
CHAPTER 2

ASYMPTOTIC PROPERTIES OF
WEIGHTED EMPIRJCALS

2.1. INTRODUCTION.

Let, for each n > 1, ηn\, ...., 77nn be independent r.v.'s taking values in [0, 1]
with respective d.f.'s Gni, ....,Gn n and dni, ...., d n n be real numbers.
Define

(1) Wd(t) = Σ dni{I(77ni < t) - Gni(t)}, 0 < t < 1.
l = 1

Observe that both Vh of (1.4.1) and Wd belong to D[0, 1] for each n and
for any triangular arrays {hni, 1 < i < n} and {dni, 1 < i < n}.

In this chapter we first prove certain weak convergence results about
suitably standardized Wd and Vh processes. This is done in Sections 2.2a
and 2.2b, respectively. Sections 2.3.1 uses the asymptotic continuity of a
certain Wd-process to obtain the asymptotic uniform linearity result about
V( , π) of (1.1.2) in π. Analogous result for T( , u) of (1.4.3) uses the
asymptotic continuity of a certain Vh-process and is proved in Section 7.2.

A proof of an exponential inequality for a stopped martingale with
bounded differences due to Johnson, Schechtman and Zinn (1985) and
Levental (1989) is included in Section 2.2b. This inequality is of general
interest and an important tool needed to carry out a chaining argument
pertaining to the weak convergence of Vh.

Section 2.4 treats laws of iterated logarithm pertaining to Wd, the

weak convergence of Wd when {η\} are in [0, l ] p , the weak convergence ofg d {η\} [, ] , g
Wd w.r.t. some other metrics when {η\} are in [0, 1], an embedding result
for Wd when {η\} are i.i.d. uniform [0, 1] r.v.'s, and a proof of its
martingale property. It also includes an exponential inequality for the tail
probabilities of w.e.p.'s of independent r.v.'s. This inequality is an extension
of the well celebrated Dvoretzky, Kiefer and Wolfowitz (1956) inequality for
the ordinary empirical process. These results are stated for the sake of
completeness, without proofs. They are not used in the subsequent sections.

2.2. WEAK CONVERGENCE

2.2a. Wd - Processes.

In this section we give two proofs of the weak convergence of suitably
standardized {Wd} to a limit in C[0, 1]. Accordingly, let
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(1) G d W ^ ^ d ϊ i G n i ί t ) , 0 < t < 1,

and

(2) Cd(s, t) := £ dJi [Gni(sΛt) - Gni(s) Gni(t)], 0 < s, t < 1.

Let </ denote the supremum metric.

Theorem 2.2a. 1. Let {r/ni}, {dni} and {Gni} be as in Section 2.1.
In addition assume that the following hold:

(Nl) τ\ := .Σ d?i = 1, for all n > 1.

(N2) m a x l < i < n

(C) U m M Urn supn β u p ^ w [Gd(t + δ) - Gd(t)] = 0.

TΛen, /or every e > 0,

(i) lim, Λ lim supn P( sup | Wd(t) - Wd(s) I > e) = 0.
^° | t-s |<ί

(ii) Moreover, Wd => some W on (B[0, 1], </) if and only if for every
0 < s, t < 1, Cd(s, t) converges to some covariance function C(s, t).

In this case W is necessarily a continuous Gaussian process with
covariance junction C and W(0) = 0 = W(l).

Remark 2.2a. 1. Perhaps a remark about the labeling of the conditions
is in order. The letter N in (Nl) and (N2) stands for Noether who was the
first person to use these conditions to obtain the asymptotic normality of
certain weighted sums of r.v.'s. See Noether (1949).

The letter C in the condition (C) stands for the specified continuity
of the sequence {Gd}. Observe that the d.f.'s {Gi} need not be continuous
for each i and n; only {Gd} needs to be equicontinuous in the sense of
(C). Of course if {771} are i.i.d. G then, because of (Nl), (C) is equivalent
to the continuity of G. D

The proof of the theorem will follow from the following two lemmas.

Lemma 2.2a. 1. For any 0 < s < t < u < l and each n > 1

EI Wd(t) - Wd(β) 121 Wd(u) - Wd(t) 12

(3a) < 3 [Gd(u)-Gd(t)][Gd(t)- Gd(s)].



12 ASYMPTOTIC PROPERTIES OF 2.2a
WEIGHTED EMPIRICALS

(3b) < 3[Gd(n) - Gd(s)]2.

Proof. Fix 0 < s, t, u < 1 and let

Pi = Gi(t) - Gi(s), q i = Gi(u) - Gi(t),

αi = I(s < ηi < t) - pi, βι = I(t < ?7i < u) - qi, 1 < i < n.

Observe that E a\ = 0 = E βj for all 1 < i, j < n, {ai\ are independent as
are {βj} and that αi is independent of βj for i Φ j . Moreover,

Wd(t) - Wd(s) = Σi di«i, Wd(u) - Wd(t) = Σi

Now expand and multiply the quadratics and use the above facts to obtain

(4) E | W d ( t ) - W d ( s ) | 2 | W d ( u ) - W d ( t ) | 2

= Σ df Eαi/3? + Σ^Σ d2 d2 Eα2 E/32 + 2 Σ^Σ d2 df E(aφi) E(α, βj).

But

Eα?/?? = (1 - pi)2

 P i qi + (1 - qi)2 qip2 + P i qi(l - qi - Pi)

< {(1 - pi) + (1 - q i ) + (1 - qi - P i)} Piqi

< 3piqi,

E(aφi) = - (1 - Pi) Piqi - (1 - qi) qiPi + Piqi (1 - qi - Pi)

Therefore,

(5) LHS (4) < 3{Σi dj P i qi + Σ^Σ d?df Piqj} = 3[Σi d?Pi] [Σj df qj].

This completes the proof of (3a), in view of the definition of {pi, qj}. That
of (3b) follows from (3a), (1) and the monotonicity of the Gi, 1 < i < n. D

Lemma 2.2a.2. For every e > 0 and s < u,

(6) P[sup s < t <jWd(t)-W d ( s ) |>£]

< K €"4 [Gd(u) - Gd(s)]2 + P[|Wd(u) - Wd(s)| > e/2]
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where K does not depend on e, n or on any underlying quantity.

Proof. Let δ = u — s, m > 1 be an integer,

(7) ξi = Wd((j/m)ί + s) - Wd((U - l)/m)« + s), 1 < j < m,
k

Sk =.Σ^j , M m = m a x j ^ | S k | .

The right continuity of Wd implies that for each n and each sample path,
Mm —> sup{|Wd(t) — Wd(s)|; s<t<u} asm—>OD, w.p.l. In view of Lemma
2.2a.l, Lemma A.I in the Appendix is applicable to the above r.v.'s {£j}
with 7 = 2 , a = 1 and

Uj = 3 1 / 2{Gd((j/m)5 + s) - Gd(((j - l )/m)ί + s)}, 1 < j < m.

Hence (6) follows from that lemma and the right continuity of Wd π

Proof of Theorem 2.2a.l. For a δ > 0, let r = [ί" 1 ], the greatest
integer less than or equal to 1/δ. Define t, = jff, 1 < j < r and t 0 = 0. Let
Γj = Wd(tj) - WdCtj-O, 1 < j < r. Then

I Wa(s) - Wci(s) I > e)

^ OI > e/3]. ^

< κe-2Σχ [Gd(tj) - GdCtj-O]2 + J P[ |Γj | > e/6]

< κe"2 sup [Gd(t + S) - Gd(t)] + Σ P[|Γj | > e/6]
0<t<l-ί j = 1

(8) = US) + Πn(ί), (say).

In the above the first inequality follows from Lemma A.2 of the Appendix,
the second inequality follows from Lemma 2.2a.2 above and the last
inequality follows because, by (Nl),

(9) . Σ i [ G d ( t j ) - G d ( t j . 1 ) ] < G d ( l ) = l.

Next, observe that

(10) σ] := Var(Γj) = Σi d?{Gi(tj) - Giίtj.,)} {1 - Gi(tj) + Gi(tj.,)},
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and, by (9), that

(11) .Σ σ] < sup 0 < t < w [Gd(t + S) - Gd(t)], aU r and aU n.

Furthermore, (Nl) and (N2) enable one to apply the Lindeberg—Feller

Central Limit Theorem (L-F CLT) to conclude that σi*Γj —• Z, Z a N(0,1)
d

r.v. Therefore, for every δ > 0 (or r < co)

(12) | Π n ( δ ) - Σ P ( | Z | lie^a]1)] -«0 as n-^α>.

By the Markov Inequality applied to the summands in the second term of

(12) and by (11),
(13) lim supn Πn(ό) < 3 lim supn .Σ (βσj/c)4 (EZ4 = 3)

< κe~4 lim supn s u P 0 < t < 1 _ ί [Gd(t + δ) - Gd(t)].

The result (i) now follows from (13), (8) and the assumption (C).

Proof of (ii). Suppose Cd —» C. Let m be a positive integer,
0 < ti, ..., tm < 1 and ai, ..., am be arbitrary but fixed numbers. Consider

(14) T n : = £ a j Wd(tj) =gt di Vi

where

Vi := ^ aj{I(77i < tj) - Gi(tj)}, 1 < i < n.

Note that

(15) |Vi| < .I I a.j I <(D, l < i < n .

m m
Also, Var(Tn) —» σ := .Σ Σ aj aΓ C(tj, tΓ) In view of (Nl) and (N2), the

L-F CLT yields that T n —» N(0, 1). Hence all finite dimensional
d

distributions of Wd converge weakly to those of a Gaussian process W
with the covariance function C and W(0) = 0 = W(ll. In view of (i), this
implies that Wd => W in (B[0, 1], a) with W αenoting a continuous
Gaussian process tied down at 0 and 1.

Conversely, suppose Wd => W. By (i), W is in C[0, 1]. In
m

particular the T n of (14) converges in distribution to T :=#Σ aj W(tj).

Moreover, (15) and (Nl) imply that, for all n > 1,
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ETj = E(Σi diVi)4 = Σi dt Evt + 3 Σ̂ Σ di df EV? Ev] < 3(.ΣJ aj | )4,

Therefore {Tn, n > 1} is uniformly integrable and hence

£ = Σχ k | & j ak Cd(tj, t k) -4 £ J i aj ak Cov[W(tj), W(tk)]

for any set of numbers 0 < {tj} < 1 and any finite real numbers ai, ..., am.
Hence

Cd(s, t) -+ Cov[W(s), W(t)] = C(s, t) for all 0 < s, t < 1.

Now repeat the above argument of the "only if1 part to conclude that W
must be a tied down Gaussian process in C[0, 1]. α

Another set of sufficient conditions for the weak convergence of {Wd}
is given in the following

Theorem 2.2a.2. Under the notation of Theorem 2.2a.l, suppose that
(Nl) holds. In addition, assume that the following hold:

(B) n mzxίίiίn ά2

ni = 0(1).

and

(D) n~ Σi Gni(t) — t is nonincreasing in t, 0 < t < 1, n > 1.

Then also (i) and (ii) of Theorem 2.2a. 1 hold.

Remark 2.2a.l. Clearly (B) implies (N2). Moreover

[Gd(t + δ) - Gd(t)] < n maxi d2i [n" 1 ^ {Gi(t + 8) - Gi(t)}]

= n maxi di [n^Σi {Gi(t + δ) - (t + 6)}

< n maxi d? δ, 0 < t < 1 — ff, by (D).

Thus (B) and (D) together imply (N2) and (C). Hence Theorem 2.2a.2
follows from Theorem 2.2a. 1. However, we can also give a different proof of
Theorem 2.2a.2 which is direct and quite interesting (see (19) below). This
proof will be based on the following three lemmas.

Lemma 2.2a.3. Under (D), for all n > 1,
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(16) EI Wd(t) - Wd(s) 14 < ίl {3(t - s)2 + (t - s)!!"1}, 0 < s, t < 1

where kd := n m a x ^ ^ dni.

Proof. Suppose 0 < s < t < 1. Let a\ and pi be as in the proof of
Lemma 2.2a.l. Using the independence of {a\} and the fact that Ea\ = 0
for all 1 < i < n, one obtains

E | W d ( t ) - W d ( s ) | 4 = E(Σdiαi)4

= Σi d | Eαf + 3 Σ ,Σ d2 df Eά{ Eαf
if j

\ Eα?)2
= Σi di {Eαi - 3 E2(α2)} + 3(Σi d\ Eα?)

= ^dt P i (l-pi)(l-6pi(l-pi)) +

+ 3[Σid2iPi(l-Pi)]2

(17) < U {n"2Σi P i + 3(n"^i P i )
2 } .

But s < t and (D) imply

0 < n^Σi pi = n ' ^ i [Gi(t) - Gi(s)] < (t - s).

Hence,

l.h.s. (16) < k2 {n-1(t - s ) +3(t - s)2}, 0 < s < t < 1.

The proof is completed by interchanging the role of s and t in the above
argument in the case t < s. D

Next, define, for (i-l)/n < t < i/n, 1 < i < n,

(18) Zd(t) = Wd((i-l)/n) + {nt - (i-1)} [Wd(i/n - Wd(i-l)/n].

Lemma 2.2a.4. The assumption (D) implies that

(19) E|Zd(t) - Z d ( s ) | 4 < kd 144|t - s | 2 , 0 < s, t < 1, n > 1.

//, in addition, (Nl) and (B) hold, then,

(20) supt | W d ( t ) - Z d ( t ) | = o p ( l ) .

Proof. Let n > 1 and 0 < s, t < 1 be arbitrary but fixed. Choose
integers 1 < i, j < n such that
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(21) (i-l)/n < s < i/n and (j-l)/n < t < j/n.

For the sake of convenience, let

& , . : = |Z d(m/n)-Z d(k/n)| = | Wd(m/n) - Wd(k/n)|,

bk,m := 4kd [(m-k)/n] , m, k integers;

Δ u , v : = | Z d ( u ) - Z d ( v ) | , 0 < u , v < l .

From (16),

(22) EόjL < ίl {3(m-k)2/n2 + n" 2 |m-k|} < 4kJ [(m-k)/n]2 = b k,m .

The proof of (19) will be completed by considering the following three
cases.

Case 1. i < j-1. Then because of (18) and (21),

Δ s > t <

which entails that

(23) E Δ L < Eίrf.j.! + όij + ίi-!,j-i + ί

< bi.j.! + bi,j + bi-i.j-! + bi-i.j (by (21))

< 4 bi-Lj = 16 kj [Q-(i-l))/n]2

where the last inequality follows from 0 < j-i-1 < j-i < j-(i-l).

Note that (21), i < j-1 and i, j integers imply that

(24) 3(t-s) > [j-(i-l)]/n.

From (23) and (24) one obtains

(25) EΔί.t < 144 kj (t - s)2.

Case 2. i = j . In this case (i-l)/n < s, t < i/n. From (18) one has

Δ s , t = n|t - s | δi-ui

so that from (22)
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(26) EΔj.t < n4(t - s)4 4k3 n" 2 < 4k3 (t - s)2.

The last inequality follows because n(t - s) < 1.

Case 3. i = j-1 . By the triangle inequality

Δ S ) t < 2

Thus by Case 2, applied once with s and i/n and once with i/n and t,
one obtains

(27) < 26 kj {(i/n - s)2 + ( t - i/n)2} < 27 k2

d (t - s)2.

In view of (27), (26) and (25), the proof of (19) is complete.

To prove (20), let di* = max(0, di), dj. = max(0, -di). Then one has

di = di+ — di- Decompose Wd and Zd accordingly. Note that max(di+,

d i ) = d i + d i = di, 1 < i < n. This and (Nl) imply that r d + < 1, rd_ < 1.

It also implies that if (N2) is satisfied by the {di} then it is also satisfied by
{di+, di-}. By the triangle inequality,

(28) ||Wd - Z d | | β < | |Wd t - Zd J | ω + ||Wd. - ZdJ|β.|β

Moreover di+Λdi- > 0, for all i. Therefore, it is enough to prove (20) for
di > 0, 1 i i < n. Accordingly suppose that is the case. Then

(29)

where

(30)

U2 =

max

max

IIWd - Zd||β

sup

sup

< tti + tth

|Wd(t)-Wd((i-

|Wd(t)-Wd(i/n

For (i-l)/n < t < i/n, and di > 0, 1 < i < n,

I Wd(t) - Wd(i/n) I < I Σj dj I(t < m < i/n) | + Σj dj [Gj(i/n) - Gj(t)]

+ 2 Σj dj [Gj(i/n) - Gj((i-l)/n)]

(31) <5i-1>i + 2maxjdj, by (D).
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Therefore, by (22), (30), (31) and the Markov inequality, for every
e > 0 and for n sufficiently large such that 2 maxj dj < e, the existence of
which is guarenteed by (B),

P(#2 > c) < P(maxi tfi-M > e - 2 maxi di)

< (e - 2 maxi di)"4 Σ EOI-M
i=l

(32) < (e - 2 maxi di)"4 4 kj n"1 —ι 0.

Exactly similar calculations show that U\ = o p (l ) . D

Proof of Theorem 2.2a.2. Observe that Zd(0) = 0 = Zd(l) and that
Zd e C[0, 1] for every n > 1 and each sequence {di}. Hence by (19) and
Theorem A.2 of the Appendix, {Zd} is tight in C[0, 1]. Thus claim (i)
follows from (20). To prove (ii) just argue as in the proof of (ii) of Theorem
2.2a. 1 above. D

The following corollary will be useful later on. To state it we need
some more notation. Let Fni, ...., F n n be d.f.'s on IR and Xni be a r.v.
with d.f. F n i, 1 < i < n. Define

(33) H(x) := n"1 Σi F n i(x), x 6 R; H ' V ) := inf{x; H(x) > t}, 0<t<l;

Lni(t) := FniίH"1^)), l<i<n; Ld(t) := Σi d î Ln i(t),

Wd(t) := Σi d n i {I(X n i < H"1^)) - L n i(t)}, 0 < t < 1.

Corollary 2.2a. 1. Assume that

(34) Xni, ..., Xnn are independent r.υ.'s with respective d.f.'s Fnh ..., F n n

on R.

In addition, suppose that {dni}, {F n i} satisfy (Nl), (N2) and

(C*) limx Λ lim supn sup [Ld(t + δ) - Ld(t)] = 0.
^ ϋ 0<t<l-ί

Then, for every e > 0,

(35) l im^ o l imsup n P( s u p | t _ g | < ί |wj(t) - W J ( B ) | > e) = 0.

Proof. Follows from Theorem 2.2a.l(i) applied to η\ Ξ H(Xi),
Gi = Li, 1 < i < n. π

Remark 2.2a.3. Note that if H is continuous then n Σi Lni(t) Ξ t.
Therefore,
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(36) sup [Ld(t + δ) - Ld(t)] < n maxi dni δ.
0<t<W

Thus, if we strengthen (N2) to require (B) then (C*) is a pήoή satisfied.
That is, the conditions ot Theorem 2.2a.2(i) are satisfied.

If Fni = F, F a continuous d.f. then Lni(t) Ξ t. Therefore, in view

of (Nl), (C*) is a pήoή satisfied. Moreover Cd(s, t) := Cov(Wd(s), Wd(t))
= s(l — t), 0 < s < t < 1. Therefore we obtain

Corollary 2.2a.2. Suppose that Xni, . . . ,Xnn are i.i.d. F, F a

continuous d.f.. Suppose that {dni} satisfy (Nl) and (N2). Then Wd =* B
in (D[0, 1], a ) with B a Brownian bήdge in C[0, 1]. D

Observe that dni = n~ ' satisfy (Nl) and (N2). In other words the
above corollary includes the well celebrated result, v.i.z., the weak
convergence of the sequence of the ordinary empirical processes.

Note. A variant of Theorem 2.2a. 1 was first proved in Koul (1970). The above
formulation and proof is based on this work and that of Withers (1975). Theorem 2.2a.2
is motivated by the work of Shorack (1973) which deals only with the weak convergence

~l/2
of the Wi-process, the process Wd with d n i = n . The sufficiency of condition (D)
for (16) was observed by Eyster (1977). D

2.2b. Vh-processes

In this subsection we shall investigate the weak convergence of the r.w.e.p.'s
{Vh(x), x eR} of (1.4.1). To state the general result we need some more
structure on the underlying r.v.'s.

Accordingly, let (Ω, Λ, P) be a probability space and G be a d.f. on
K. For each integer n > 1, let ((ni, hni, #ni), 1 < i < n, be an array of
trivariate r.v.'s defined on (Ω, A) such that {(ni, 1 < i < n} are i.i.d. G
r.v.'s and (ni is independent of (hni, δni) for each 1 < i < n. Furthermore,
let {Λni} be an array of sub σ—fields such that Λni C Λ,i+i, Λni C Λn*i,i, 1
< i < n, n > 1; (hn l, δΏi) is Λnl-measurable; the r.v.'s {Cni,.-,Cnij-i; (hni,
&ii), 1 < i < j} are ^ίnj-measurable, 2 < j < n; and £nj is independent of
An}, 1 < j < n. Define

(1) 7h(x) := n ^ J h n i I(Cni < x+ίni), Vl(x) := n ^ Σ h n i I(Cm < x),

Jh(x) := n .Σ E[{hni I((ni < x+ίni)} Mni] = n ,Σ̂  hni G(x+£ni),

Λ(x) : = n .Σ hni G(x),

i = l
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%(x):=n 1 / 2 [V h (x)-J h (x)] , CΪ(x) = n1/2[Vk(x)-Λ(x)], x € R .

We are now ready to state the following

Theorem 2.2b. 1. In addition to the above, assume that the following
conditions hold:

(Al) suPn>i m a x i l^nil - c> a s ' for some c o n s ί a n t c < GD.

(A2) maxi | ί n i | = o p ( l) .

(A4) G has a uniformly continuous density g w.r.t. λ, and g > 0, a.e.

Then

(2) || % - ϋί||β= op(l).

//, in addition,

—1 9 9

(A5) n Σi | h n i | —»α in probability, a ar.v.,

then
*

where B is a Brownian Bήdge in C[0, 1], independent of a.

The proof of (2) uses a restricted chaining argument and an
exponential inequality for martingales with bounded differences. It will be a
consequence of the following two lemmas.

Lemma 2.2b.l. Under (Al) - (A4), V e > 0 and for r = 1, 2,

limn P( sup n~ 1 / 2 Σ | h n i | Γ |G(y + δni) - G(x + ί n i ) | < 2cΓe) = 1,

x> y i = l

where the swpremum is taken over the set {x, y e K; n ' | G(x) — G(y) | < e}.

Proof. Let e > 0, q(u) := g ί G ' 1 ^ ) ) , 0 < u < 1; j n •= maxi | δi\,

ωn := sup{|q(u) - q(v)|; |u - v | < en"1 / 2}

= sup{ I g(x) - g(y) I | G(x) - G(y) | < e n l ' \

Δ n :=sup{ | g (x)-g(y) | ; | y - x | < 7 n }
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By (A4), q is uniformly continuous on [0,1]. Hence, by (A2),

(4) Δ n = op(l), ωn = o(l).

But

sup n " 1 / 2 Σ | h i | Γ |G(y + δi) - G(x + δi)\
x>y i = l

< s u p n - 1 / 2

i Σ i | h i |
Γ | G ( y ) - G ( x ) |

< cΓ e + Op(l) op(l), by (A3) and (4).

This completes the proof of the Lemma. α

Lemma 2.2b.2. Let {7\, i > 0} be an increasing sequence of σ-fields,
m be a positive integer, r < m be a stopping time relative to {7{} and {ξ\>
1 < i < m} be a sequence of real valued martingale differences w.r.t. {T\}. In
addition, suppose that

(i) I £i| < M < OD, for some constant M < ω, 1 < i < m,

and

(ii) Σ E(f i|7Ί-i) < L, for a constant L < GO.
i = l

Then, for every a > 0,

(5) P( | Σ £i| > a) < 2 exp{-(a/2M) arcsinh(Ma/2L)}.
i=l

Proof. Write σ\ = Έ>(&\7i-χ), i > 1. First, consider the

case T = m:

Recall the following elementary facts: For all x ε R9

(6a) exp(x) — x — 1 < 2(cosh x — 1) < x sinh x,

(6b) (sinhx)/x is increasing in | x | ,

(6c) x < exp(x - 1).

Because E(£i|7i-i) Ξ 0 and by (i), for a δ>0 and for all 1 < i < m,
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sinh (tfθl*i-i}> by (6a)

(7) < σ\ tf sinh(δM)/M, by (6b).

Use a conditioning argument to obtain

= E[exp(ί V ξi) E{exp(ί ^

< E [ e x p ( i £ ξi) exp(E{exp(ί ξm)\Tm-i} - 1)], by (6c)

< E[exp(5 " Σ 1 ^ ) exp( σl- 5/M sinh(5M))], by (7)

< E[exp(ί " Σ 1 ^ ) exp{(L -$ σ\) ί/M si

j - l o

Observe that L —Σ σ\ is 7j-2 measurable, for all j > 2. Hence, iterating

the above argument m — 1 times will give

Eexp{ί.Σ &} < exp{L

Now, by the Markov inequality, V a > 0,

P ( | ξi > a) < Eexp{ί(.Σ ^ - a)} < exp{ί [L/M sinh(ίM) - a]}.

The choice of δ = (1/M) arcsinh(Ma/2L) in this leads to the inequality

P( Σ ξι > a) < exp{(-a/2M) arcsinh(Ma/2L)}.
i = l

An application of this inequality to {-£i} will yield the same bound for

P( Σ £i < -a), thereby completing the proof of (5) in the case r = m. Now
i = l

consider the
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general case r < m:

L e t Xi = £jl(j i τ)' Because the event [j < r] e 7j-i, it follows that
{Xb ^j} satisfy the conditions of the previous case. Hence,

P(l.? 61 > a) = P( | .I χ i | > a) < exp{(-a/2M) arcsinh(Ma/2L)}. α

Proof of Theorem 2.2b. 1. For the clarity of the proof it is important
to emphasize the dependence of various underlying processes on n.
Accordingly, we shall write Vn, Un etc. for Vh , t/h etc. in the proof.

On R define the metric d(x,y) := |G(x) - G(y) | 1 / 2 . This metric
makes R totally bounded. Thus, to prove the theorem, it suffices to prove

(a)

(b)

V yeK,

V e > 0 3

(i) Urn

(ii) lim

1
δ>

SUPn

SUpn

Un{,

0 9

P(

P(

y) - ^nfr

sup

sup

1 ̂ n(y) -

1 ̂ π(y) -

%(χ)|

ϋίWI

> e ) <

> 6 ) < e.

Proof of (aV The fact that Un~ UΏ is a sum of conditionally centered
bounded r.v.'s yields that

Var (Un(γ)-Un(y)) < E n" 1 Σt h? |G(y + δi) - G(y)| = o(l),

by (Al), (A2), (A4) and the Dominated Convergence Theorem.

Proof of (b)(i). The following proof of (b)(i) uses a restricted chaining
argument as discussed in Pollard (1984: p. 160—162), and the exponential
inequality of Lemma 2.2b.2 above.

Fix an e > 0. Let an := [n ' /e], the greatest integer less than or

equal to n ' /e, and define the grid

:= {yj; G( y j) = jen"1 / 2, 1 < j < an}, n > 1.

Also let

Z i ( x ) : = I ( C i < x + 5 i ) - G ( x + ί i ) , xeR, 1 < i < n.

Write hi = hi* — hi-, hi* Ξ max(0, hi), so that



2.2b WEAK CONVERGENCE 25
Vh-Processes

Un(x) = n" 1 / 2 Σ hi, Zi(x) - n~1/2 Σ hi. Zt(x) = 02(x) - ϋ£(x), say.
1=1 1=1

Thus to prove (b)(i), by the triangle inequality, it suffices to prove it for ϋ^

processes. The details of the proof shall be given for the Γβ process only;

those for the Uΰ being similar.

Next, we need to define the sequence of stopping times

Σ ίhiO 2E{[Z 1(x)-Z 1(y)] 2μ i} 2

Tn := n Λ max {k>l; max — ^ < Zee n}.
^ ()

Observe that r£ < n. To adapt the present situation to that of the Pollard,

we first prove that P(τ£ < n) —» 0 (see (8) below). This allows one to work

with n~1 / 2(τn)1 / 2 U\ instead of C£. By Lemma 2.2b.2 and the fact that

arcsinh(x) is increasing and concave in x, one obtains that if x, y in

are such that α (x, y) > ten" ' then

t 2 9

< 2 exp { ί= e arcsinh(l/(6c^c))}, for all t > 0.
2c<ί2(x,y)

This enables one to carry out the chaining argument as in Pollard. What
remains to be done is to connect between the points in K and a point in <%&
which will be done in (9) below. We shall now prove

(8) P(τi < n) —i 0.

Proof of (8). For yj, y k in «Λ& with yj < yk, ^(yj, y k) > (k-j)cn"1/2.
9 9

Hence, using the fact that (hi+) < hi,

) 2 E{[Zi(yk) - Z i(y j)]

< Σmi h? [G(yk + δi) - G(yj + ίi)

< {(k-j)e}"1 n1/2 Έ_t h? V [G(yΓ i + ft) - G(yr + 6$
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< c" 1 n 1 / 2 max Σ h? [G(yΓ+1 + ft) - G(yΓ + ft)].
l < r < a n

1 = 1

Now apply Lemma 2.2b.l with r = 2 to obtain

P ^ m a x ^ [.^(hiO2 E{[Zi(yk) - Z i(y j)]2Mi}/ ίi
2(y j,yk)] < 3Cc2 n) - . 1.

This completes the proof of (8).

Next, for each xeR, let yj denote the point in <%χ that is thej

closest to x in cf-metric from the points in <%& that satisfy yj < x. We

shall now prove: V e > 0,

(9) P(supx I U*(x) - Dϊ(y i χ) I > 8ce) -+ 0.

Proof of (9). Now write Vn, Jn for Vn, Jn when {hi} in these
quantities is replaced by {hi*}.

The definition of yj , G increasing, and the fact that hi+ < |hi| for

all i, imply that

ft) - G(yj + ft)].

An application of Lemma 2.2b.l with r = 1 now yields that

(10) P(sup I n 1 / 2 [J (χ) - J (yj )] I > 4ce) - . 0.

But hi* > 0, 1 < i < n, implies that Vn is nondecreasing in x. Therefore,
using the definition of yj ,

tfπ(yjχ)] + Ji(y j χ-0 -JS(yJχ) =

- V2(yjχ) < V2(x) -V2(yJχ) < K(y j χ + 1) - V2(yjχ)

Hence,
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ll2[(11) sup x I n

Thus, (9) will follow from (10), (11) and

(12) ^ Ϋ β J °2(yj 0-oϊi(yj)l > c 6) — o.

In view of (8), to prove (12), it suffices to show that

(13) P ( i ? a ? a n i f ^ i r t f ^ l U ; , ( J M ) " U ^ (yj)| > c e) - . 0.

But,

j = l " i = l

Now apply Lemma 2.2b.2 with ξι = h i + [Zi(yj+1) - Zi(yj)], 7^ = Λi, r = TJJ,

M = c, a = cen ' , m = n. By the definition of Tn, L = 3c2e2 n1 '2. Hence
by Lemma 2.2b.2,

•f

P(| Σ hi* [Zi(yj+i)-Zi(yj)]| > cen ' ) < 2 exp[- -

Since this bound does not depend on j , it follows that

-1 1/9 n1/2*

l.h.s.(13) < 2e ι n/z exp[- 5 - ^ arcsinh (l/6e)] - 4 0 .

This completes the proof of (9) for U^. As mentioned earlier the proof of (9)

for Uΰ is exactly similar, thereby completing the proof of (b)(i).

Adapt the above proof of (b)(i) with δ\ = 0 to conclude (b)(ii). Note
that (b)(ii) holds solely under (Al) and the assumption that G is continuous
and stήctly increasing; the other assumptions are not required here. The
proof of (2) is now complete.

The claim (3) follows from (1), (b)(ii) above, Lemma A.3 of the
Appendix and the Cramer—Wold device. D

As noted in the proof of the above theorem, the weak convergence of

Oh holds only under (Al), (A5) and the assumption that G is continuous
and strictly increasing. For an easy reference later on we state this result as
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Corollary 2.2b. 1. Let the setup of Theorem 2.2b. 1 hold. Assume that

G is continuous and strictly increasing and that (Al), (A5) hold. Then,
=* α J3(G), where B is a Brownian bridge in C[0, 1]; independent of a.

Remark 2.2b.l. Consider the process tfh(t) := ^ ( G ' ^ t ) ) , 0 < t < 1.

Now work with the metric |t—s| ' on [0, 1]. Upon repeating the arguments
in the proof of the above theorem, modified appropriately, one can readily
conclude the following

Corollary 2.2b.2. Let the setup of Theorem 2.2b. 1 hold. Assume that
G is continuous and that (Al), (A5) hold. Then {Uh} => α B, where B is a
Brownian Bridge in <C[0, 1], independent of a. π

Remark 2.2b.2. Suppose that in Theorem 2.2a.2 the r.v.'s ηΏu •••>

7/nn are i.i.d Uniform [0, 1]. Then, upon choosing h n i = n 1 ' dni, Cni =

G (r/ni), one sees that E/h = Wd(G), provided G is continuous. Moreover,
the condition (D) is a priori satisfied, (B) is equivalent to (Al) and (Nl)
implies (A5) trivially. Consequently, for this special setup, Theorem 2.2a.2
is a special case of Corollary 2.2b.2. But in general these two results serve
different purposes. Theorem 2.2a.l is the most general for the independent
setup given there and cannot be deduced from Theorem 2.2b. 1. α

Note: The inequality (5) and its proof appears in Levental (1989). See
also Proposition 3.1 in Johnson, Schechtman and Zinn (1985). The proof of Theorem
2.2b.l has its roots in Levental and Koul (1989) and Koul (1991). It was recently
generalized by Koul and Ossiander (1992) to include unbounded weights. D

2.3. ASYMPTOTIC UNIFORM LINEARITY (A.U.L.) OF RESIDUAL
W.E.P.'s.

In this section we shall obtain the asymptotic uniform linearity (a.u.l.) of
residual w.e.p.'s. It will be observed that the asymptotic continuity property
of the type specified in Theorem 2.2a.lίi) is the basic tool to obtain this
result. Accordingly let {Xni}, {Fni}, {H} and {Lni} be as in (2.2a.33) and
define

(1) Sd(t, u) := Σi d n i I(Xni < H""1^) + c n i u),

μd(t, u) := Σi d n i Fni ίEfV) + c n i u),

Yd(t, u) := Sd(t, u) - /xd(t, u), 0 < t < 1, u e Kp,

where {cni, 1 < i < n} are pχl vectors of real numbers. We also need
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(2a) Sd(x, u) := Σi d n i I(Xni < x +

/4(x, u) := Σi dni F n i (x + cήiu),

Yd(x, u) := Sd(x, u) - μ°d(x, u), - co < x < co, u e Rp.

Clearly, if H is strictly increasing then Sd(x, u) Ξ Sd(H(x), u). Similar
remark applies to other functions.

Throughout the text, any w.e.p. with weights dni = n ' will be

indicated by the subscript 1. Thus, e.g., V -<D < x < oo, u ί R p ,

(2b) S°i(x, u) = n " 1 / 2 Σi I(X n i < x + cni u),

, u) = n " 1 / 2 Σi {I(Xn i < x + cήiu) - F n i (x +

Theorem 2.3.1. In addition to (2.2a.34), (Nl), (N2), and (C*) assume
that d.f. 's {Fni, 1 < i < n} have densities {fni, 1 < i < n} w.r.t. λ such that
the following hold:

(3a) l i m ^ 0 lim supn mΆ^ sup | χ _ y | < J fni(x) - fni(y) I = 0,

(3b) max||fni|| < k < o .

In addition, assume that

(4) ffβJMI = °0 )
and

(5) Σi ||dni CniH = 0(1).

Then, for every 0 < B < OD,

(6) sup I Sd(t, u) - Sd(t, 0) - u 'Σi d n i c n i qni(t) I = o p ( l) ,

where qni := fniH , 1 < i < n, and the supremum is taken over 0 < t < 1,

INI < B .

Consequently, if H is stήctly increasing on K, then

(7) sup I S§(x, u) - SS(x, 0) - n'Σi d n i c n i fn l(x) | = o p ( l) .

where the supremum is taken over -<D < x < OD, | |U | | < B.
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Theorem 2.3.1 is a consequence of the following four lemmas. In these
lemmas the setup is as in the theorem.

In what follows, Jf{B) = {πeKp; | |α|| < B}; sup stands for the

supremum over 0 < t < 1 and u e i(B), unless mentioned otherwise. Let

(8) i/d(t) : = Σi d n i Cni qni(t),

Rd(t, π) := Sd(t, u) - Sd(t, 0) - u'ι/d(t), 0 < t < 1, π € Kp.

Lemma 2.3.1. Under (3), (4) and (5),

(9) sup I μd(t, π) - μd(t, 0) - u' uά(t) | = o(l).

Proof. Let δn = B maxi ||ci|J. By (3), {Fi} are uniformly
differentiate for sufficiently large n, uniformly in 1 < i < n. Hence,

l.h.s. (9) < (Σi HdiCill) maxi s u p | χ y | < ί n | fi(χ) - fi(y) | =

by (3), (4) and (5). D

Lemma 2.3.2. Under (Nl), (N2), (C*), (3), (4) and (5), V u e if{B),

(10) sup I 7d(t, u) - r d (t, 0| = θp(l).
0<t<l

Proof. Fix a u € M{B). The lemma will follow if we show

(i) 7d(t, u) - 7d(t , 0) = o p ( l ) for each 0 < t < 1,

and

(11) V e> 0, and for b = u or b = 0,

l im. n lim supn P( sup | Yd(t, b) - Yd(s, b ) | > e) = 0.
^ ° | t -s |<ί

Since Yd(., 0) = Ψ*d{.) of (2.2a.33), for b = 0, (ii) Mows from
(2.2a.35) of Corollary 2.2a.l.

To verify (ii) for b = u, take η\ = H(Xj - cίu), l<i<n, in (2.2a.l).

Then Fd( , u) = Wd( ) of (2.2a.l) and Gi( ) = FiίH"^-) + c'iu), l<i<n.
Moreover,
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(11) sup Σt di [Fi(H \uS) + Ciu) - Fi(H \i) +
0<t<W

< 2Bk maxi ||ci|| + sup [Ld(t+ί) - Ld(t)], by (3)
0<t<l-f

= o(l) as n—»oo, then 6—» 0, by (4) and (C*).

Hence (C) is satisfied by the above {Gi}. The other conditions being (Nl)
and (N2) which are also assumed here, it follows that the above {ηή and

ί Wd} satisfy the conditions of Theorem 2.2a.l.(i). Thus (ii) for b = u
bllows from Theorem 2.2a.l(i). Hence (ii) is proved.

To obtain (i), note that the

Var[Yd(t, u) - r d (t, 0)] < Σi d? iFiCH'^t) + cU) - F^H" 1 ^)) |

<Bkmaxi| |ci| |, by (3),

= o(l), by (4).

This together with the Chebychev inequality yields (i) and hence (10). α

To state and prove the next lemma we need some more notation. Let
«nί = ||cni||, 1 < i < n, and define

(12) Sd(t, u, b) = Σ d n i I(Xn i < H'^tJ+cήiU+b «ni),

pj(t, π, b) = E Sj(t, u, b),

Yd(t, u, b) = Sd(t, u, b) - /4(t, u, b), 0 < t < 1, u 6 Rp, b e R.

Lemma 2.3.3. Under (Nl), (N2), (C*), (3), (4) and (5), V e > 0,
| b | < OD and u e J/(B)

(13) limx lim supn P( sup | Yd(t, u, b) - Yd(s, u, b) | > c) = 0.
*"" I t-s I <tf

Proof. In Theorem 2.2a.l(i), take η\ = H(Xi-cίu-b/Ci), l<i<n. Then

Wd( ) = Ύ"d( , u, b) and Gi( ) = Fi(H ( )+CiU+b/Ci), l<i<n. Again,
similar to (11),

sup [Gd(t+ί) - Gd(t)] < 2k(B+b) maxi ||ci|| + sup [Ld(t+ό) - Ld(t)]
0<t<W

= o(l), by (4) and (C*).
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Hence (13) follows from Theorem 2.2a.l(i). α

Lemma 2.3.4. Under (Nl), (N2), (C*), (3), (4) and (5), V e > 0
there is a δ > 0 such that for every v e i(B),

(14) lim supn P( sup | Rd(t, u) - Rd(t, v) | > e) = 0,
t,||n-v||<*

where Rd is defined at (8).

Proof. Assume, without loss of generality, that di > 0, 1 < i < n.
For, otherwise write di = di+ - di-, 1 < i < n, where {di+, di-} are as in the
proof of Lemma 2.2a.4. Then Sd = Td*Sd* - Td-Sd-> Rd = Td+Rd* - R

where τ\> = Σi (du)
2, rj. = Σi (di-)2. In view of (Nl), rd+ < 1, τ d- < 1.

Moreover, if {di} satisfy (N2) and (5) above, so do {di+, di-} because
2 2 2 2 2

Vd- = di+ + di- = di, 1 < i < n. Hence the triangle inequality will yield
d f R d R B h d d 0 f ll i

i i i i i, g q y

(14), if proved for Rd+ and Rd- But note that di+Λdi->0 for all i.

Now, ||u —v|| < 6 implies

(15) -δκ\ + Civ < CiU < δκ\ + Civ, κ\ = ||ci||, 1 < i < n.
Therefore, because di > 0 for all i,

(16) Sd(t, v, -δ) < Sd(t, u) < Sd(t, v, δ) for all t,

yielding

(17) L ^ t ^ v ) ^ Sd(t, v, -δ) - Sd(t, v) - (u - v)^d(t)

<Rd(t ,u )-R d ( t ,v )

< Sd(t, v, δ) - Sd(t, v) - (u - vJ^dW =: L2(t,u,v).

We shall show that there is a δ > 0 such that for every v 6 J/(B),

(18) P( sup |Lj(t,u,v)| > e) = o(l), j = 1, 2.
| | | | < *

We shall first prove (18) for L2. Observe that

(19) I L2(t,u,v) I < I Yd(t, v, S) - Yd(t, v, 0) |

( ί ) (

The Mean Value Theorem, (3), and ||u — v|| < δ imply
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(20) sup|ώt, v, ί) - ώ t , v, 0)| < δk Σi lldidll,

sup|(u-v)'i/d(t)| <kίΣi||diCi||.

Let M(t) denote the first term on the r.h.s. of (19). I.e.,

M(t) = Yd(t, v, δ) - Yd(t, v, 0), 0 < t < 1.

(21) Claim: sup|M(t)| = o p (l).

To begin with,

Var (M(t)) < Σi di [FitH^M+c'iV+ί/ίi) - F^H'^t )^ '^ )]

< δk maxi /ti, by (3a), (3b),

= o(l), by (5).

Hence

(22) M(t) = o p ( l ) for every 0 < t < 1.

Next, note that, for a 7 > 0,

sup I M(t) - M(s) I < sup I Yd(t, v, δ) - Yd(s, v, δ) \ +
|t-s|<7 |t-s|<7

+ sup |Yd(t,v,0)-Yd(s,v,0)|.
|t-sl< 7

Apply Lemma 2.3.3 twice, once with b = δ and once with b = 0, to obtain
that V e > 0,

(23) lim lim supn P( sup |M(t) -M(s) | > c) = 0.7*° | l
But (23) and (22) imply the Claim (21).

Now choose δ > 0 so that

(24) lim supn δ k Σi ||diCi|| < e/3. (use (5) here).

From (19), (20) and (21) one readily obtains
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lim supn P( sup |L2(t,π,v)| > e) < lim supn P(sup |M(t) | > e/3) = 0.
t,||*-v|l<* *

This prove (18) for L2. A similar argument proves (18) for Li with the
same 6 as in (24), thereby completing the proof of the Lemma. α

Proof of Theorem 2.3.1. Fix an e > 0 and choose a 6 > 0 satisfying
(24). By the compactness of i/(B) there exist points vi, ..., vΓ in j/(B)
such that for any π 6 J/(B), ||u - VJ|| < δ for some j = 1, 2, ..., r. Thus

lim supn P( sup |Rd(t, u) | > e)

< Σ lim supn P( sup | Rd(t, u) - R<i(t, VJ) | > e/2)

+.Σ lim supn P(supt |Rd(t, VJ)| > e/2) = 0

by Lemmas 2.3.2 and 2.3.4. α

Remark 2.3.1. Upon a reexamination of the above proof one finds
that Theorem 2.3.1 is a sole consequence of the continuity of certain w.e.p.'s
and the smoothness of {Fni}. Note that the above proof does not use the
full force of the weak convergence of these w.e.p.'s. α

Remark 2.3.2. By the relationship

Rd(t, u) = r d (t, u) - r d (t, 0) + μd(t, u) - μd(t, 0) - u'*/d(t)

and by Lemma 2.3.1, (6) of Theorem 2.3.1 is equivalent to

(25) sup | y d ( t , u ) - r d ( t , 0 ) | = o p ( l ) .

0 < t < l V ( B )

This will be useful when dealing with w.e.p.'s based on ranks in Chapter 3. α

The above theorem needs to be extended and reformulated when
dealing with a linear regression model with an unknown scale parameter or
with M-estimators in the presence of a preliminary scale estimator. To that

end, define, for x, s e R, 0 < t < 1, u e Rp,

(26) Sd(s, t, π) := Σi dn iI(Xn i <

Sd(s, x, u) := Σi dn iI(Xni < (l+sn"1 / 2)x

and define yd(s, t, u), /xd(s, t, u) similarly. We are now ready to prove
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Theorem 2.3.2. In addition to the assumptions of Theorem 2.3.1,
assume that

(27) maxi,n supx | x f ni(x) | < k < α>.

Then

(28) sup I Sd(s, t, u)-Sd(0, t, 0)-Σ4 d n φ n " 1 ^ V)+cήiu}qni(t) | = op(l).

where the supremum is taken over | s | < b, ueJ/(B), 0 < t < 1.

Consequently, if H is stήctly increasing for all n > 1, then

(29) sup I Sd(s, x, n) - SS(O, x, 0) - Σd n i {sn~1/2x + cήiu}fni(x) | = o p ( l ) .

where the supremum is taken over | s | < b, ueJf(B) and xeR.

Sketch of proof. The argument is quite similar to that of Theorem
2.3.1. We briefly indicate the modifications of the previous proof.

An analogue of Lemma 2.3.1 will now assert

sup|/xd(s, t, π) - μd(l, t, 0) - {(

This uses (3), (4), (5), (27) and (Nl).

An analogue of Lemma 2.3.2 is obtained by applying Theorem

2.2a.l(i) to ηι := Hi(Xi - ciujσn1), l<i<n, σn := (l+sn"1 / 2). This states
that for every | s | < b and every uei/(B),

(30) sup I rd(s, t, u) - Yd(s, t, 0)| = op(l).
0<t<l

In verifying (C) for these {τ/i}, one has an analogue of (11):

sup [Gd(t + ό) - Gd(t)]
o<t<i-ί

< 2k{B maxi ||ci|| + bn" 1 / 2} + sup [Ld(t+ί) - Ld(t)].

Note that here Gd(t) = Σi diFi

One similarly has an analogue of Lemma 2.3.3. Consequently, from
Theorem 2.3.1 one can conclude that for each fixed se[—b, b],

(31) sup | R d ( s , t , n ) | = o p ( l ) ,
0<t<l | | | |<B
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where Rd(s, t, u) equals the l.h.s. of (28) without the supremum. To
complete the prooϊ, once again exploit the compactness of [—b, b] and the
monotonic structure that is present in Sd and μ&. Details are left for
interested readers. D

Consider now the specialization of Theorems 2.3.1 and 2.3.2 to the
case when Fni = F, F a d.f.. Note that in this case (Nl) implies that Ld(t)
= t so that (C*) is a pήori satisfied. To state these specializations we need
the following assumptions:

(Fl) F has uniformly continuous density f w.r.t. λ.

(F2) f > 0, a.e. λ.

(F3) sup χ e [ R | x f (x) | < k < t D .

Note that (Fl) implies that f is bounded and that (F2) implies that
F is strictly increasing.

Corollary 2.3.1. Let Xni, ...., Xnn be i.i.d. F. In addition, suppose

that (Nl), (N2), (4), (5) and (Fl) hold. Then (6) holds with qni = ίζF"1).

If, in addition, (F2) holds, then (7) holds with fni = f. D

Corollary 2.3.2. Let Xni, ...., X n n be i.i.d. F. In addition, suppose
that (Nl), (N2), (4), (5), (Fl) and (F3) hold. Then (28) holds with H = F

and q n i = ί(F^).

If, in addition, (F2) holds, then (29) holds with fni = f. o

We shall now apply the above results to the model (1.1.1) and the
{Vj}-processes of (1.1.2). The results thus obtained are useful in studying
the asymptotic distributions of certain goodness-of-fit tests and a class of
M-estimators of β of (1.1.1) when there is an unknown scale parameter also.

We need the following assumption about the design matrix X.

(NX) ( x ' x ) " 1 exists, n > p; maxixήiίx'x)""1 xni = o(l).

This is Noether's condition for the design matrix X. Now, let

(32) A = (X'X)~1/2, D := XA,

q'(t) := (qm(t), ..., qn n(t)), A(t) := diag(q(t)),

I\(t) := AxΆ(t) XA, Γ2(t) := n" 1 / 2 H β l ( t ) D'qίt), 0 < t < 1.
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Write D = ((dy)), l<i<n, l<j<p, and let d ( j } denote the j t h column of D.

Note that D D = I p x p . This in turn implies that

(33) (Nl) is satisfied by d ( j } for all 1 < j < p.

Moreover, with a (j) denoting the j t h column of A,

(34) maxi d ϋ = maxi (xia^ \\) < maxi Σ (xia,\ λ )
\ / *J \ v j / - j = l

, p

= maxi xί (X'X)"1 Xi = o(l), by (NX).

Let

(35) L j ^ — . Σ d i j F i ί H " 1 ^ ) ) , 0 < t < 1, 1 < j < p.

We are now ready to state

Theorem 2.3.3. Let {(xήi, Yni), 1 < i < n}, /?, {Fn i, 1 < i < n} be as
in the model (1.1.1). In addition, assume that {F n i} satisfy (3a), (3b) and
that (C*) is satisfied by each Lj of (35), 1 < j < p.

Then, for every 0 < B < OD,

(36) sup || A ^ H " 1 ^ ) , β + Au) - VίH'^t), β)} - Γi(t)u|| = op(l).

where the supremum is over 0 < t <1, u e J/(B).

//, in addition, H is strictly increasing for all n > 1, then, for every
0 < B < OD,

(37) sup || A{V(x, β + Au) - V(x, β)} - Γ^HMHI = o p (l).

where the supremum is over -m < x < OD, U G

Theroem 2.3.4. Suppose that {(xni, Yni), 1 < i i n} and /feRp obey
the model

(38) Yni = Xni 0 + 7 ^ni, 1 < i < Π, 7 > 0,

with {en{} independent r.v.'s having d.f.'s {F n i}. Assume that (NX) holds.
In addition, assume that {F n i} satisfy (3a), (3b), (27) and that (C*) is
satisfied by each Lj of (35), 1 < j < p.

Then for every 0 < b, B < OD,
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(39) sup ||A{V(αH X(t), 0+Airy)- V(7H *(t)> 0}-Γi(t)u-Γ2(t)v|| = op(l),

where v := n ' (#-7)7 , a > 0, and the supremum is over 0<t<l, ueJ/(B)
and |v | < b.

If, in addition, H is strictly increasing for every n > 1, then

(40) sup||A{V(αx, β + A117)- V(τx, # } - Γ!(H(x))u - Γ2(H(x))v|| = o p (l) .

where v := n ' (0-7)7 , a > 0, and ίΛe supremum is over -αo<x<oo, πei/(B)
|v | <b.

Proof of Theorem 2.3.3. Apply Theorem 2.3.1 to Xi = Yi - x\β,

XiA, 1 < i < n. Then Fi is the d.f. of Xi and the j t h components of
L(t), #-Au) and AV(H x(t), β) are Sd(t, π), Sd(t, 0) of (1),

respectively, with di = dy, l<i<n, l<j<p. Therefore (36) will follows by p
applications of (6), one for each d( j), provided the assumptions of Theorem
2.3.1 are satisfied. But in view of (33) and (34), the assumption (NX)
implies (Nl), (N2) for d(j), 1 < j < p. Also, (4) for the specified {ci} is
equivalent to (NX). Finally, the C-S inequality and (33) verifies (5) in the
present case. This makes Theorem 2.3.1 applicable and hence (36) follows, α

Proof of Theorem 2.3.4. Follows from Theorem 2.3.2 when applied to

Xi = (Yi — Xi/7)7 , Ci = XiA, l<i<n, in a fashion similar to the proof of
Theorem 2.3.3 above. D

The following corollaries follow from Corollaries 2.3.1 and 2.3.2 in the
same way as the above Theorems 2.3.3 and 2.3.4 follow from Theorems 2.3.1
and 2.3.2. These are stated for an easy reference later on.

Corollary 2.3.3. Suppose that the model (1.1.1) with F n i = F holds.
Assume that the design matrix X and the d.f F satisfying (NX) and (Fl).
Then, V 0 < B < O |

(41) sup IIAfVΐF'V), s) - VίF^t), β)} - f(F"1(t))A"1(s - β)\\ = op(l).

where the supremum is over 0 < t < 1; s e Kp, || A (s — /7)|| < B.

//, in addition, F satisfies (F2), then

(42) sup IIA{V(x, s) - V(x, β)} - f(x) A ^ s - β)\\ = o p (l) .

where the supremum is over -OD < x < OD; S e Kp, ||A" (s — /7)|| < B. D
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Corollary 2.3.4. Suppose that the model (38) with Fn\ Ξ F holds and
that the design matrix X and the d.f. F satisfy (NX), (Fl) and (F3). Then
(39) holds with

(43) I\(t) = f(F^(t))Ipxp, Γ2(t) = r\i) ί{r\i))AX' 1, 0 < t < 1.

//, in addition, F satisfies (F2), then (40) holds with Γj(H) Ξ Γ J ( F ) , j
= 1, 2. I.e.,

(44) sup || A{V(αx, β + Aπ7) -

ί/ie supremum is over -OD<X<OD; ueJ/(B) and | v| <b, wifΛ v as in (39). α

We end this section by stating an a.u.l. result about the ordinary
residual empirical processes Hn of (1.2.1) for an easy reference later on.

Corollary 2.3.5. Suppose that the model (1.1.1) with FΏ\ = F holds.
Assume that the design matrix X and the d.f F satisfying (NX) and (Fl).
Then, V 0 < B < σ,

(45) sup I n ^ H n ί p - ^ t ) , s) - H^F" 1^), β)} -

A-A"1^

where the supremum is over 0 < t < 1; s € Rp, ||A" (s - β)\\ < B.

//, in addition, F satisfies (F2), then, V 0 < B < GD,

(46) sup|n1 / 2{Hn(x, s)-Hn(x, β)} - i ^ y ^ ' h ^ ^ k 1 ^

where the supremum is over -GD < x < OD; s G Rp, ||A~ (s - /7)|| < B.

Proof. The proof follows from Theorem 2.3.1 by specializing it to the

case where dni = n " ' and the rest of the entities as in the proof of Theorem
2.3.3. D

Note: Ghosh and Sen (1971) and Koul and Zhu (1991) have proved an almost sure
version of (42) in the case p = 1 and p > 1, respectively. D

2.4. SOME FURTHER PROBABILISTIC RESULTS FOR W.E.P.'S.

For the sake of general interest, here we state some further results about
w.e.p.'s. To begin with, we have
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2.4.1. Laws of the iterated logarithm:

In this subsection, we assume that

(1) d n i = di, 7/ni Ξ 7/i, G n i = Gi, 1 < i < n.

Define

(2) ^ n ( t ) := Σ di {1(7,1 < t) - Gi(t)}, σl : = Σ dϊ,

ίn(t) := %(t)/{2σn in in σl}1/2, n > 1, 0 < t < 1.

Let r(s,t) := sΛt — st, 0 < s, t < 1, and H(r) be the reproducing kernel
Hilbert space generated by the kernel r with |( ||Γ denoting the associated
norm on H(r). Let

(3) ΛΓ={fGH(i); | | f | | Γ <l}.

Theorem 2.4.1. // τ/i, 772, ... are i.i.d. uniform on [0, 1] and di, d2,
... are any real numbers satisfying

(a) Umnσ2 = α), limn ( max ά\) ί n l \ σn = 0,

then

P(^/(^n, K) —> 0 and the set of limit points of {ξΏ} is K) = 1. D

Theorem 2.4.1 was proved by Vanderzanden (1980, 1984) using some
of the results of Kuelbs (1976) and certain martingale properties of £n.

Theorem 2.4.2. Let 771, 7/2, .... be independent nonnegative r.v.'s. Let
{di} be any real numbers. Then

lim supn sup σn | %Ίi(t-)| < αo, a.s.. α

A proof of this appears in Marcus and Zinn (1984). Actually they
prove some other interesting results about w.e.p.'s with weights which are
r.v.'s and functions of t. Most of their results, however, are concerned with
the bounded law of the iterated logarithm. They also proved the following
inequality that is similar to, yet a generalization of, the classical
Dvoretzky-Kiefer-Wolfowitz exponential inequality for the ordinary
empirical process. Their proof is valid for triangular arrays and real r.v.'s.

Exponential inequality. Let Xni, Xn2, •••> Xnn be independent r.v.'s
with respective d.f's Fni, ..., F n n and ίdni} be any real numbers satisfying
(Nl). Then, V λ > 0, V n > 1,
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(4) P(sup I Σ dni{I(Xni < x) - Fni(x)} I > λ) < [l+(8τr)1/2λ]exp(-λ2/8). α
| X | < Q D 1 = 1

The above two theorems immediately suggest some interesting
probabilistic questions. For example, is Vanderzanden's result valid for
nonidentical r.v.'s {η\\Ί Or can one remove the assumption of nonnegative
{η\} in Theorem 2.4.1?

2.4.2. Weak convergence of w.e.p.'s in D[0, l ] p , in ^ -metric and an
embedding result.

Next, we state a weak convergence result for multivariate r.v.'s. For this we

revert back to triangular arrays. Now suppose that ifai e [0, l] p , 1 < i < n,
are independent r.v.'s of dimension p. Define

(5) Wd(t) := Σ d n i{I(^i < t) - Gπi(t)}, t G [0, l] p .
1 = 1

Let Gnij be the j t h marginal of Gni, 1 < i < n, 1 < j < p.

Theorem 2.4.3. Let {ηn\, 1 < i < n} be independent ip-variate r.v. 's
and {dni} satisfy (Nl) and (N2). Moreover suppose that for each 1 < j < p,

n 2

lim^ 0 lim supn sup Q < t < 1 _ ί Σ^ dni{Gnij(t+ί) - Gnij(t)} = 0.

Then, for every e > 0(i) lim^ 0 Urn supn P( sup | Wd(t) - Wd(s) | > e) = 0.

(ii) Moreover, Wd => some W on (D[0,l]p, </) if, and only if, for each

s, t e [0, l] p, Cov(Wd(s), Wd(t)) - i Cov(W(s), W(t)) =: C(s, t).

In this case W is necessarily a Gaussian process, P(WeC[0, l]p) = 1,
W(0) = 0 = W(l). D

Theorem 2.4.3 is essentially proved in Vanderzanden (1980), using
results of Bickel and Wichura (1971).

Mehra and Rao (1975), Withers (1975), and Koul (1977), amone
others, obtain the weak convergence results for {Wd}-processes when {ηn\}
are weakly dependent. See Dehling and Taqqu (1989) and Koul and
Mukherjee (1992) for similar results when {ηn\} are long range dependent.

Shorack (1979) proved the weak convergence of Wd/q-process in the
</-metric, where q e Q, with
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Q : = {q; q a continuous function on [0, 1], q > 0, q(t) = q(l-1), q(t) f

and Γ1/2q(*) I for 0 < t < 1/2, J l q~2(t)dt < OD}.

Theorem 2.4.4. Suppose that 7/ni, ...., rjnn are independent r.v.'s in
[0, 1] with respective d.f.'s Gni, ..., G n n such that

n"1 Σ Gni(t) = t, 0 < t < 1.
i = l

In addition, suppose that {dni} satisfy (Nl) and (B). Then,

(i) V c > 0, V q e fi,

(ii) q Wd =* q W, W a continuous Gaussian process with
coυariance function C if, and only if C& —» C. u

Shorack (1991) and Einmahl and Mason (1991) proved the following
embedding result.

Theorem 2.4.5. Suppose that ηn\? ...., ηΏn are i.i.d. Uniform [0, 1]
r.v. 's. In addition, suppose that {dn\} satisfy (Nl) and that

= 0, n.^ dSi = 0(1).

Then on a rich enough probability space there exist a sequence of versions
ofihe processes Wd and a fixed Brownian bridge B on[0,1] such that

| d ( O ( ) |
sup n" TVr-i = Op(l), for all 0 < i/ < 1.
< < l l / { t ( l t ) } 1 / 2 - I /

The closed interval 1/n < t < 1-1/n may be replaced by the open interval
min{77nj; l < j < n } < t < max{r?nj; 1 < j < n}. D

2.4.3. A martingale property.

In this subsection we shall prove a martingale property of w.e.p.'s. Let Xni,
Xn2, ..., Xnn be independent real r.v.'s with respective d.f.'s F n ί, ..., F n n ;
dni, .-., d n n be real numbers. Let a < b be fixed real numbers. Define,

Mn(t) : = J dni{I(Xni € (a, t] - pni(a, t]} {1 - Pni(a, t]}"1,
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Rn(t) : = J dni{I(Xni e (t, b] - pn i(t, b]} {1 - p n i(t, b]}~\ t G R,

where

Pni(s,t] : = F n i ( t ) - F n i ( s ) , 0 < s < t < l , 1 < i < n.

Let Ti c [a, OD), T2 C ( - α, b] be such that Mn(t) [Rn(t)] is well-defined
for t e Ti [t e T2]. Let

:= σ-field {I(X n l G (a, s]), a < s < t, i = 1, ..., n}, t e Tb

:= σ-field {I(X n i G (s, b]), t < s < b, i = 1, ..., n}, t G T2.

Martingale Lemma. Under the above set up, for each n > 1, {Mn(t),
i ( ) , t G T j is a martingale and {Rn(t), ?2n(t), t G T2} is a reverse

martingale.

Proof. Write qi(a, s] = 1 — pi(a, s]. Because {Xi} are independent,
for a < s < t

E{Mn(t)|7in(B)}

= Σ i diίqiίa.tD^pίXi G(a, s]) E{(I(Xi G(a, t]) - P i ( a , t]) | X4 G(a, s]}

+ I(Xi ί(a, s]) E{(I(Xi G(a, t]) - p[i(a, t]) | X4 ί(a, s]}]

= j i dt {qi(a, t ) } " ^ ! G(a, s]q i(a, t] +

= Σt di{qi(a, s)y\l(Xi G(a, s]) - qi(a, s]} = Mn(s).

A similar argument yields the result about Rn. •

-1/2
Note. In the case {Xni}

 a r e
 i i d. and d

n
i = n , this Lemma is veil

known. In the case {X
n
i} are i.i.d. and {d

n
i} are arbitrary, the observation

about {M
n
} being a martingale first appeared in Sinha and Sen (1979). The above

Martingale Lemma appears in Vanderzanden (1980, 1984).
Theorem 2.4.1 above generalizes a result of Finkelstein (1971) for the

ordinary empirical process to v.e.p.'s of i.i.d. r.v.'s.. In fact, the set K is
the same as the set K of Finkelstein. DD




