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SUMMARY

Bayesian methods of image analysis depend on representing prior in-
formation about an image formally by probability models. Since the
most useful prior information concerns the spatial and geometrical as-
pects of the image, it is appropriate to consider how useful the models
of spatial statistics can be in this context. This is investigated in this
paper, with particular reference to three examples, the deconvolution
of images of galaxies, segmenting binary patterns and in extracting
shapes of objects within images.
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1. Introduction

The title of this symposium links two areas of statistics which have grown enor-
mously in the last twenty years. Although image processing has a long history, it is
only in the 1980's that statisticians have begun to regard imaging as a legitimate part
of their subject. It is still reasonable to ask the question "what have statisticians to
add to what has already been done by physicists, electronic engineers and computer
scientists?" One contribution has been the formal use of Bayesian statistics to produce
a unified philosophical approach to a wider spread of problems than had previously
been considered. (Ulf Grenander and Donald and Stuart Geman have been particularly
influential in developing this approach.) It seems to me that the prior models which
have been used up to now have been chosen primarily for computational simplicity, and
that it may be possible to produce better analyses by making more use of the more
than a decade of experience in modelling spatial phenomena by the methods of spatial
statistics.

The previous paragraph gives a very broad programme, so to illustrate it in the
later sections of this paper we will concentrate on three rather restricted problems. The
first is a commentary on the simple Markov random field models which have proved to
be so popular. These are considered for a binary segmentation, in which the image is
divided into black and white regions. Even in this simplest of problems the choice of
prior model gives considerable flexibility. Figure 1 shows an example, a micrograph of
a nematode. The classification of nematodes depends on the shapes of their bodies and
organs, and the first step in automatic classification is to extract the nematode from
the background and move it to a standard position. In many such problems the images
are too noisy and are digitized to too few grey levels for conventional edge-detection
methods (Rosenfeld fc Kak, 1982) to be useful. It is essential to use prior information
on the scale of several pixels.

Figure 1. A micrograph of a nematode at 512 x 512 resolution. The original had
256 greylevels, but only 16 are shown here.

The second example comes from optical astronomy. Modern astronomy no longer
uses photographic plates, but CCD (charge-coupled device) detectors. These count
indirectly the number of photons of light falling on each cell of a grid (typically about
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1024 x 700). Since astronomers will always be most interested in celestial objects at
the limit of their hardware, a number of sources of noise and distortion are important,
including the discrete nature of photons, electronic noise in the CCD device, and blurring
caused by the motion of the earth's atmosphere during the "exposure" of several hours.
The physics behind these distortion sources is quite well understood, and there is also
prior information about the sources being imaged. These are made up of point sources
(stars) and objects of smoothly varying luminosity (galaxies) against an almost black
background. Furthermore, interest is concentrated on features in the galaxies at low
luminosities.

Our third example extends the first, involving the classification of several objects in
an image. Figure 2 illustrates the problem; we need both to recognize objects meeting
a prior specification and 'foreign bodies' of unknown type. Eventually the astronomical
problem will also become of this type, as the aim is to automatically classify galaxies
according to type (ellipsoidal, spiral...).

Figure 2. A TV scan of a plate of peas with a foreign body present. The true
resolution is 256 x 192.

By no means all statistical methods make explicit use of prior information. One
prominent exception is Shepp & Vardi's (1982) work on emission tomography. There the
"maximum likelihood" solution is actually the result of a partially completed iterative
procedure whose limit satisfies the likelihood equations. There are also "regularization"
methods (e.g. Titterington, 1985) which use an explicit smoothness penalty. The lat-
ter can often be interpreted as using an implicit spatial prior, but I find the former
unsatisfactory. There is a folklore belief that Bayesian methods are very time consum-
ing. This may have been so for early experiments, but in many cases the algorithms
have been improved to the point where their computational cost is no longer a serious
consideration.

My recent essay (Ripley, 1988) gives some further examples and background for
the ideas discussed here.
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2. The Bayesian paradigm

The general Bayesian paradigm applies directly to abstract imaging problems. We
suppose that we have a description S of the image, and an observed image Z which is a
(known) function of S and a noise process ε. The prior knowledge gives us a probability
distribution P(S) over images, and knowledge of the noise and distortion process gives
us P(Z I S). From Bayes' theorem we base our conclusions on

P(S I Z) oc P(Z I S)P(S)

If P(S) is expressed as a Gibbs distribution we will have

P(S) oc exp -βU(S)

(which is just a formal change of description to an 'energy' U), so

L = - In P(S I Z) = const - likelihood + βU(S)

Further, in many cases the likelihood will have a scale factor φ representing the scale of
the noise process, so

L = const - likelihood(φ = ϊ)/φ + βU(S)

and Bayesian inference is based on

LQ = [-likelihood(φ = 1)] + βφ[U(S)] (1)

where the two terms in brackets represent the infidelity of Z to S, and the "roughness"
of S, the extent to which it deviates from our prior perceptions. A common philosophy
is to report the mode of P(S | Z), the MAP (maximum a posteriori) estimator, which
corresponds to minimizing L oτ Lo.

These formal manipulations are valuable in that they allow us to interpret other
procedures from the Bayesian viewpoint. We can regard λ = βφ in the definition of Lo
as a Lagrange multiplier, so that (at least under convexity assumptions) minimizing Lo

is equivalent to

min infidelity subject to roughness < constraint

and to

min roughness subject to infidelity < constraint

Many methods derived from other principles fit into one of these forms, including many
implementations of maximum entropy principles. Viewing [exp —β roughness] as a prior
distribution can be a very illuminating way to consider what assumptions are being
made. (This is illustrated in §4.)

This formal paradigm is so appealing that it is easy to skate over a number of
crucial points in its implementation, and I believe that these have not yet been given
sufficient consideration.
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The description of S

The 'signal' Z will inevitably comprise values on a fixed grid of pixels, and by
far the most common approach has been to represent S on the same grid. Consider
again figures 1 and 2. The scale of the pixels in the grey-scale images is based purely
on physical constraints of the imaging device. The underlying phenomena occur in a
continuum, but a description on a much coarser scale than the grey-scale pixels may
be the most useful. Continuum-based models may be impossibly complicated, but it
is always possible to represent the image on a finer grid than the observations. This
can be particularly helpful in reconstructing boundaries and in classification problems
in remote sensing where a single pixel can cover parts of several landuses. We give an
example of restoration at a smaller pixel scale in §3.

Once the space for S is fixed the model may need unobserved hierarchical compo-
nents. This has been exploited by Grenander (e.g. 1983) in his 'Pattern Theory'. The
idea (as in figure 2) is to model a higher-level description of the image than the value
at each pixel.

The loss function

It is far from clear that the MAP estimate is intrinsically desirable, and this is the
subject of some considerable controversy (e.g. Marroquin, Mitter &; Poggio, 1987). The
MAP estimator corresponds to the loss function which penalizes all incorrect choices for
S equally. Another choice which has considerable support is MPM (marginal posterior
mode) which chooses the modal value for S, for each pixel i. This is appropriate for a
loss function which counts the number of misclassifications if the image is described by
a discrete set of values at each pixel.

One attraction of the MAP estimate is that it depends on P(S | Z) whereas the
MPM estimator needs P{S% | Z). Grenander (1983) pointed out that the MPM estimator
can often be found by sampling repeatedly from P(S | Z) and taking for each pixel i
the most frequently occurring value of Si. This is often computationally feasible when
each pixel takes a small number of values, and is illustrated in §3.

Note that both MAP and MPM can depend crucially on the representation chosen
for S. A rather simple example is the astronomical deconvolution. Here we commonly
look at the image on logarithmic scale, and the MAP estimator for lnS is not the loga-
rithm of the MAP estimator for S. This problem will arise whenever we have a probabil-
ity density, and we might hope to avoid it in discrete problems where we can work with
actual probabilities. However, we have already commented that a discrete representa-
tion is usually an approximation to a underlying continuum image, and the character
of the MAP estimate of the approximation can depend crucially on how that approxi-
mation was done. Finally, it should be obvious that measuring image characteristics on
a MAP estimate does not necessarily give a good estimator of those characteristics.

Quite often MAP and MPM estimates are very similar. Where they are not there
seems to be no general rule as to which to prefer. Wherever possible a more realistic
loss function should be used.

Parameters in the prior

Spatial models used as image priors almost invariably contain parameters Θ. In a
fully Bayesian approach these should be given a prior distribution (sometimes known as
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a 'hyperprior'), and P(S | Z) is then evaluated by averaging over P(S | Z, θ) over θ. This
has to my knowledge never been done, probably because its computational complexity
can be prohibitive. One approximation is to take a fixed value of 0, that is a hyperprior
without uncertainty. In practice this can work well when we have to analyze a series of
similar images and have found an acceptable value of 0 by experimenting on early images
in the series. One way to elicit a value of 0 is to experiment with simulations of P(S).
This can be misleading, as features which dominate the appearance of unconditional
simulations can be swamped in the conditional distribution P(S | Z,0). (A particular
example is the Ising model considered in §3.)

The alternative to full Bayesian estimation is to estimate the parameter θ from the
data Z, an empirical Bayes procedure. This can also be applied to parameters (such
as φ) in the likelihood. As (1) shows, the posterior distribution depends only on the
Lagrange multiplier λ for the case of a Gibbs prior with a completely specified energy
function U. In that particular case a large number of more or less ad hoc procedures
have been proposed to estimate λ (Titterington, 1989). In the examples below we prefer
to estimate β and φ separately as parameters.

One way to estimate β is to include the human expert in the feedback loop', and
to show reconstructions with different β until the expert finds one which reflects his
preconceptions. This is possibly the most effective parameter estimation method at
present; in principle it could be refined to define a loss function on images S and so
choose β automatically.

One problem with using Markov random field priors is that their parameters are
not immediately interpretable as characteristics of images on the desired scale. Theory
relating medium-scale features to local parameters would be very helpful in this context
(and also in others such as conditional simulation in petroleum reservoir characteriza-
tion).

It is also important to remember that spatial models can be used as image priors in
less formal ways than the Bayesian paradigm. In particular they can be used to select
a series of image-processing operations for production analyses, by checking the effect
of this filtering on simulated images to verify the designer's understanding.

3. Simple image segmentation

We return to our first example. An image is presented made up of k classes, and
we want a classified final image. Statisticians have considered this problem within the
context of satellite images (e.g. Switzer, 1980; Hjort & Mohn, 1984), but the problem
occurs in many other contexts, such as figure 1. Figure 3 shows an artificial example.
An map of the British Isles was digitized from the output of a TV camera at 256 x 256
resolution to 16 greylevels. The fine detail is unreliable due to jitter in the camera and
digitizer. Figure 3a shows a thresholded binary image, and figure 3b is a 'maximum
likelihood' reconstruction of the data from aggregated data on a 64 x 64 grid, which we
will attempt to restore at a sub-pixel scale.

The description of our image is a label 5, for each pixel on the sub-pixel size
restoration grid. The observed data Zj are continuously distributed on the large pixel
grid. We assume that each large pixel is made up of r equally sized small pixels. Then

K) (2)
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(a) (b)

Figure 3. (a) test image on original 256 x 256 scale, (b) 64 x 64 non-spatial
reconstruction.

independently for each large pixel, given S. Further,

(3)

for known means i/c for each class.

The simplest Markov random field that has been proposed as an image prior (Besag,
1983,1986; Geman & Geman, 1984) is

P(S) oc exp β # pairs of neighbors of like class

In the statistical literature this model was proposed by Strauss (1977) (and also by
Besag in a 1976 Princeton technical report); in statistical physics it is named after
Potts (1952). The definition of 'neighbor' is very wide; all that is needed is a graph
whose edges give exactly those pairs of pixels which are to be neighbors. In the case
of four neighbors (horizontal and vertical) this process reduces to the celebrated Ising
model. Figure 4 shows some simulations for this prior with four and eight neighbors
(in the latter case including diagonal neighbors with equal weight). Onsager showed
that for the Ising model there was a critical point βc such that for β > βc the process
possesses long-range behavior whereas its behavior for β < βc is strictly local. The exact
statements are for the process defined on an infinite lattice as a limit of finite-lattice
processes. Then for super-critical β realizations almost surely contain infinite patches
of contiguous black pixels (and of white pixels) and the correlation between Si and Sj
does not tend to zero as j is moved arbitrarily far away from i. Pickard (1987) gave
a lucid account of the properties of this process; some further details are given, rather
cryptically, by Bartlett (1975). The value of βc is known to be sinh~ι(ί) « 0.88. For
values of β much larger than those shown in figure 4 the realizations are usually all
black or all white. (For β = 1.0 in the 8-neighbor case we expect 642/(l + e8) « 1.37
isolated pixels of the other color.)
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Figure 4. Simulations of the Strauss model at 64 x 64 pixels, (a) 8 neighbours,
β = 0.25. (b) 4 neighbours, β = 0.5. (c) 8 neighbours, β = 0.5. (d) 4 neighbours,
β = 0.8. (e) 8 neighbours, β = 0.75. (f) 8 neighbours, β = 1.0.
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It has been suggested that these long-range correlations make the super-critical
Ising model unsuitable for use as a prior in image analysis. Although formal proofs are
unknown (to me), it is believed that the Potts model with both four and eight neighbors
also has a critical point of the same type, so the same objection would also apply to the
Strauss/Potts prior. I believe that this criticism has very limited validity. The "phase
transition" applies only to the model with no "external field" in the terminology of
statistical physics. An external field corresponds to altering the energy function to

— \β # (like neighbor pairs) + ^ α,

where α, φ 0 biases the conditional and marginal distributions of pixel i towards black
or white. When the pixel grids for S and Z coincide the posterior distribution P(S | Z)
is of this form. Further, even a very small degree of conditioning can radically alter
the realizations of a Strauss prior. Thus it is not usually the long-range behavior of the
prior which influences the MAP and MMP estimators. The situation is analogous to
the usually benign effect of improper priors in univariate Bayesian statistics.

Simulation

The simulation of these processes is rather critical, and is part of the algorithms
normally used to produce both MAP and MPM estimates. The Gibbs sampler (Geman
k, Geman, 1984) visits each pixel in turn and replaces Si by a sample from P(Si \
Z, other Sj). This can converge in distribution extremely slowly when β is super-
critical and the information in Z is weak. Figure 4 is the result of around 102~4 sweeps
over the image. One trick which can speed up the computation enormously for large
β is the clock method (Ripley, 1988). It is instructive to watch the Gibbs sampler in
action. Almost invariably only a small proportion of the pixels change class on each
sweep. Unless its neighbors have changed class, the probability that Si changes class
is constant from sweep to sweep, and the time to the next change is geometrically
distributed. The clock method exploits this by setting a geometrically distributed clock
for each pixel, and not considering that pixel again until its clock has timed out or has
been reset because a neighbor has changed class.

In this form the clock method is directly applicable to simulation from P(S) (to
visualize the prior) and P(S | Z) (to find the MPM estimator). Simulated annealing
simulates from the distribution

PT(S I Z) oc P(S I Z)ι'τ

with T \ 0 as the sweep number increases. Then the probability that 5, changes
does vary from sweep to sweep. However, provided 5/ is in its most probable class,
the probability of change will decrease and so the next change will occur after the next
change at constant T (if the same pseudo-random number stream is used in both cases).
In my experiments I tend to reduce T in discrete steps every 10-100 sweeps. This allows
the clock method to be used, just by resetting the clock on the (few) pixels not in their
most probable class whenever T is reduced, and noting that when a clock does time out,
the change will have a probability less than one if the clock was started with a higher
T.
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Restoration at the original pixel scale

The details of using a Strauss prior at the original pixel scale are well documented
(Geman & Geman, 1984; Ripley, 1986, 1988). Figure 5 illustrates the results for our
map on a 64 x 64 grid. (This is not strictly restoration, since the map was on a much
finer scale originally.) With the relatively low value of β used the few isolated errors
shown in figure 3b are removed, and the MAP and MPM estimates are identical with
four neighbors and nearly so with eight. (The algorithms used give approximations to
both MAP and MPM, so exact equivalence is a matter of chance.) The values of/? used
is already super-critical, but the simulations of P(S | Z) show no long-range behavior,
and the iterative process merely flips single pixels on the black/white boundary without
ever deviating far from the maps shown.

The number of neighbors does have an effect on the shape of the class boundaries
in realizations of the prior (see figure 4) and this is reflected in the differences between
figures 5a,b and 5e,f. In order to compare the two priors we matched

P(S{ = black I all neighbors are white)

which gives double the values of β with four neighbors as with eight neighbors. Much
more extensive experiments than those presented here have shown this to be a good
basis for comparison. The value of β was chosen from past experience and from the
geometrical arguments given in Ripley (1986). In applications such as figure 1 we want
to lose the fine detail of the boundaries and so would deliberately choose a larger value
of/? such as is shown in figure 5c,d,g,h. Here we find much greater differences between
MAP and MPM estimators, and between four and eight neighbors. The signal Z no
longer dominates the prior, and the simulation-based algorithms are beginning to have
difficulty. Different MPM runs on 1000 sweeps can give quite different estimates, and
the MAP estimate shown is the best of several runs (in the sense of giving the highest
posterior probability).

K-class patterns with a Strauss prior and additive white noise are probably the
most-explored example of the use of spatial priors in imaging, yet even here much more
needs to be understood. My belief is that many of the reported problems (e.g. Greig,
Porteous & Seheult, 1986, 1989) only occur when unrealistically noisy observations are
used, allowing the prior to dominate. In those situations we need to consider alternatives
to the Gibbs sampler because of its slow convergence. The clock method alleviates the
problem by allowing many more sweeps to be done. Some initial experiments with multi-
grid simulation methods are promising, and there are also other simulation algorithms
for the prior (e.g. Swendsen & Wang, 1987)* which might be able to contribute.

Sub-pixel restoration

We now turn to our original aim, to refine the detail in figure 3b. From (2) and (3)
we can deduce that

In P(Si I Z, other Sj) = const + β #(nhbrs of class i ) - ^-(Zj - - V vSj)

I am grateful to Stuart Geman for this reference.
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(a) Φ)

(0 (d)

(e) (f)

Figure 5. Restorations at 64 x 64 pixels. Left column MAP, right column MMP.
Rows are 8 neighbours, β = 0.7, 8 neighbours, β = 2.0, 4 neighbours, β = 1.4, and
4 neighbours, β — 4.0.
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(g)
(h)

Figure 5 Continued,

where / is the large pixel containing i. In the binary case we have the log odds on black,

In P{Si = black | Z, other Sj) - In P(S; = white | Z, other 5,-)

= β #black nhbrs - #white nhbrs

L J ( 4 )

This is only marginally more complex than the case r = 1 where the pixel grids coincide.
Equation (4) is sufficient to simulate from Pτ(S | Z) and hence to find MAP and MPM
estimators.

Figure 6 shows the reconstruction on a 128 x 128 grid with the same low values
of β used in the 64 x 64 case. Once again the number of neighbors shows through in
the shapes of the boundaries. A considerable amount of useful data has been recovered,
although for several features one of the restorations is more appropriate than the other.
This is an inevitable problem with using a prior on an image which was constructed by
non-stationary mechanisms.

Discussion

These examples illustrate that the Strauss model can be very useful even though its
unconditional realizations seem to bear no overall resemblance to the prior knowledge
being modelled. It is the shapes of the (rare) boundaries between classes in super-critical
Strauss processes which we use to fill in uncertainties in the data.

Note that the choice between four and eight neighbors and the level of boundary
smoothing used (governed by /?/c) really is a matter of prior assumption, and that in
many examples (including ours) there is very little information in Z about β. Further (a
point we shall echo in §4), what information there is in Z about β may reflect features
of the prior other than those we use in the boundary smoothing.
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(a) (b)

Figure 6. Restoration at 128 x 128. (a) Eight neighbours, (b) Four neighbours.

Despite all these caveais, the Strauss model has proved to be a very useful prior
for k-class images. I suspect that if priors could be found which more accurately match
our preconceptions, the computational problems with multiple maxima which bedevil
MAP and MPM estimation would be greatly reduced.

The computation of restorations with simple MRF priors has been greatly improved
over the years. This is not an appropriate place to go into the details of the algorithms
used in our examples. It is worth noting, however, that when using simulated annealing
I used an adaptive schedule based on the rate of pixel change, with a tendency towards
a geometrical decrease in temperature rather than the logarithmic needed for eventual
convergence. Often, too, I run several annealings with different pseudo-random number
seeds and compare the posterior probabilities achieved. One will of course report the
image with highest posterior probability.

Other models

The full Bayesian approach with a Markov random field prior is not the only one
adopted by statisticians for the k-class classification problem. An earlier idea to intro-
duce context into pixel classification was to choose 5, from {Zf\ in a neighborhood of
i. Thus we base inference on

P(Sχ = c\ Zj for j in a neighborhood of i)

which needs a local dependence model for S. Several such models have been proposed
(surveyed by Ripley, 1988, §5.5). Some researchers have used rather specialized Markov
random fields such as the unilateral Markov mesh processes (Derin et al 1984; Devijver,
1985). Owen (1984) and Hjort k Mohn (1984) both use a simple model of a straight
boundary passing through the neighborhood. Owen used Switzer's (1965) Poisson mo-
saic model as a prior within the current five-pixel neighborhood.
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4. Deconvolution in Optical Astronomy*

We have already sketched the problem in §1. The main concern is to remove the
effects of electronic and photon noise in the detector and to remove the blurring caused
by atmospheric motion so as to reveal details of galactic structure. (Both distortions
can be seen in figure 7.) The blurring is a linear process and so can be described by
a point-spread function h which will be radially symmetric. Previous studies (Moffat,
1969, Bounanno et al, 1983) have suggested the form

1 - / 3 (5)

for β about 3. Stars can usually be easily identified in displays of the digital image, so
they can be extracted and the parameters in (5) fitted by (weighted) least squares. Our
studies found R « 3.5, so a point source is effectively spread over a few hundred pixels.
The fit of (5) was remarkably consistent from star to star and image to image.

Figure 7a. A 329 x 256 section of a digital astronomical image. Greylevels. Counts
above 2000 are shown as white.

This section reports joint work with Rafael Molina. Later work is now published in

Molina & Ripley (1989).
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Figure 7b. Contour plot, with contours at 100, 200, 400, 800, 1600 and 3200.

The deconvolution problem is to reconstruct the image S which would have been
observed by a perfect detector under ideal viewing conditions. It is well-known that this
is an ill-posed problem and that some smoothness constraint on S is needed to achieve a
satisfactory reconstruction. Common choices are a "roughness" constraint (in the sense
of §2) based either on entropy or on the size of derivatives of S. We chose rather to
introduce an explicit spatial model for S, thereby re-deriving some classical procedures
and producing some new ideas. A fuller account of the procedures and detailed analysis
of actual images will appear elsewhere. Here we sketch the process and concentrate
on the effect of the spatial prior. The background theory is expanded in (Ripley, 1988,
§5.3), and further details of the astronomical application will appear in Molina &; Ripley
(1989).

The noise process

The physics of the detector suggests that the main sources of noise will be Poisson
noise from the discrete nature of photons, and noise from the process whereby each
photon displaces electrons in the CCD cell. Thus we expect

vaήance(Zi) = a + 6 x mean(Zi) (6)

The true image S will be non-negative, but the charge counts from the CCD detector
are recorded with a DC offset and so can be negative (and often are).
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Viewing the raw data revealed a number of other problems. There are lines and
parts of lines with charge counts of zero or 2 l β and isolated pixels with counts far
removed from those of their neighbors. (Lines can be seen in figure 7a.) The presence of
a psf ensures that these features cannot arise from the signal S and so must be regarded
as part of the noise process. Let HS denote the result of convolution of S by the psf.
We expect this to be quite constant at pixel scale, so

ZN = Z - ±NZ

will have mean close to zero. (Here N denotes the neighbor incidence matrix, each
pixel having r neighbors.) Then Z? has mean zero and variance (1 + l/r)σ 2(#S;), but
with dependent errors from pixel to pixel. We used a systematic sample of pixels and a
robust measure of variance to estimate the constants a and 6 in (6). Difficulties arose
at large mean values, where the curvature of HS is appreciable, but for moderate mean
counts the relationship between variance and mean was acceptably linear.

Spatially smooth priors

The simplest priors for a spatially smooth digital surface are spatial autoregressions
(Bartlett, 1975; Ripley, 1981). The conditional autoregression (CAR) is defined by a
symmetric matrix C such that 7 — C is positive definite, and has

A simultaneous autoregression (SAR) is defined by a matrix 5 such that (/ — S) is
non-singular, and

AI) ~ ΛΓ(0,/c)

As an SAR model (on a finite grid of pixels) can always be written as a CAR model we
will only consider the CAR form in the formulae.

A simple choice for C or S which has proved to be useful in agricultural field trials
is C = φN where φ is less than 1/r. For astronomical images we need φ very close to
1/r to obtain an apparently smooth realization, so C is very close to a finite-difference
matrix. The corresponding SAR has

C = [2φN - φ\N2 - r/)]/(l + φ2r)

and corresponds to second differencing.

Realizations of these autoregressions differ from our preconceptions of the true
image in at least two ways. They do not respect the constraint S > 0 and demand that
peaks in S are as smooth as fluctuations at low levels of luminance. These deficiencies
can be alleviated by using an autoregressive model for a transform of S (such as In S).

Algorithms

One case is particularly simple. Suppose we have additive Gaussian white noise of
constant variance κn and a CAR prior with variance determined by κn. Then
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which is a quadratic function of S. Let λ = /cn/«5, and a = κs/(κn + κs). Then the
constrained minimum of Lo with S > 0 satisfies

(HTH + XI - λC)S > HTZ and S > 0 (7)

with at least one equality for each pixel. The unconstrained solution is equality in the
first inequality of (7), and corresponds to the Wiener filter solution in signal processing.
We can transform (7) to

S = max(0, (1 - α)CS + a[Hτ(Z - HS) + S]) (8)

If the constraint is omitted equation (7) can be solved rapidly by Fourier methods, and
so is taken as the starting point of our iterative schemes. Note that equation (8) is a
classical constrained regularized solution, derived from a Bayesian point of view. We
can solve it by first finding the unconstrained solution and then iterating (8), possibly
with relaxation. (Conditions under which this scheme is stable are derived in Molina k
Ripley, 1989; usually a few iterations suffice.)

The section on the noise process suggested that the noise variance κn depended on
the mean level i/S, . Let W denote a diagonal matrix of these variances (which thus
depends, weakly, on S). We find, approximately,

S = max(0, CS + κsH
ΎWλ{Z - HS)) (9)

Equation (9) omits the derivative term expressing the dependence of W~ι on S, which
is negligible. (It is exact for Poisson noise with κn(μ) = μ.) Once again we can use an
iterative scheme to solve (9).

The range of observed counts is large (—200 to 20,000, say) and we noticed that
astronomers tend to look at the raw data on logarithmic scale, by choosing contour
levels in a geometric progression. Further, the features which interest them are often
around a few hundred counts in magnitude and so are dominated by the peaks in linear
plots. This suggested that we should use a CAR or SAR prior for Y = ln(S + p), the
constant p being used to reflect the fact that very low counts are examined on linear
scale. Then

2L0 = const + ^-YT(I - C)Ύ + ||Z - # S | | 2

which leads to
Y > CY + X[HT(Z - HS)]eY (10)

where once again we have either equality or Si = 0. We can combine the noise process
of (9) with the prior on transformed scale to yield

Y > CY + κa[HτW~ι(Z - HS)]eY (11)

All of (9) to (11) can be solved by suitable iterative schemes. Note that in (11) the

effect of the factors W~x and eY approximately cancel out, since under our noise model

these are for large 5, , l/(bSi) and Si +p respectively. Relying on the local nature of H,

we start the iteration for (11) from

Y = CY + (κs/b)[Hτ(Z - HS)]



326 B. D. Ripley - XXIII

which once again is linear and can be solved by Fourier methods.

Note that we have found the MAP estimator of Y, and this does not transform
to the MAP estimator of S. The latter can be found from a equation similar to (11).
However, since astronomers view images on logarithmic scale, we believe that the MAP
estimator on that scale is most appropriate.

We are still in the early stages of experimenting with iterative schemes for the so-
lution of these equations, and it may prove better to use direct optimization techniques.
Stability does not hold for the non-linear schemes, but with a judiciously chosen start-
ing point we have to date encountered few problems and only needed a few tens of
iterations at most.

Other generalizations are possible within this general scheme. We mentioned that
the detector faults form part of the noise process. Perhaps the simplest way to safeguard
against them is to replace the least-squares "infidelity" arising from the Gaussian noise
assumption by a loss function p from robust statistics (Huber, 1981; Hampel et al, 1986).
This yields versions of the same equations with (Z — HS)i replaced by σiψ((Z — HS)i/σi)
where σ, is the standard deviation appropriate to that pixel, and ψ is the derivative of
p. Again, this fits easily into the iterative form of solution.

The other component of our prior knowledge, stars, has been ignored up to now.
In practice these are easy to spot and remove, so they cause no difficulty. We believe it
will be possible to model our prior knowledge about stars by a Gibbsian marked point
process (e.g. Ripley, 1988) and add this as a further component to the formal prior, but
the full details remain to be considered.

Even in the simplest case of constant noise variance and CAR prior for S the MPM
estimator is not easily computed, since the distribution of Si conditional on Z is not of
a simple form.

One-dimensional examples

It is much easier to see how well a reconstruction algorithm is performing in one
dimension, so we start with some artificial examples. Figure 8 shows our test image,
together with the effects of convolution and added noise. The spike at pixel 115 would
normally be recognized as a star and removed, but is used here to see what its effects
might be.

Figure 9 shows some reconstructions under the simplest model (8) with parameter
κn calculated from the data but κs chosen to reflect the range of possible smoothing
obtained. Figure 10 is similar, but with a prior on Y = ln(S + 100). (For comparison,
the results are plotted on linear scale.) This is very successful, and the estimate of S is
quite insensitive to the value used for κs (here 0.052).

Parameter estimation

Our priors have an unknown parameter κs. At the beginning of this work we
believed it would be possible to estimate this from the observations Z. However, the
experiments in (Ripley, 1988, §5.3) showed grave difficulty in estimating κs from S! The
problem is that we do not expect the prior to represent the behavior of the true image
on all scales. The parameter κs is the conditional variance

κs = variance (Si \ Sj, V neighbors of j)
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1000-

100

Figure 8. A test image, with scale and noise levels similar to figure 7. The thick
line is the original, the thin smooth and rough lines the results of convolution and
added noise respectively.

and so measures the local variability of S. Both maximum likelihood and pseudo-
likelihood estimators of κ$ are based on local characteristics, and when applied to images
such as figure 8 produce rather small estimates of κs which are far too low to explain
the large-scale variability observed.

Ironically, this problem is eased when estimating from Z. The noise process swamps
the high-frequency behavior of the prior, which is also filtered severely by the convo-
lution, so we must estimate κs from the low frequency behavior of Z. For simplicity,
consider only the simplest situation, that leading to (8). Suppose that C = φN and that
the CAR process is defined on a circle or torus and so is stationary. Spectral methods
are then applicable. We can write down the log-likelihood of κn and κs as

where n is the number of pixels, Z the discrete Fourier transform of Z and

(12)

is the spectral density of Z. Minimizing (12) gives estimators of κn and κs clearly that
for κs is based on the lower frequencies of Z.

An alternative approach can be based on moments. The maximum likelihood esti-
mator of κs based on S is ks = S τ (/ — C)S. Now

EZT(I-C)Z = JS?[tr(J - C)ZZT]

= tr [(I - C)(κ.H(I - C)HT + κn)]

= nκn + κs tr (HτH)

This can be expressed more concisely in the Fourier domain. Let c(ω) denote the discrete
Fourier transform of c, and ωs = 2πs/n. Then

(13)
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Figure 9 (a-c). Reconstruction of figure 8 by the simplest model with a range of
values of κs = 1000,4000,9000. The heavy line is the reconstruction, the thin line
the true image.

which has mean
nκn + κs tτ(HτH) = ωi)2κa + κn)

and each term in the sum is the mean of the corresponding term in (13). This suggests
an estimator of the form

.= Σ [ ] /
' 0<u>i<ωc

Both these suggestions appear to work well in cases where the constant variance and
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Figure 10. Reconstruction of figure 8 with a CAR prior for Y = ln(S 4-100).

CAR prior for S are appropriate. Neither generalize to the extensions needed for the
astronomical problem.

Overall it seems that the best we are currently able to do with parameter estimation
for κs is to produce a "ball park" figure, which may already be available from past
experience. For many aspects of the image we are unable to chose κs at all accurately
by trial-and-error viewing of the reconstruction, so it seems unreasonable to expect to
be able to do so automatically.

Why not maximum entropy?

Various maximum entropy principles have been quite widely proposed as the solu-
tion to regularization problems in astronomy. The entropy functional (Gull k, Skilling,
1985) is SE = —Σ,Pi ^nPi w n e r e Pi = <*£,-, scaled so that Y^Pi = 1 and ot is thus the to-
tal flux. The proposed methods either maximize entropy subject to a fidelity constraint
C < Caim °r minimize a Lagrangian form —S + \C. As we have seen in §2, this can be
interpreted as taking KeSE as a prior probability distribution on images S. This prior
depends only on the marginal distribution of greylevels {5,} and not on their spatial
locations.

We maintain that this prior does not conform to our preconceptions about the
image S in that it lacks spatial smoothness. This follows from the axiomatic derivation
of SE. One of the axioms states that if we partition the image, our prior for the two
parts will be independent; it is this axiom which we reject. Although it is appealing
when applied to well-separated parts of the image, it must also be applied to contiguous
pixels to derive SE. Given that SE does not impose spatial smoothness, it may be
surprising that almost all published examples of maximum entropy solutions appear
to be spatially smooth. This is related to blurring, as without a blurring matrix H',
maximum entropy solutions are not spatially smooth (figure 11).

Figure 12 shows maximum entropy fits for a range of Lagrange multipliers λ for
our test example. Notice that the effect of the constraint S > 0 is to inflate the solution
in areas where the true value is zero, and that for a particular degree of fit maximum
entropy gives a rougher solution than our spatial priors. These conclusions appear to
be qualitatively correct, but not too much faith should be placed in the optimizations
shown in figures 11 and 12. (They used a modified form of the 'integral equation' method
of Gull & Daniel, starting from a smooth solution. Convergence was checked by using
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Figure 11. Reconstructions of a noisy image (shown by the dashed line) with-
out convolution, (a-b) Maximum entropy with two values of λ. (c) Via spatial
smoothing.

a number of starting points. Skilling & Gull, 1985, discuss optimization algorithms for
this problem.)

Discussion

The battery of methods discussed in the sub-section on algorithms provide a number
of useful ways to remove noise and blurring from an astronomical image. Our present
implementations take from a few minutes to a few hours on a Sun 4fora512x512 image.
Figure 13 shows a reconstruction of figure 7. This removes the noise very effectively
and somewhat sharpens the features, except the object in the upper left surrounded by
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Figure 12 (a-b). Reconstructions of figure 8 (shown dashed) by maximum entropy
for two values of λ.

a black ring. This may be a star or a very compact galaxy, so is too close to a point
source for our methods. We believe these methods are now close to being a useful tool
for our astronomer clients.

The role of the spatial prior is small in the final result, but was very important in
its derivation. We could have proposed all our methods as regularization principles, but
it is unlikely that we would have done so. Viewing the "roughness" penalty as a prior
distribution over images has proved to be very illuminating at times during this work.

5. Object recognition

Figure 2 showed one recognition problem in computer vision, and figures 14 and 15
show some others from the same area . In each case the aim is a higher-level description
of the image than the classification of each pixel. Not only do we want to say that
pixel (27,63) is 'carrot', we want also to describe the position, size and so forth for each
carrot. Note that this is not necessary for the factory inspection problem, where all
that is necessary is to identify the pixels which are definitely not 'carrot' and on the
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Figure 13a. A spatially smooth reconstruction of figure 7. Details as for figure 7.

basis of these make an accept/reject decision on the whole image.

Pixel-based models do not seem promising for object recognition. The only suc-
cessful attempt to use them that I know is Grenander's (1983) model for horizontal,
vertical L, T and + structures. Even these must be aligned with the pixel grid and have
'arms' of width exactly three pixels. The models of stochastic geometry (e.g. Stoyan,
Kendall k Mecke, 1987) are a much more natural domain from which to choose our
priors. In particular, our images of foods could be modeled by 'germ-grain5 processes,
in which 'centers' of each object are distributed by a specified point process, and the
object descriptions are drawn independently. For example, the carrot slices in figure
14b could be modeled by a point process of non-overlapping discs of random radii, and
the texture of each carrot by a sine-wave pattern of uniformly distributed orientation.
(These models differ from the 'Boolean schemes' of Matheron and Serra (Serra, 1982) in
two ways. The important one is that point processes can be much more general than a
Poisson process; also we retain the knowledge of which 'grain' is uppermost when they
overlap.)

Perhaps the most useful class of point processes in this context are Gibbs point pro-
cesses, specified by their probability density (Radon-Nikodym derivative) with respect
to a suitable Poisson process. In the spirit of stochastic geometry we think of a point
process of objects and 'merely' have to specify an energy function U on each configura-
tion of objects. There are iterative simulation schemes which move or replace objects
at each step and have the required Gibbs point process as their equilibrium distribution
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Figure 13b. A spatially smooth reconstruction of figure 7. Details as for figure 7.

(Ripley, 1977). Unlike the examples of §3 and §4, here it is the observation process
P(Z I S) which it is hard to specify. Camera noise is easy to model, but an integration
is needed in going from the continuum-based S to the pixel-based Z (although this could
be ignored). The real problem is to specify the errors which can occur, since these are
foreign bodies of completely unspecified form. The strategy adopted here is to leave the
foreign bodies unspecified, and to examine images manually where the best fit of S to
Z is poor. It would also be possible to include in the prior model the common types of
unwanted objects (such as unsliced carrots in figure 15a); this is the approach taken in
Grenander's study.

Once again it is important to choose a good starting point for the optimization of
the MAP estimate. (Since the point process description of the image will involve a few
tens of continuous parameters, we can use conventional optimization techniques.) To
do so we return to the other use of prior models mentioned at the end of §2, the design
of filters. One use of filtering would be to enhance the textures seen in figures 2 and 14.
For example, in figure 15b both the peas and olives have round shapes, but the peas
are shiny and so have characteristic highlights. Our experiments concentrated on the
shapes of the objects, and used the filters of mathematical morphology (Serra, 1982;
Ripley, 1988). The basic building blocks are the erosion

and 'dilatation'
DT(A) = {x I x 4- T intersects A}



334 B. D. Ripley - XXIII

Figure 14. TV scans of foodstuffs, (a) Carrots, peas and green beans, (b) Sliced
carrots (one broken).

which operate on a binary set A by a 'test set' T. From these we can construct the
opening

OT(A) = D-T(ET(A))

and closing
Cτ(A) = E-

In particular, Oχ(A) is contained in A and represents the 'T-like' part of A. There are
extensions of these concepts to greylevel images by Sternberg; see Sternberg (1986) and
Haralick, Sternberg & Zhuang (1987).

To illustrate these filters consider figure 14b. Figure 16a shows a binary image
obtained by thresholding the greylevel image. Our prior knowledge is that cut carrots
have almost perfectly circular shapes within a range of sizes. Figure 16b shows the
opening by a disc of radius 8 pixels, the minimum acceptable size of a carrot slice. It
is very easy to fit a germ-grain model to this filtered image. Further, we can mask out
all pixels fitting the model (figure 16c) to identify the area(s) of poor fit. The MAP fit
of a full point process model is virtually identical.
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Figure 15. (a) Sliced and unsliced carrots, (b) Peas and olives.

Another example is shown in figure 17. In this case some texture (highlights on the
uncut carrots) was still visible after thresholding, so a closing with radius 2 pixels was
used (figure 16a). Once again an opening, this time with radius 12 to reflect a change
in magnification, filters out the sliced carrots.

One advantage of the approach developed above is that it does lead, at least in
theory, to a probability distribution over descriptions S of the scene. It should be
possible to assign probabilities to the several most plausible descriptions and so to use
a Bayes' rule with a realistic loss function to act on the description.

Continuum-based models are in their very early stages of development, but I believe
will become an important part of the use of spatial models as image priors.

6. Conclusions

The use of spatial statistical models to express prior knowledge about images is in
its infancy, so reaching 'conclusions' may be premature. The remarks in this section
may be controversial, but they should be seen as a basis for thought and discussion.
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Figure 16. Filters on figure 14b. (a) Binary image obtained from thresholding, (b)
Opening by a disc, (c) Masked by the opening.

The prior used will affect the estimate obtained. Perhaps obvious, but not clear
from the literature which pays little attention to the choice of prior.

The important aspects of the prior are those which cannot be estimated from the
observed image. Thus it is essential to use 'world knowledge' in choosing the prior
and its critical parameters.

Not very realistic priors can be useful. This has also been the experience with the
use of spatial lattice models in field trials. Perhaps when a model is only a means
to another end, its inadequacies are only of second-order importance.

Unrealistic models can cause severe computational difficulties in finding MAP esti-
mates.
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(a)
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(c)

Figure 17. Filters on figure 15a. (a) Binary image obtained from thresholding and
closing, (b) Opening by a disc, (c) Masked by the opening.

• It may be better to solve the real problem than to do image reconstruction. For
example, in tomography I believe it will be easier to segment the image than to
reconstruct its greylevels.

• Better understanding of the models can lead to better algorithms. Parallel com-
putation is frequently mentioned as the answer to the computational complexity
of image processing. However, in most current algorithms very little useful work
is being done at most pixels most of the time, so naive implementations on SIMD
architectures can be very wasteful. (For example, the clock method of §3 does not
fit at all well with SIMD.) Load balancing should be possible on flexible MIMD
machines (such as some of those based on Inmos transputers).

• Hierarchical models will become increasingly important.
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I believe that it has already been demonstrated that the models of spatial statistics
do have uses in imaging, and that they will be used more extensively in the future.
Further, their uses in imaging are posing new questions about the models, such as
medium-scale behavior of conditioned Markov random fields, so the interaction between
the two fields will be fruitful for both.
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