APPENDIX

We include here some results relevant to the weak convergence of processes in $\mathbb{D}[0, 1]$ and $\mathbb{C}[0, 1]$ for the sake of easy reference and without proofs. Our source is the book by Billingsley (1968) (B) on *Convergence of Probability Measures*.

To begin with, let ξ_1, \ldots, ξ_m be r.v.'s, not necessarily independent and define

$$S_{k} := \sum_{j=1}^{k} \xi_{j}, \quad 1 \leq k \leq m; \qquad M_{m} := \max_{1 \leq k \leq m} |S_{k}|.$$

The following lemma is obtained by combining (12.5), (12.10) and Theorem 12.1 from pp 87-89 of (B).

Lemma A.1. Suppose there exist nonnegative numbers $u_1, u_2, ..., u_m, a$ $\gamma \ge 0$ and an $\alpha > 0$ such that

$$E\{|S_k - S_j|^{\gamma}|S_j - S_i|^{\gamma}\} \leq \left(\sum_{r=j+1}^k u_r\right)^{2\alpha}, \qquad 0 \leq i \leq j \leq k \leq m.$$

Then, $\forall \lambda > 0$,

$$P(M_{m} \geq \lambda) \leq K_{\gamma,\alpha} \cdot \lambda^{-2\gamma} (\sum_{r=1}^{m} u_{r})^{2\alpha} + P(|S_{m}| \geq \frac{\lambda}{2}),$$

where $K_{\gamma,\alpha}$ is a constant depending only on γ and α .

The following inequality is given as Corollary 8.3 in (B).

Lemma A.2. Let $\{\zeta(t),\ 0\leq t\leq 1\}$ be a stochastic process on some probability space. Let $\delta>0,\ 0=t_0< t_1<...< t_r=1$ with $t_i-t_{i-1}\geq \delta,\ 2\leq i\leq r-1$ be a partition of $[0,\ 1]$. Then, $\forall\ \epsilon>0,\ \forall\ 0<\delta\leq 1,$

$$P(\sup_{|t-s|<\delta} |\zeta(t)-\zeta(s)| \geq 3\epsilon) \leq \sum_{i=1}^{r} P(\sup_{t_{i-1}\leq t\leq t_{i}} |\zeta(t)-\zeta(t_{i-1})| \geq \epsilon).$$

Definition: A sequence of stochastic processes $\{\zeta_n\}$ in $\mathbb{D}[0,1]$ is said to converge weakly to a stochastic process $\zeta \in \mathbb{C}[0,1]$ if every finite dimensional distribution of $\{\zeta_n\}$ converges weakly to that of ζ and if $\{\zeta_n\}$ is tight with respect to the uniform metric.

The following theorem gives sufficient conditions for the weak convergence of a sequence of stochastic processes in D[0, 1] to a limit in C[0, 1]. It is essentially Theorem 15.5, p 127 of (B).

APPENDIX 257

Theorem A.1. Let $\{\zeta_n(t), 0 \le t \le 1\}$ be a sequence of stochastic processes in D[0, 1]. Suppose that $|\zeta_n(0)| = O_p(1)$ and that $\forall \epsilon > 0$,

$$\lim_{\eta \to 0} \limsup_{n} P(\sup_{|s-t| < \eta} |\zeta_n(s) - \zeta_n(t)| \ge \epsilon) = 0.$$

Then the sequence $\{\zeta_n(t), 0 \le t \le 1\}$ is tight, and of ζ is the weak limit of a subsequence $\{\zeta_n,(t), 0 \le t \le 1\}$, then $P(\zeta \in \mathbb{C}[0,1]) = 1$.

The following theorem gives sufficient conditions for the weak convergence of a sequence of stochastic processes in $\mathbb{C}[0, 1]$ to a limit in $\mathbb{C}[0, 1]$. It is essentially Theorem 12.3, p 95 of (B).

Theorem A.2. Let $\{\zeta_n(t), 0 \le t \le 1\}$ be a sequence of stochastic processes in $\mathbb{C}[0, 1]$. Suppose that $|\zeta_n(0)| = O_p(1)$ and that there exist a $\gamma \ge 0$, $\alpha > 1$ and a nondecreasing continuous function F on [0, 1] such that,

$$P(|\zeta_n(t) - \zeta_n(s)| \ge \lambda) \le \lambda^{-\gamma} |F(t) - F(s)|^{\alpha}$$

holds for all s, t in [0,1] and for all $\lambda > 0$.

Then the sequence $\{\zeta_n(t), 0 \le t \le 1\}$ is tight, and if ζ is the weak limit of a subsequence $\{\zeta_{m_n}(t), 0 \le t \le 1\}$, then $P(\zeta \in \mathbb{C}[0, 1]) = 1$.

We also need a central limit theorem for martingale arrays. Let (Ω, \mathcal{F}, P) be a probability space; $\{\mathcal{F}_{n,i}, 1 \leq i \leq n\}$, be an array of sub σ —fields such that $\mathcal{F}_{n,i} \subset \mathcal{F}_{n,i+1}, 1 \leq i \leq n$; X_{ni} be $\mathcal{F}_{n,i}$ measurable r.v. with $EX_{ni}^2 < \omega$, $E(X_{ni} \mid \mathcal{F}_{n,i-1}) = 0, 1 \leq i \leq n$; and let $S_{nj} = \Sigma_{i \leq j} X_{ni}, 1 \leq j \leq n$. Then $\{S_{ni}, \mathcal{F}_{n,i}; 1 \leq i \leq n, n \geq 1\}$ is called a zero-mean square-integrable martingale array with differences $\{X_{ni}; 1 \leq i \leq n, n \geq 1\}$.

The central limit theorem we find useful is Corollary 3.1 of Hall and Heyde (1980) which we state here for an easy reference.

Lemma A.3. Let $\{S_{ni}, \mathcal{F}_{n,i}; 1 \leq i \leq n, n \geq 1\}$ be a zero-mean square-integrable martingale array with differences $\{X_{ni}\}$ satisfying the following conditions.

(1)
$$\forall \epsilon > 0$$
, $\sum_{i=1}^{n} E[X_{ni}^{2} I(|X_{ni}| > \epsilon) | \mathcal{F}_{n,i-1}] = o_{p}(1)$.

(2)
$$\sum_{i=1}^{n} E[X_{ni}^{2} | \mathcal{F}_{n,i-1}] \longrightarrow a \text{ r.v. } \eta^{2}, \text{ in probability.}$$

(3)
$$\mathcal{F}_{n,i} \subset \mathcal{F}_{n+1,i}, \quad 1 \leq i \leq n, \quad n \geq 1.$$

Then S_{nn} converges in distribution to a r.v. Z whose characteristic function at t is $E \exp(-\eta^2 t^2/2)$, $t \in \mathbb{R}$.