
APPENDIX

We include here some results relevant to the weak convergence of processes
in D[0, 1] and C[0, 1] for the sake of easy reference and without proofs. Our
source is the book by Billingsley (1968) (B) on Convergence of Probability
Measures.

To begin with, let ξh ...., ξm be r.v.'s, not necessarily independent
and define

Sk . ^ f j , l < k < m ; Mm:= ma^ | S k | .

The following lemma is obtained by combining (12.5), (12.10) and
Theorem 12.1 from pp 87-89 of (B).

Lemma A.I. Suppose there exist nonnegative numbers Ui, U2, ..., um, a
7 > 0 and an a > 0 such that

E { | S k - S j | 7 | S i - S i | 7 } < ( J i + I u r ) 2 £ * , 0 < i < j < k < m.

Then, V λ > 0,

P(Mm > λ) < K 7 ,α . λ" 2 7 ( Σ u Γ ) 2 α + P ( | S m | > - | - ) >
r=l Δ

inhere K7,α is a constant depending only on 7 and a.

The following inequality is given as Corollary 8.3 in (B).

Lemma A.2. Let {C(t), 0 < t < 1} be a stochastic process on some
probability space. Let δ > 0, 0 = to < ti < ... < tΓ = 1 with t\ - ti-i > ί, 2
< i < r - 1 be a partition of[0, 1]. Then, V e > 0 , V 0 < ff < 1,

P( sup | C ( t ) - C ( β ) | > 3 e ) < E P ( sup \ζ(t) - C(ti-i)| > e).
| t - s | < ί 1 = 1 ti-i<t<ti

Definition: A sequence of stochastic processes {ζΏ} in D[0, 1] is said
to converge weakly to a stochastic process ζ G C[0, 1] if every finite
dimensional distribution of {£n} converges weakly to that of ζ and if {£n}
is tight with respect to the uniform metric.

The following theorem gives sufficient conditions for the weak
convergence of a sequence of stochastic processes in D[0, 1] to a limit in
C[0, 1]. It is essentially Theorem 15.5, p 127 of (B).
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Theorem A.I. Let {Cn(t), 0 < t < 1Λ be a sequence of stochastic
processes in D[0, 1]. Suppose that | Cn(0)| = O p(l) and that V e > 0,

l im lim supn P( sup | Cn(s) - Cn(t)| > e) = 0.
**° | -t|<,

Then the sequence {Cn(t), 0 < t < 1} is tight, and of ζ is the weak limit of a
subsequence {Cn,(t), 0 < t < 1}, then P(C 6 C[0, 1]) = 1.

The following theorem gives sufficient conditions for the weak
convergence of a sequence of stochastic processes in C[0, 1] to a limit in
C[0, 1]. It is essentially Theorem 12.3, p 95 of (B).

Theorem A.2. Let {Cn(t), 0 < t < 1Λ be a sequence of stochastic
processes in C[0, 1]. Suppose that | ( n (0) | = O p(l) and that there exist a
7 > 0, a > 1 and a nondecreasing continuous Junction F on [0, 1] such that,

holds for all s, t in [0,1] and for all X > 0.
Then the sequence {Cn(t), 0 < t < 1} i gt, a

of a subsequence {ζ ( t ) , 0 < t < 1}, then P(C e C[0
Uln

for all s, t in [0,1] and for all X > 0.
Then the sequence {Cn(t), 0 < t < 1} is tight, and if ζ is the weak limit
b {ζ ( ) 0 1} th P(C C[0, 1]) = 1.

We also need a central limit theorem for martingale arrays. Let (Ω, 7}

P) be a probability space; {7n>i> 1 < i < n}, be an array of sub σ—fields such

that 7n>i C 7Ίi,i+i, 1 < i < n; Xni be 7 n,i measurable r.v. with EXni < GD,
E(Xni| ^n,i-i) = 0, 1 < i < n; and let Snj = Σi<j X n i, 1 < j < n. Then

{Sni, ^iui; 1 < i < π, n > 1} is called a zero-mean square-integrable
martingale array with differences {Xni; 1 < i < n, n > 1}.

The central limit theorem we find useful is Corollary 3.1 of Hall and
Heyde (1980) which we state here for an easy reference.

Lemma A.3. Let {Sni, 7n,i; 1 < i < n, n > 1} be a zero-mean
square-integrable martingale array with differences {Xni} satisfying the
following conditions.

(1) V e > 0 , ^ E p C Ϊ i l d X n i l >c) |y n , i- i l = θp(l).

(2) I E[x2i|7n,i-il —* a r.v. τ/2, in probability.

(3) 7n,i

Then S n n converges in distribution to a r.v. Z whose characteristic Junction

at t is E exp(-?72t2/2), teR. D




