ(Σι) = ^>(Σ2), then writing X in
the form (3.3) yields

(3.8) X^(Γ/Σ1Γ)"1X0 =

From Corollary 3.2, there then exists an A £ G(XQ) such that

(3.9) AΓ'ΣiΓA' = Γ'Σ2Γ.

Setting B = TAT', B is in G(X) and BΣxB' = Σ 2 . •
Using Lemma 3.1 it is fairly straightforward to give a proof from first

principles that £(Xi,Σi) is sufficient for £(X 2,Σ 2) iff (1.2) holds. Here, we
just sketch the details. Let Yi be the data vector for £(Xt ,Σ t ), i = 1,2.

CLAIM 1 Without loss of generality, X\ = X2 = XQ. TO see this, use (3.5)
to find an n X n non-singular matrix C, such that C%Xi = Xo, iί = 1,2. Then

OCiYi) = NiXoβ^CiΣiCl), i = 1,2.

Because C% is non-singular, the experiments £(X, ,Σ t ) and ί(C t Xi,Ct Σ t C/)
are equivalent. Further, (1.2) holds iff

This establishes Claim 1. •

Now take X\ = X2 = Xo so we want to prove

THEOREM 3.4 The experiment £(X0,Σi) is sufficient for ε(Xo,Σ2) iff

(3.10) (X^Σ^XoΓ 1 < 1 1

PROOF Assume (3.10) holds. Using Lemma 3.1, find A% G G(Xo) such that

C(AiYi) = N(Xoβ, A&iA'i), i = 1,2

where

Since the il t 's are non-singular, the experiments S(XQ, Σ t ) and S(XQ, AiΣ{Ai)
are equivalent. But, when (3.10) holds, we can then find a random vector Z
which is JV(0,Δ) and is independent of Yi such that for all /?,

(3.11) C(A1Y1 + Z)
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Of course,
Δ = A2Σ2A

I

2-A1Έ1A'1

is non-negative definite. But (3.11) clearly implies that ε{X^A{ΣlιA
f

1) is
sufficient for ε{XQ^A2Σι2A

t

2) (see Lehmann (1959, p. 75)).
For the converse, let T, = j4, Σ t i4( so the experiment S(Xo,Ti) has data

vector A{Yi, i = 1,2. Consider the decision problem of estimating β with a
loss function

L(a,β) = (a-β)'D(a-β)

where D is a fixed non-negative definite matrix. When β has a 7V(0, α/)
prior distribution with a G (0, oo) standard calculations yield a Bayes risk
for experiment S(Xo^T{) of

Π(a) =

+αtr[α(T; + α / ) " 1 -

Letting α -* oo produces the limit

n(oo) - trΓ, J9, i = 1,2.

When £(Xo,T\) is sufficient for £(Xo?Ϊ2)> we then must have

(3.12) trΓi£> < tτT2D

for all non-negative definite D. This is clearly equivalent to (3.10).

REMARK 3.1 When comparing £(Xi, Σi) and ε(X2^ Σ2), the argument in
Claim 1 above shows that it is sufficient to consider the case X\ = X2 = XQ
where Xo is given in (3.4). For comparing £(Xo,Σχ) and ε(XoJΣ2)J the
group G(Xo) is obviously relevant since ^(Σ) = ( X o Σ " 1 ^ ) " 1 ι s maximal
invariant and characterizes sufficiency. •

4. A Group Induced Ordering on Covariances

Again consider an experiment S{X, Σ) corresponding to a random vector
Y with C(Y) = N(Xβ, Σ), β € Mk. The function

(4.1) ^(Σ) = (X'Σ^X)-1

is a maximal invariant under the action of G(X) on <Ŝ J", and is clearly rel-
evant for the comparison of experiments. An important property of φ, es-
tablished in Ylvisaker (1964), is that φ is concave in the Loewner ordering
on <S+. That is, for £1, S2 G <S+ and α G [0,1], the matrix

+ (1 - a)S2) - α^(5i) - (1 - a)φ(S2)
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is non-negative definite. This we write as

(4.2) φ{aSχ + (1 - a)S2) > <*Φ(Si) + (1 - a)φ(S2).

To define an ordering on <S+, let C(S) denote the convex hull of the
G(X)-orbit of S E «S+. In other words, C(S) is the convex hull of

{ASA' I A e G(X)}.

DEFINITION 4.1 Write SΊ <G S2 if SΊ e C(S2).

Since C(S2) is the convex hull of the G(X)-orbit of 52, each point in
C(S2) is a finite convex combination of points in the orbit. Thus SΊ is in
C(S2) iff S\ can be represented as

for some integer r > 1 where α t > 0 and Σcti = 1. In other words, SΊ <G S2

iff SΊ has the above representation. It is easily checked that S\ <G S2 iff for
any A,BeG(X),

ASλA' <G BS2B'.

Using this, it follows that SΊ < G S2 iff C(5i) C C(S2). Thus, < G is a
pre-order in the sense described in Marshall and Olkin (1979, p. 13). Group
induced orderings of this type have arisen in a number of contexts related to
both probability inequalities and inequalities more generally. The classical
majorization ordering is a group induced ordering, as is one version of the
submajorization ordering. Some relevant references are Eaton and Perlman
(1977), Marshall and Olkin (1979), Eaton (1982) and Eaton (1987). It should
be noted that in all of the examples I know, except the current one, the
underlying groups are compact.

The main result of this section shows that SΊ <G S2 iff ^(SΊ) > φ(S2).
Therefore, the G(X) induced ordering on covariances is the same as the
comparison of experiments ordering given by φ in (4.1). The implication in
one direction is easy.

THEOREM 4.1 If Si <G S2, then φ(Sι) > φ(S2) (in the Loewner ordering).

PROOF Since S\ <G S2 we can find Λi,..., Ar in G(X) and non-negative
numbers α i , . . . , ar satisfying Σα t = 1 such that

r

(4.3) S1
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Using the concavity of φ in the Loewner ordering, we have

= Φ \Y,aiAiS2A
/-\ > J2^iΦ(AiS2A

f

i) = φ(S2).

The final equality follows from the G(X)-invariance of φ. D

For the converse, we first establish a special case.

LEMMA 4.2 Consider the ordering <G induced on <S+ by G{XQ). If

(4.4) (Xtf^Xo)-1 < (XΌS^Xo)-1

then there exists a discrete probability measure μ on G(Xo) such that

(4.5) Si = / AS2A'μ(dA).

PROOF Let

From Lemma 3.1, there exists A{ G G{XQ) such that

'Ti 0
• = 1 , 2 .

By assumption, Δ = 7\ - T2 is non-negative definite. Write Δ =
where vt , . . . , υjς are vectors in Rk. Fix izo G Rn"k such that wόi/o = 1. Let
B be the random kx (n — k) matrix which takes on the values άz(2k)1^2ViU/

0

with probabilities l/2k. Denote by μ0 the distribution (on G(Xo)) of the
random matrix

Because SB = 0 and EBB' = Δ, it is easy to verify that

(4.6) εμoA(A2S2A'2)A' = A1S1A'1.

Setting A = Aϊ1AA2, let μ denote the distribution of A on G{XQ). Then

(4.6) can be written
(4.7) ZμAS2A! = Sx

which is just (4.5). •
Of course, (4.5) is just the assertion that 5χ is in C(S2) — that is,

Si <G S2 when G = G(XQ). The general case is now easy.

THEOREM 4.3 Consider the ordering <Q induced on S+ by G{X). If

(4.8) (x's^x)-1 < (x's^xy1,

then Si <G S2.
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PROOF Using (3.3), write X = TX0M so (4.8) is equivalent to

(4.9) (X'o(T'S2T)-1Xo)-1 < (X^(TfS1T)-1Xor1.

From Lemma (4.2), Γ'SΊΓ is in the convex hull of the G(X0)~orbit of ΓS 2 Γ.
Thus, we can write

Γ'SiΓ = Σα t Af (Γ'£2Γ)Aj

where A{ G G(X0), oti > 0 and Σα, = 1. Therefore

Since A{ G G(X0), ΓAt Γ' G G(X) so 5X is in the G(X)-orbit of 5 2 . Thus

Si <G S2. Π
Now, consider experiments £(Xi,Σi) and £(X2?Σ2). To compare these

experiments, we can take X\ = X2 = Xo (see Remark 3.1). The results
in this section show that £(Xo?Σi) is sufficient for £(Xo,Σ2) iff Σ2 <G Σ I
where G = G(XQ). Note that this result is not correct when k = n since in
this case XQ = In and G = {/n}; so the convex hull of the G-orbit of Σi is
just {Σi}. However, the characterization (1.2) of sufficiency does continue
to hold when X\ = X2 = Xo and k = n. Thus the assumption that k < n is
necessary.

Appendix I

In this appendix, we establish a result which verifies equation (2.11) of
Proposition 2.2. Let a?i,... ,x r be vectors in Rn which satisfy

( i ) x f

i X j = 0 liiφj

(ii) x[xi = of with α, > 0.

Also, let x = Σ[x{. For a > 0 and /? > 0, consider the matrix

r

(A.I) A = /+<***' + ,
1

The following proposition gives a formula for x'A"1x.

PROPOSITION A.I With x and A as defined above,

( Λ Oϊ Ύ' A~lr — ^ 1 ai V "* Pai)
\ Ά ' Δ ) x Ά 1 4 . V^r 2/1 1 β 2\-l #

PROOF Without loss of generality (just make an orthogonal transformation
of coordinates), we can assume that n = r and X{ = α, €, where €{ is the ith
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standard basis vector in Rr. Under this assumption, Σ\xix\ is a diagonal
matrix D with diagonal entries α?, i = 1,..., r. Further

X =
a2

= aeRr

and

Therefore,

\ar)

= I+aaa' + βD.

x'A^x = a\I + βD + aaaΎλa = ^(/

where t; is given by

αvv

But, it is easy to show that

(A.3) v\I

From this, we have

x'A-1* =

avvf

from which the result follows by noting that

Π

To apply this result to correlation matrices R satisfying (2.10), first let
πι > - - - > nr > 1 be a, partition of n. Then, let e ^ G Rn be the vector
whose first n\ + + ̂ i-i coordinates are zero, whose next nt coordinates
are one, and whose remaining coordinates are zero. Then it is clear that

(i) eW'eW = 0 if i φ j
(ii) e « V > = Πi
(iii) Σ ϊ e« = e

where e is the vector of ones in Rn. An easy calculation shows that

R = (1 - P2)I

A direct application of Proposition A.I and a bit of algebra yields Proposition
2.2.
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