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ABSTRACT

Subsampling techniques developed by Hartigan (for independent
observations) and by Carlstein (for mixing processes on the integers)
are extended to estimate variances and covariances of statistics of
spatial processes.

If the process is stationary, and dependence weakens rapidly with
increasing distance, then the procedure is consistent in the sense that,
as the region available for observation grows large, both the bias and
the variance, of the estimator of the second moments, converge to
zero.

The technique is applied to estimate the variance of the sam-
ple intensity of a binary Markov random field, and the variance of
an index of clumping for spatial point processes studied by quadrat
methods.
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1. Random fields

A random field O Π T Ξ Z " , for some positive integer ι/, is a collection X of random
elements {Xt : t G T}, taking values in some measurable space χ. Let P denote its joint
distribution. The random field is uniformly mixing at an exponential rate if there exists
a positive constant α such that, if / and J are finite subsets of T, then

snp\P(E\F)-P(E)\ < |7|exp[-αd(7, J)], (1.1)

where the supremum is over all {Xt : t G Immeasurable E C T*, and {Xt : t G J}-
measurable F C T* with P(F) > 0, |/| denotes the cardinality of /, and <f(7, J) =
mm{d(s1t) : s G 7,tf G */} for some metric d on T.

The property is called "uniform regularity" by Dobrushin (1968), who suggests that
it is unrealistic to assume, as does Deo (1975), that the upper bound in (1.1) does not
depend on the cardinality of 7. The measure of dependence between events is stronger
than using the supremum of \P{EF) — P(E)P(F)\1 which can be small just because
P(F) is small.

Slower rates of weakening of dependence should suffice to validate subsampling
methods (Central Limit theorems, etc.), but Gibbs random fields that satisfy Do-
brushin's (1968) uniqueness condition invariably display exponentially fast decay of
covariances with distance (Kίinsch 1982, Fόlmer 1982). This is implied by uniform mix-
ing at an exponential rate (Ibragimov and Linnik 1971, Theorem 17.2.3): if U and V
are square integrable random variables, the former {Xt : t G immeasurable, and the
latter {Xt : t G J}-measurable, then

I Cov ([/, V)\ < 2(|/|E[/2EF2)1/2 exp[-l/2αd(7, J)]. (1.2)

In practice, a random field may be the object of primary interest, or a random field
may arise as a statistic of another stochastic structure. Quadrat methods (Greig-Smith
1952) to analyze point processes can be interpreted in this manner. Suppose M is a
point process on R17, and consider a measurable partition thereof into sets {Bt : t G T}
that are all translates of one another, and such that BtΠT =• {t}. If / is a function (not
necessarily real-valued) defined on the non-negative integers, then {/[M(7?t)] 't € T}
is a random field on T.

2. Subsampling

To estimate the standard error of a real-valued statistic of X, based upon a single
realization observed on a finite sampling window S c T , subdivide S into blocks, all
of the same shape and cardinality, and compute the value of the statistic on each
of them. If the process satisfies (1.2), then these subsample values may be regarded
as (approximately) uncorrelated replicates, and the standard error of the statistic is
estimated as the standard deviation of the subsample values multiplied by the square
root of the cardinality of the subsamples. Hartigan (1969) established conditions for the
validity of this procedure for processes of independent random variables, and Carlstein
(1984) extended it to α-mixing, stationary processes on Z.

The sphere, of radius 0 < r < —oo and centered at t G T, is the set {s G T :
d(s,t) < r] for some metric d on T. {Sn : n = 1, 2,...} is a sequence of finite subsets
of T increasing regularly to T : Sn C 5n+i; U£°=1Sn = T; and there exist sequences
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{Λι}> {Λ»} of spheres in T, all centered at the same point, such that IncIn+i,Jn C
Λi+i,U~=1/n = Γ, U%LxJn = Γ , / n c 5 n C J n , and sup{|Jn |/|/n |} < oo.

A regular covering of {Sn} is a sequence of collections of blocks {{Inj : j £ T, Jnj C
Sn} : n = 1,2,...}, defined, for each j = ( j i , . . . ,>) , as

with /n>i = λim n ) i , . . . ,/n,i/
 == λj/m^,,, for some λi, . . . , \v > 1, and τnnf\ —• oo,..., mnfU

oo all at the same rate, and the cardinality of the blocks αn = /n>χ ... /ΠjI/ = o(|5n |), as
n —* oo. The number of blocks 6n contained in Sn grows to infinity with n, and the
blocks all increase towards T. The diameter of the blocks {Inj} is δn = max{c/(s,t) :
s,f G In,j}- Suppose that the metric d is such that 6n grows to infinity with n faster
than log αn, and that the number of blocks less than δn away from each block is bounded
by some K > 0.

Example: If Sn = {{h,h) G Z2 : 1 < i\,i2 < n}, then setting λi = λ2 = 1 defines a
disjoint covering of Sn with K = 8. Otherwise, a typical choice is ran>i = ran>2 = y/n,
and λi = λ2 = 2, so that the covering comprises square blocks each pair of which shares
l/2αn, sites at most. In general, if \χ = ... = Xv = A, and m n i = ... = m n n u , then
two blocks share α n(l — λ~ 1)at most. D

Qn = g(X.sn) is a real-valued statistic, and Qnj = g('Kinj) are its subsample
values corresponding to a regular covering of Sn. The non-negative weights {wn(j) :
j = 1,..., bn} add to 1, and are such that wn(j) = O(b~ι) as n —• oo. The weighted
average of the subsample values is Qn = Σ^^Qnjw^j). Propositions 2.1 and 2.2
extend, to the spatial processes under consideration, Carlstein's (1984) Theorems 3.2
and 3.3.

Proposition 2.1. If (i) X is stationary, and uniformly mixing at an exponential rate,
(ii) limEQn = θ £ R, and (Hi) {EQ^} are uniformly bounded, then Qn converges to θ
in mean square, as n —• oo.

Proof. Suppose the blocks are labeled in such a manner that, for each n,c/(/n>i, 7n>2)
is a smallest of the inter-block distances to 7n>i that the greater than, or equal to δn.

where the second summand on the right-hand side arises from using the bound \lQn,ι for
the covariance between Qn,i and each Qnj such that d(In>\, Jn,j) < δn If Λ2 denotes
the uniform bound for the second moments of the {Qn,j}i then

VQn < (2« + 1M2&-1 +2|Cov(<?„,!,Qn,2)|

< (2κ + l)A2bl1 + A^/E^A2 exp(-l/2αδn) -^ 0. •

Yn = Φ(Xsn) and Zn = φ(Xsn) are real-valued statistics. Ynj = φ(Xinj) and
Znj = V*(X/n,i) are their subsample values corresponding to a regular covering of
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{Sn}. If {(Yn,j, Znj) : j = 1, ., bn} were independent, identically distributed pairs of
random variables, then l/2E[(YnJι - Ynj2)(ZnJl - Ynj2)] = Cσv(y n ι i ,Z n J ) Hence,
the subsampling estimator of the covariance between y/\S\Yn, and y/\Sn\Zn is

Γn = l/2αn

for any non-negative, symmetrical, finite weights {ωn(jχ, J2) : 1 < ji < J2 < 6n} adding
to 1 and such that ωn(Ji,J2) = O(6~2), for example

In particular, if φ = V», then Γn estimates the variance of y/\Sn\Yn.

Proposition 2.2. If (i) X is stationary and uniformly mixing at an exponential rate,
(ii) lim | 5 n | Cov (Y ,̂ Zn) = 7 G R, ancf (i'iij ίhe fourth central moments of {y/\Sn\Yn},
and {y/\Sn\Zn} are uniformly bounded, then Yn converges to y in mean square, as
n —» 0 0 .

Proof. Define centered, ̂ /α^-standardized subsample valued Y*j = y/α^(Yn,j — EYn)j),
and ZZjJϊ(ZEZ)

Γn = l/2αn

I

= Σ y»Λ^Λ [ Σ V^nUuhHh Φ Λ>1 (2 2α)
Ji = l L j 3 = l J

" V2 Σ Σ ^i^n, i 3 ^(il , i2){i l ?t Λ}. (2.26)

ii=ii2=i

Since

2 [1/2 Σ ^OΊ.iί)] = Σ ""(ii.Λ) = i.

(2.2a) is a weighted average that converges to 7 in mean square by Proposition 2.1.
Suppose the blocks are labeled in such a manner that, for each n,d(7n>i, Jn,2) is the
smallest of the inter-block distances to 7nfi that are greater than, or equal to δn. The
absolute value of the mean value of (2.2b) is bounded by

ji=lja=l

XtlVZ ntl + bn\ Cov (Y:A,Z*n<2)\]

- 0,
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where Ai and B2 are finite constants that bound uniformly the second moments of

{Ynj} a n d {znj}' τ h e variance of (2.2b) is bounded by

Σ Σ \c™(Khzn^y;jΆMh Φ M

f; y^z^.y^z jjiϋ! *i3} (2.3c)

If A4 and B4 are finite constants that bound uniformly the fourth moments of
and {^n,j}> then (2.3a) is bounded by

The contribution from (2.3b) is bounded by

and the same applies to (2.3c).

Since the number of terms in (2.3d) is proportional to δ£, bounds sharper than those
used before are called for. Classify the relevant quadruplets (ji,J2,J3>J4) according to
whether (a) the distance between Inj1 UInj2 and Jn > ; 3 is less than 6n\ or (b) the distance
is greater than, or equal to ί n . The contribution from the former is bounded by

the contribution from the latter is bounded by

exp(- l/2αί n ) :

both go to zero as n -+ oo. The conclusion is that (2.2b) converges to zero in mean
square. •
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3. Examples

3.1. Intensity of a binary random field

Verhagen's (1977) process on Z2 is a stationary, isotropic, binary Markov random
field that allows a unilateral construction (Pickard (1977), and whose distribution is
determined by three parameters:

6 = Pr {X(, + 1 > i + 1 ) = l\X(ij) = l,Λ(t j + i ) = ljXμ+ij) = 1},

for all (i,j) £ Z2. The correlation between X^iιj1^ and X^2j3^ is exp[(|ii — ί2| + |ji —
ial) logp], with /> = (α - θ)/(l -θ).

Nn denotes the cardinality of Sn = {(t, j) 6 Z2: 1 < i,; < n}. Yn = J V ^ Σ . ^ X ,
is the average number of sites in Sn where the field has assumed the value 1. Partition
Z2 into shells of sites around (0,0), such that the kth shell comprises 4fc sites all at
(Manhattan) distance k from (0,0). The limiting variance of y/N^Yn is

= θ(ί - fl)[l + 4p(l - p)-2]. (3.1)

If p > 0, then the covariance function is positive, and it may be anticipated that Γn

will typically be negatively biased for 7^. In general, the larger the blocks the better
the assessment of the dependence structure, hence the more accurate the subsampling
estimator: a scheme with overlapping blocks tries to strike a compromise between the
conflicting interests of accuracy (large blocks) and stability (many blocks), within the
limits imposed by a sampling window of finite extent.

Three sampling situations are studied empirically by means of one thousand in-
dependent replicates, with n = 100, Nn = 10,000. The subsamples are square blocks
of cardinality an either (A) y/N^ = 100 (one hundred non-overlapping blocks), or (B)
2y/N^ rounded to 196 (eighty-one overlapping blocks) with weights as in (2.1b). The
first estimator is based upon 4,950, and the second upon 2,968, squared differences
between pairs of subsample values.

The stronger the dependence (the larger the p), the poorer the performance of Γn,
for a fixed block size. In each sampling situation, the larger the blocks the smaller the

Situation

I
II
III

θ
0.25
0.25
0.25

Parameters
a

0.325
0.5
0.75

6
0.5
0.75
0.975

P

0.10
0.33
0.67

Ύ2

Too

0.28
0.75
4.69
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Bias Variance MSE

IA
IB

ΠA
IIB

IΠA
IΠB

P =

P-

P —

0.10

0.33

0.67

-0.0124
-0.0068

-0.157
-0.133

-1.87
-1.36

0.0014
0.0026

0.009
0.016

0.23
0.53

0.0016
0.0027

0.0335
0.0338

3.73
2.38

bias in absolute value, and the fewer the usable pairs of subsample values the larger

the variance of Γ n . In situations II and III the bias squared accounts for more than

half of the mean squared error. Scheme B (larger, overlapping blocks, squared differ-

ences between subsample values corresponding to pairs of non-overlapping blocks only)

minimizes the contribution of the bias to the mean squared error, uniformly over all

sampling situations.

3.2. Clusters in spatial point processes

A stationary point process M on R2 is observed on a square sampling window

An = {(tii, 1*2) € R2: 1 < t/i,ίi2 < n + 1}. Partition An into square quadrats {B(ilfj2) :

1 < h,J2 < n], of the form B^j^ = {(1/1, t/2) £ R2 : h < ui < «Ί + 1, *2 < u2 < «2 + l }

Define X(ix j2) = M ( # ( t l j 3)] as the number of points allocated by M to the quadrat

B ( ί ι Λ ) . Put N = n*.

David and Moore (1954) suggest YJV = (S%/XN) — 1 as an index of clumping,

where XN and S# are the average and sample variance of the counts {X^lfj2^}. If M

is Poisson, then this index should be close to zero. YN positive indicates that the points

tend to coalesce into clusters, and Yjγ negative indicates that the presence of a point at

a site tends to inhibit the occurrence of other points nearby.

If the quadrat counts are independent, and the number N of quadrats is large, then

σ4 \\S% 2Cov(XN,S%) \XN]

where μ,σ2,μ3,/*4 denote the mean, variance, and third and fourth central moments
of the counts (Kendall & Stuart 1977, 10.17). For point processes other than Poisson
the quadrat counts generally will not be independent, and (3.2) may fail to provide
realistic assessments of the variability of Y^: typically, (3.2) will underestimate \Yχ in
cooperative (clustering) processes. However, if M is such that the associated quadrat
process X satisfies (1.2), then \YN can be estimated via subsampling.

Neyman's (1939) Type A contagious distribution defines a Poisson mixed Poisson
process: cluster centers are outcomes of a homogeneous Poisson process with inten-
sity /c > 0; the cardinalities of the clusters are independent, Poisson random variables
with mean λ > 0; conditionally upon the location of the cluster center and the cluster
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cardinality, the points in each cluster are independent with a common probability distri-
bution Q on R2 'centered' at the cluster center. If Q has support with finite diameter,
then the counts corresponding to quadrats separated by a distance greater than this
diameter are independent, and (2.1) is satisfied.

Three sampling situations are examined empirically: (I) Poisson process with 10
points per unit area, observed on the sampling window Aι00 (one thousand replicates);
(II) Neyman's process with K == 1 cluster center per unit area, and λ = 10 points per
cluster, observed on A\QO (one thousand replicates); (III) Neyman's process as in II,
observed on ^225 (five hundred replicates). In II and HI the points in each cluster are
distributed uniformly at random over a square, of sidelength 5, centered at the cluster
center.

The subsamples are square blocks comprising an quadrats, and an is the largest
perfect square not exceeding 2Λ/W. The subsampling estimator (B) uses the weights
defined in (2.1b). (C) is (3.2) with the moments there estimated by the corresponding
sample moments. The square root of the mean squared error of the subsampling esti-
mator averages about twenty percent of the value of the estimand: this is comparable
to the typical error of the sample variance of fifty independent, identically distributed
Gaussian observations.

Situation

IB
IC

IIB
IIC

IHB

me

Bias

0.06
0.07

-1.2

-3.7

-0.7
-3.5

Variance

0.14
0.01

2.00
0.05

0.82
0.01

MSE

0.14
0.01

3.5
13.7

1.33
12.5
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