
CHAPTER 1

INTRODUCTION

1.1. WEIGHTED EMPIRICAL PROCESSES

A weighted empirical process (w.e.p.) corresponding to the random variables
(r.v.'s) Xni, ...., Xnn and the non-random real weights dni, ...., d n n is
defined to be

Ud(x) := Σ d n i I(X n i < x), x e K, n > 1.
l = 1

The weights {dni} need not be nonnegative.
The classical example of a w.e.p. is the ordinary empirical process

that corresponds to d n i = n"1. Another example is given by the two sample
empirical process obtained as follows: Let m be an integer, 1 < m < n,
r := n - m; d n i = -r/n, 1 < i < m; d n i = m/n, m + 1 < i < n. Then the
corresponding Ud-process becomes

Ud(x) Ξ (mr/n) { Γ 1 Σ I(X n l < x) - m"1 Σ I(X n i < x)}, x e R,
i=m*l 1=1

precisely the process that arises in two-sample models.
More generally, weighted empirical processes (w.e.p.'s) arise naturally

in linear regression models where, for each n > 1 and each β e Rp, the data

{(xni, Yni), l<i<n} are related to the error variables {eni, l<i<n} by the
linear relation

(1) Yni = Xni/? + eni, 1 < i < n.

Here eni, ...., e n n are independent r.v.'s with respective continuous d.f.'s

F n i, ...., F n n , Xni = (xnίi, .•••? Xnip) is the i t h row of the known n*p design
matrix X and β is the parameter vector of interest.

Consider the vector of w.e.p.'s V := (Vi, ...., V p ) ' where

(2) Vj(y, t) := £ xnij I(Yni < y + *ήit), y e R, t 6 Rp, 1 < j < p.

Clearly, Vj( , t) is an example of the w.e.p. Ud( ) with d n i = xnij

and Xni Ξ Yni - xnit, 1 < i < n, 1 < j < p.

Observe that the data {(xni, Yni), l<i<n} in the model (1) are
readily summarized by the vector of w.e.p.'s {V(y, 0), yeR} in the sense
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that the given data can be recovered from the sample paths of this vector up
to a permutation. This in turn suffices for the purpose of inference about β
in (1). In this sense the vector of w.e.p.'s {V(y, 0), yeR} is at least as
important to linear regression models (1) as is the ordinary empirical process
to one-sample location models. One of the purposes of this monograph is to
discuss the role of V-processes in inference and in proving limit theorems in
models (1) in a unified fashion.

1.2. M-, R- AND SCALE ESTIMATORS

Many inferential procedures involving (1.1.1) can be viewed as functions of
V. For example the least squares estimator, or more generally, the class of
M-estimators corresponding to the score function ^, (Huber: 1981), is
defined as a solution t of the equation

fψ{y) V(dy, t) = a known constant.

Similarly, rank (R) estimators of β corresponding to the score function φ
are defined to be a solution t of the equation

(1) Γ^Hn(y, t))V(dy, t) = a known constant,

Hn(y, t) := n" 1 £ I(Yni < y + xήit), y 6 R, t e Rp.

A significant portion of Nonparametric Inference in models (1.1.1)
deals with M- and R- estimators of β (Adichie; 1967. Huber; 1973) and

linear rank tests of hypotheses about /?, (Hajek-Sϊdak; 1967). By viewing

these procedures as functions of {V(y, t), yeR, teRp}, it is possible to give a
unified treatment of their asymptotic distribution theory, as is done in
Chapters 3 and 4 below.

There is a vast literature in Nonparametric Inference that discusses
inferential procedures based on functionals of empirical processes in the
k-sample location model such as the books by Puri and Sen (1969), Serfling
(1980) and Huber (1981). Yet their appropriate extensions to the linear
regression model are not readily accessible. This monograph seeks to fill this
void. The methodology and inference procedures studied here extend many
known results in the k-sample location model to the model (1.1.1), thereby
giving a unified treatment.

An important result needed for study of the asymptotic behavior of
R-estimators of β is the asymptotic uniform linearity of the linear rank

statistics of (1) in the regression parameter vector. Jureckova (1969, 1971)
obtained this result under (1.1.1) with i.i.d. errors. A similar result was
proved in Koul (1969, 1971) and Van Eeden (1972) for linear signed rank
statistics under i.i.d. symmetric errors. Its extension to the case of
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nonidentically distributed errors is not readily available. Theorems 3.2.4 and
3.3.3 prove the asymptotic uniform linearity of linear rank and linear signed
rank statistics with bounded scores under the general independent errors
model (1.1.1). In the case of i.i.d. errors, the conditions in these theorems on
the error d.f. are more general than requiring finite Fisher information. The
results are proved uniformly over all bounded score functions and are
consequences solely of the asymptotic sample continuity of V-processes and
some smoothness of ίFni}. The uniformity with respect to the score
functions is useful when constructing adaptive rank tests that are
asymptotically efficient against Pitman alternatives for a large class of error
distributions.

Chapter 3 also contains a proof of the asymptotic normality of linear
rank and linear signed rank statistics under independent alternatives and for
indicator score functions. This proof proceeds via the weak convergence of

certain basic w.e.p.'s and complements some of the results in Dupac and
Hajek (1969).

Section 4.2a discusses the asymptotic distribution of M-estimators
under heteroscedastic errors using the asymptotic continuity of V-processes.
Section 4.2b presents some second order results on bootstrap approximations
to the distributions of a class of M-estimators.

In order to make M-estimators scale invariant one often needs an
appropriate robust scale estimator. One such scale estimator, as
recommended by Huber (1981) and others, is

Si = med {| Yni - xni/7|, 1 < i < n},

where β is an estimator of β. The asymptotic distribution of Si under
heteroscedastic errors is given in Section 4.3. In the case of i.i.d. errors, this

asymptotic distribution does not depend on β provided the errors are
symmetric around 0. This observation naturally leads one to construct a
scale estimator based on the symmetrized residuals, thereby giving another
scale estimator

/A /A

s2 := med {| Yni - xni/? - Yni + xni0| 1 < i, j < n}.

As expected, the asymptotic distribution of s2 is shown to be free from the

estimator β in the case of i.i.d. errors, not necessarily symmetric. It also
appears in Section 4.3.

Section 4.4 discusses the asymptotic distribution of a class of
R-estimators under heteroscedastic errors using the asymptotic uniform
linearity results of Chapter 3. The R-estimators considered are
asymptotically equivalent to Jaeckel's estimators.

The complete rank analysis of the linear regression model (1.1.1)
requires an estimate of the scale parameter
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where f is density of the unknown common error d.f. F and φ is a
nondecreasing function on (0, 1). This estimate is used to standardize the
test statistic and estimate the standard error of the R-estimator
corresponding to the score function φ. This parameter also appears in the
efficiency comparisons of rank procedures and it is of interest to estimate it,
after the fact, in an analysis.

Lehmann (1963), Sen (1966), Koul (1971), among others, provide
estimators of Q(f) in the one- and two- sample location models and in the
linear regression model. These estimators are given in terms of the lengths
or Lebesgue measures of certain confidence intervals or regions. They are
usually not easy to compute when the dimension p of β is larger than 1.

In Section 4.5, estimators of Q(f), based on kernel type density
estimators of f and the empirical d.f. Hn, are defined and their consistency
under (1.1.1) with i.i.d. errors is proved. An estimator whose window width
is based on the data and is of the order of square root n, is also considered.
The consistency proof presented is a sole consequence of the asymptotic
continuity of certain w.e.p.'s and some smoothness of the error d.f.'s.

1.3. MINIMUM DISTANCE ESTIMATORS AND GOODNESS-OF-FIT
TESTS

The practice of obtaining estimators of parameters by minimizing a certain
distance between some functions of observations and parameters has been
present in statistics since its beginning. The classical examples of this
method are the Least Square and the minimum Chi Square estimators.

The minimum distance estimation (m.d.e.) method, where one obtains
an estimator of a parameter by minimizing some distance between the
empirical d. f. and the modeled d. f., was elevated to a general method of
estimation by Wolfowitz (1953, 1954, 1957). In these papers he
demonstrated that, compared to the maximum likelihood estimation method,
the m.d.e. method yielded consistent estimators rather cheaply in several
problems of varied levels of difficulty.

This methodology saw increasing research activity from the mid
1970's when many authors demonstrated various robustness properties of
certain m.d. estimators. See, e.g., Beran (1977, 1978), Parr and Schucany
(1979), Millar (1981, 1982, 1984), Donoho and Liu (1988 a, b), among others.
All oi these authors restrict their attention to the one sample setup or to the
two sample location model. See Parr (1981) for additional bibliography on
m.d.e. till 1980.

Inspite of many advances made in the m.d.e. methodology in one
sample models, little was known till early 1980's as to how to extend this
methodology to one of the most applied models, v.i.z., the multiple linear
regression model (1.1.1). A significant advantage of viewing the model
(1.1.1) through V is that one is naturally led to interesting m.d. estimators
of β that are natural extensions of their one- and two- sample location

model counterparts. To illustrate this, consider the m.d. estimator θ of the
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one sample location parameter 0, when errors are i.i.d. symmetric around 0,
defined by the relation

θ := argmin {Tn(t); teR},
with

Tn(t) = f{n-V2h(Yni < y + t) - I(-Yn i < y - t)]}2dG(y), t <E R,

where GeDX(R). Since (1.1.1) is an extension of the one sample location

model, it is only natural to seek an extension of θ in this model. Assuming
that {eni} are symmetrically distributed around 0, the first thing one is

tempted to consider as an extension of θ is β\ defined by the relation

β\ := argmin {Kl(t); teRp},
with

J i I(Yni < y+xήit) - I(-Yni < y-xήit)]}2dG(y), teRp.

However, any extension of θ to the linear regression model should

have the property that it reduce to θ when the model is reduced to the one
sample location model and, in addition, that it reduce to an appropriate

extension of θ to the k-sample location model when the model (1.1.1) is

reduced to it. In this sense β\ does not provide the right extension but β*

does, where

(1) £ := argmin {K+(t); teRp},

with

fr, t) (X'X)"1 VCy, t) dG(y), t e Rp,

Vj(y, t) := VjCy, t) - J i x n i j + Vj(-y, t), 1 < j < p, y € R, t € Kp.

In the case errors are not symmetric but i.i.d. according to a known
d.f. F, so that EVj(y, β) = Σi xnij F(y), a suitable class of m.d. estimators of
β is defined by the relation

βχ := argmin {Kχ(t); t£Kp},

with
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(2) K χ ( t ) : = / | | W ( y , t ) | | 2 d G ( y ) , t e Rp,

W(y, t) := (XX)-^2{y(y, t) - X ' l F(y)}, y € R, t e Rp,

Chapter 5 discusses the existence, the asymptotic distribution, the

robustness and the asymptotic optimality of β* and β- under (1.1.1) with

heteroscedastic errors. For example, if p = 1 in (1.1.1) and the design

variable is nonnegative then the asymptotic variance of /£ is smaller than
A.

that of β\ for a large class of symmetric error d.f.'s F and integrating

measures G. A similar result holds about βχ and for p > 1. Chapter 5 also

discusses several other m.d. estimators of β and their asymptotic theory

under (1.1.1) with heteroscedastic errors. These include analogues of βχ

when the common error d.f. is unknown and some m.d. estimators
corresponding to certain supremum distances based on V.

Closely related to the problem of minimum distance estimation is the
problem of testing the goodness-of-fit hypothesis Ho: Fni = Fo, F o a known
d.f.. One test statistic for this problem is

D 1 : = s u p y | n 1 / 2 { H n ( y , ^ - F 0 ( y ) } | ,

where β is an estimator of β. This test statistic is suggested by looking at
the estimated residuals and mimicking the one sample location model
technique. In general, its large sample distribution depends on the design
matrix. In addition, it does not reduce to the Kiefer (1959) tests of
goodness-of-fit in the k-sample location problem when (1.1.1) is reduced to
this model. Test statistics that overcome these deficiencies are

D2 := supy |W0(y, ft|, D3 := supy

where W° is equal to the W of (2) with F = Fo. Another natural class of

tests is based on K£(0χ), where K£ is equals to the K χ of (2) with W

replaced by W° in there.
All of the above and several other goodness-of-fit tests are discussed

at some length in Chapter 6. Section 6.2a discusses the asymptotic null

distributions of the supremum distance statistics Dj, j = 1, 2, 3. Also
discussed in this section are asymptotically distribution free analogues of
these tests, in a sense similar to that discussed by Durbin (1973, 1976) and
Rao (1972) for the one-sample location model. Section 6.2b discusses
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smooth bootstrap approximations to the null distributions of tests based on
w.e.p.'s.

Tests based on L2-distances are discussed in Section 6.3. Some
modifications of goodness-of-fit tests when Fo has a scale parameter appear
in Section 6.4 while tests of the symmetry of the errors are discussed in
Section 6.5.

1.4. RANDOMLY WEIGHTED EMPIRICAL PROCESSES

A randomly weighted empirical process (r.w.e.p.) corresponding to the
random variables (r.v.'s) £ni, ••••, Cnn, the random noise δnu ••••> fen and
the random real weights hni, ...., h n n is defined to be

(1) Fh(x) := i f * £ h n i I(Cni < x + ίni), x e R , n > 1.

Examples of r.w.e.p.'s are provided by the w.e.p.'s {VJ; 1 < j < p} of
(1.1.2) in the case the design variables are random. More importantly,
r.w.e.p.'s arise naturally in autoregression models. To illustrate this, let Yo
= (Xo, ...., Xi-p)' be an observable random vector, {ei, i > 1} be i.i.d. r.v.'s,
independent of Yo, and p' = (pi, ...., pp) be a p-dimensional parameter
vector. In the p t h order autoregression (AR(p)) model one observes {Xi}
obeying the relation

(2) Xi = pi Xi-i + . . . + pp Xi-p + ei, i > 1, p G Rp.

Processes that play a fundamental role in the robust estimation of p
in this model are randomly weighted residual empirical processes
T = ( T h ....,TP)', where

(3) Tj(x, t) := n" 1 .^ g(Xi-j) I(Xi < x + tΎi-i), x e R , t e Rp,

Yi-i = (Xi-i, ...., Xi-p), i > 1, and where g is a measurable function from R

to R. Clearly, for each 1 < j < p, Tj(x, p+n~ ' t) is an example of Vh(x)
—1 / 9 r

with (ni = î, ίni Ξ n ' t Yi-i and hni = g(Xi-j).

It is customary to expect that a method that works for linear
regression models should have an analogue that will also work in
autoregression models. Indeed the above inferential procedures based on
w.e.p.'s in linear regression have perfect analogues in AR(p) models in
terms of T. The generalized M-estimators of p as proposed by Denby and
Martin (1979) corresponding to the weight function g and the score
functions ^ are given as a solution t of the p equations
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assuming that Eψ(e) = 0. Clearly, the classical least square estimator is
obtained upon taking g(x) = x = ψ(χ) in these equations.

A generalized R-estimator p corresponding to a score function φ

is defined by the relation

(4) pR:=argmin{||S(t)| |; t 6 Rp})||,

where

S(t ) :=/^(F n (x , t ) )T(dx, t ) ,

Fn(x, t) := n" 1 Σ I(Xi < x + tΎi-i), x 6 R, t G Rp.

An analogue of an R-estimator of (1.2.1) is obtained by taking g(x) = x in
(4).

The m.d. estimators p^ that are analogues of βl of (1.3.1) are

defined as minimizers, w.r.t. t6Kp, of

K(t) := l{ / [ n " 1 / 2 . Σ Xi.j{I(Xi < x+t' Yi-i)-I(-Xi < x-t' Yi,)}]2 dG(x).

Observe that K involves T corresponding to g(x} Ξ X.
Chapter 7 discusses these and some other procedures in detail.

Section 7.2 contains a result that says that the r.w.e.p.'s {T(x, )

xeR, |lt||<B} and the residual empirical processes ίFn(x, p+n ' t), xeR,
||t||<B} are asymptotically uniformly linear in t, ior every 0 < B < OD.
These results are used to investigate the asymptotic behavior of G-M and R-
estimators in Sections 7.3a and 7.3b respectively. In order to carry out the
rank analysis in AR(p) models, one needs a consistent estimator of Q(f)
where now f is the error density of {ei}. A class of such estimators is
given in Section 7.3c. A large class of m.d. estimators and their asymptotics
appears in Section 7.4 whereas Section 7.5 briefly discusses some tests of
goodness-of-fit hypotheses pertaining to the error d.f..

The contents of Chapter 2 are basic to those of Chapters 3, 4, and
parts of Chapters 6 and 7. Sections 2.2a and 2.2b contain, respectively,
proofs of the weak convergence of suitably standardized w.e.p.'s and
r.w.e.p.'s to continuous Gaussian processes. Even though w.e.p.'s are a
special case of r.w.e.p.'s, it is beneficial to investigate their weak convergence
separately. For example, the weak convergence of Ud is obtained under a
fairly general independent setup and minimal conditions on {dni} whereas
that of Vh is obtained under some hierarical dependence structure on {τ/ni,
hni, ίni} and the boundedness of the weights {hni}.
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In Section 2.3, the asymptotic continuity of certain standardized
w.e.p.'s is used to prove the asymptotic uniform linearity of V(., t) in t, for t
in certain shrinking neighborhoods of β, under fairly general heteroscedastic
errors. This result is found useful in Chapter 4 when discussing
M-estimators and in Chapter 6 when discussing supremum distance test
statistics for goodness-of-fit hypotheses. The asymptotic continuity is also
found useful in Chapter 3 to prove various results about rank and signed
rank statistics under heteroscedastic errors. The asymptotic continuity of
Vh-processes is found useful in Chapter 7 when discussing the AR(p) model.

Chapter 2 concludes with results on functional and bounded laws of
iterated logarithm pertaining to certain w.e.p.'s. It also includes an
inequality due to Marcus and Zinn (1984) that gives an exponential bound on
the tail probabilities of w.e.p.'s of independent r.v.'s. This inequality is an
extension of the well celebrated Dvoretzky, Kiefer and Wolfowitz (1956)
inequality for the ordinary empirical process. A result about the weak
convergence of w.e.p.'s when r.v.'s are p-dimensional is also stated. These
results are included for completeness, without proofs. They are not used in
the subsequent sections. A martingale property of a properly centered U
process is proved in Section 2.4.




