APPENDIX

We include here some results relevant to the weak convergence of processes
in D[0, 1] and ([0, 1] for the sake of easy reference and without proofs. Our
source is the book by Billingsley (1968{ (B) on Convergence of Probability
Measures.

To begin with, let ¢, ..., én be r.v.’s, not necessarily independent
and define

k
Sk :=j2=)l &, 1<k<m; M...:=11§1§.§m | Sk |-

The following lemma is obtained by combining (12.5), (12.10) and
Theorem 12.1 from pp 87—89 of (B).

Lemma A.1. Suppose there ezist nonnegative numbers uy, us, ..., Up, @
720 and an a> 0 such that

k
E{|Sx—S;j|7IS; — Si| 1} < ( z,uur)m, 0¢i<j<k<m.
r=1
Then, Y X > 0,
29, & 2a A
PMg2>A)<Ky,a- A (r§l ur)™ + P(| Sul 2—2—),
where Kv,a is a constant depending only on vy and a.
The following inequality is given as Corollary 8.3 in (B).
Lemma A.2. Let {{(t), 0 <t < 1} be a stochastic process on some

probability space. Let § >0, 0 =ty <t;<..<tr=1 with t;—t;12> 6, 2
<i<r—1 be a partition of [0, 1]. Then,Ve>0,V0< <1,

P(sup [¢(8) = (s)| 23)< 5 P( sup [¢(8) = ((ti)] 2 )
|t—s| <4 1=1

ti-1<t <ty

Definition: A sequence of stochastic processes {(n} in D[0, 1] is said
to converge weakly to a stochastic process (¢ € C[0, 1] if every finite
dimensional distribution of {¢n} converges weakly to that of { and if {(n}
is tight with respect to the uniform metric.

The following theorem gives sufficient conditions for the weak

convergence of a sequence of stochastic processes in D[0, 1] to a limit in
C[0, 1]. It is essentially Theorem 15.5, p 127 of (B).
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Theorem A.1. Let {(nglt), 0<t« lg be a sequence of stochastic
et

processes in D0, 1). Suppose that | (a{0)| = Op(1) and that V € > 0,
lim lim supy P( sup |(n(s) — ¢u(t)| 2 €) = 0.
10 |s_t I <7

Then the sequence {(n(t), 0 < t < 1} is tight, and of ( is the weak limit of a
subsequence {(n,(t), 0 <t <1}, then P(( € ([0, 1]) = 1.

The following theorem gives sufficient conditions for the weak
convergence of a sequence of stochastic processes in €[0, 1] to a limit in
[0, 1]. It is essentially Theorem 12.3, p 95 of (B).

Theorem A.2. Let {(n(t), 0 <t < 1} be a sequence of stochastic

processes in C[0, 1). Suppose that | (a(0)| = Op(1) and that there ezist a
720, @ > 1 and a nondecreasing continuous function F on [0, 1] such that,

P(| ¢alt) = Gals)| 2 X) < XTI F () - F (5)]

holds for all s, t in[0,1] and for all XA > 0.
Then the sequence {(n(t), 0 <t < 1} 1is tight, and if ¢ is the weak limit
of a subsequence {(mn(t , 0<t <1}, then P(C€ ([0, 1]) = 1.

We also need a central limit theorem for martingale arrays. Let (Q, 7,
P) be a probability space; {Fn,i, 1 < i € n}, be an array of sub o—fields such

that Fnyi € Fasis, 1 <1< 0; Xni be Fn,; measurable r.v. with EX2; < m,
E(Xpi| Fnyi-1) = 0,1 <i<n; andlet Spj = Bi¢j Xni, 1 < j<n. Then

{Sni, Fn,i; 1 <1 < m, n > 1} is called a zero—mean square—integrable
martingale array with differences {Xn3; 1<i<n,n > 1}.

The central limit theorem we find useful is Corollary 3.1 of Hall and
Heyde (1980) which we state here for an easy reference.

Lemma A3. Let {Sni, Fn,5; 1 <1 < n, n > 1} be a zero—mean

square—integrable martingale array with differences {Xni} satisfying the
following conditions.

n
(1) Ye>o, X E[X2: I(| Xni| > €)|Fnsia] = 0p(1).
(2) f:l E[X2;|Fa,i4] — a .v. 1%, in probability.
1=
(3) Tn,iCTnil,i, lflﬁn, 1121

Then Sun converges in distribution to a r.v. Z whose characteristic function
at t is E exp(—n’t/2), teR. 0





