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PREFACE

An empirical process that assigns possibly different non-random
(random] weights to different observations is called a weighted (randomly
weighted) empirical process. These processes are as basic to linear regression
and autoregression models as the ordinary empirical process is to one sample
models. However their usefulness in studying linear regression and
autoregression models has not been fully exploited. This monograph
addresses this question to a large extent.

There is a vast literature in Nonparametric Inference that discusses
inferential procedures based on empirical processes in k-sample location
models. However, their analogs in autoregression and linear regression
models are not readily accessible. This monograph makes an attempt to fill
this void. The statistical methodologies studied here extend to these models
many of the known results in k-sample location models, thereby giving a
unified theory.

By viewing linear regression models via certain weighted empirical
processes one is naturally led to new and interesting inferential procedures.
Examples include minimum distance estimators of regression parameters and
goodness-of-fit tests pertaining to the errors in linear models. Similarly, by
viewing autoregression models via certain randomly weighted empirical
processes one is naturally led to classes of minimum distance estimators of
autoregression parameters and goodness-of-fit tests pertaining to the error
distribution.

The introductory Chapter 1 gives an overview of the usefulness of
weighted and randomly weighted empirical processes in linear models.
Chapter 2 gives general sufficient conditions for the weak convergence of
suitably standardized versions of these processes to continuous Gaussian
processes. This chapter also contains the proof of the asymptotic uniform
linearity of weighted empirical processes based on the residuals when errors
are heteroscedastic and independent. Chapter 3 discusses the asymptotic
uniform linearity of linear rank and signed rank statistics when errors are
heteroscedastic and independent. It also includes some results about the
weak convergence of weighted empirical processes of ranks and signed ranks.
Chapter 4 is devoted to the study of the asymptotic behavior of M- and R-
estimators of regression parameters under heteroscedastic and independent
errors, via weighted empirical processes. A brief discussion about bootstrap
approximations to the distribution of a class of M-estimators appears in
Section 4.2b. This chapter also contains a proof of the consistency of a class
of robust estimators for certain scale parameters under heteroscedastic errors.

In carrying out the analysis of variance of linear regression models
based on ranks, one often needs an estimator of the functional Jfd<p(F), where
F is the error distribution function, f its density and φ is a function from
[0, 1] to the real line. Some estimators of this functional and the proofs of
their consistency in the linear regression setting appear in Section 4.5.



Chapters 5 and 6 deal with minimum distance estimation, via
weighted empirical processes, of the regression parameters and tests of
goodness-of-fit pertaining to the error distribution. One of the main themes
emerging from these two chapters is that the inferential procedures based on
weighted empiricals with weights proportional to the design matrix provide
the right extensions of k-sample location model procedures to linear
regression models.

It is customary to expect that a method that works for linear
regression models should have an analogue that will also work in
autoregression models. Indeed many of the inferential procedures based on
weighted empirical processes in linear regression that are discussed in
Chapters 3-6 have precise analogs in autoregression based on certain
randomly weighted empirical processes and appear in Chapter 7. In
particular, the proof of the asymptotic uniform linearity of the ordinary
empirical process of the residuals in autoregression appears here.

All asymptotic uniform linearity results in the monograph are shown
to be consequences of the asymptotic continuity of certain basic weighted
and randomly weighted empirical processes.

Chapters 2-4 are interdependent. Chapter 5 is mostly self-contained
and can be read after reading the Introduction. Chapter 6 uses results from
Chapters 2 and 5. Chapter 7 is almost self-contained. The basic result
needed for this chapter appears in Section 2.2b.
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some discussions pertaining to the monograph. My special thanks go to
James Hannan for encouraging me to finish the project and for proof reading
parts of the manuscript, to Soumendra Lahiri for helping me with sections on
bootstrapping, and to Bob Serfling for taking keen interest in the monograph
and for many comments that helped to improve the initial draft.

Ms. Achala Sabane and Ms. Lora Kemler had the pedestrian task of
typing the manuscript. Their patient endeavors are gratefully acknowledged.
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Science Foundation, grant numbers NSF 82-01291, DMS-9102041.
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NOTATION AND CONVENTIONS

The p-dimension Euclidean space is denoted by Rp, p > 1; R = R 3V := the

σ—algebra of Borel sets in Rp, 3=3 λ := Lebesgue measure on (R, 3).
The symbol " : = " stands for "by definition".

For any set A c R, D(i4) denotes the class of real valued functions on
A that are right continuous and have left limits while ϋI(A) denotes the
subclass in B(4) whose members are nondecreasing. <C[0, 1] := the class of
real valued bounded continuous functions on [0, 1].

A vector or a matrix will be designated by a bold letter. A t e Rp is

/ 2 P 2

a p*l vector, t ' or t its transpose, | |t | | := .Σ tj, | t | := max{|tj |, l<j<p}
For any p-square matrix C, ||C|| = sup {||t'C||; | |t | | < 1}. For an nxp

matrix D, dni denotes its i t h row, 1 < i < n, and Dc the nxp matrix D — ϋ ,

whose i t h row consists of (dni — (In)', with Hn := Σi dni/n, 1 < i < n.

w.e.p.('s)
r.w.e.p.('s)
i.i.d.
r.v.('s
d f (
W.Γ.t.
C-S
D.C.T.
Fubini
L-F CLT

v.('s)
.f.('s)

t

N(0, C)

weighted empirical process(es).
randomly weighted empirical process(es).
independent identically distributed,
random variable(s).
distribution function(s).
with respect to.
the Cauchy—Schwarz inequality,
the Dominated Convergence Theorem
the Fubini Theorem.
the Lindeberg-Feller Central Limit Theorem,
a sequence of numbers (r.v.'s) converging to zero (in
probability).
a sequence of numbers (r.v.'s) that is bounded (in
probability).

= either a r.v. with normal distribution whose mean
vector is 0 and the covariance matrix C or
the corresponding distribution.

||g|| := the supremum norm over the domain of g, g a real

valued function.

2 n 2

r a := .Σ ani, for an arbitrary real vector (ani, ..., a n n ) ' .

Often in a discussion or in a proof the subscript n on the triangular
arrays and various other quantities will not be exhibited. The index i in
Σi or Σ and maxi or max will vary from 1 to n, unless specified

otherwise. All limits, unless specified otherwise, are taken as n —»αo.
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For a sequence of r.v.'s {X, XΏ, n > 1}, Xn —> X means that the
d

distribution of Xn converges weakly to that of X. For two r.v.'s X} Y,
X = Y means that the distribution of X is the same as that of Y.

d
For a sequence of stochastic processes {Y, Yn, n > 1}, Yn * Y

means that YΏ converges weakly to Y in a given topology. YΏ —» Y
fd

means that all finite dimensional distributions of YΏ converge weakly to
that of Y.

Reference to an expression or a display is made by the (expression
number) if referring in the same section and by the (chapter number.section
number.expression number), otherwise. For example, by (3.2.1) is meant an
expression (1) of Section 2 of Chapter 3. A reference to this while in Section
3.2 would appear as (1).

For convenient reference we list here some of the most often used
conditions in the manuscript. For an arbitrary d.f. F on R, conditions (Fl),
(F2) and (F3) are as follows:

(Fl) F has uniformly continuous density f w.r.t. λ.

(F2) f > 0, a.e. λ.

(F3) sup χ G R | x f(x) | < * .

These conditions are introduced for the first time just before Corollary 3.2.1
and are used frequently subsequently.

For an nxp design matrix matrix X, the conditions (NX), (NX1)
and (NXc) are as follows:

(NX) (x 'x)" 1 exists, n > p; maxixήiίx'xΓ^ήi = o(l).

(NX1) (XcXcΓ1 exists, n > p;

maXi Xni (XcXc)~~ Xni = θ(l).

(NXC) (XcXcΓ1 exists, n > p ;

i (xni - Xn) (XcXcrtxni - *n) = θ(l).

The condition (NX) is the most often used from Theorem 2.3.3. onwards.
The letter N in these conditions stands for Noether, who was the first
person to use (NX), in the case p=l, to obtain the asymptotic normality of
weighted sums of r.v.'s; see Noether (1949).
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