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ABSTRACT

Given a vector valued function defined in a region of Ry, Z(z) =
[Z1(z),. .., Zm(z)] and values of Z(z) at a finite number of points
zj,...,Z,, the objective is to estimate the values of certain linear
functionals (with values in Ry,). It is further assumed that there is
some form of interdependence between the components. This problem
occurs in mining (ore reserve estimation), hydrology, soil physics as
well as in environmental monitoring. In the case of m = 1 three essen-
tially equivalent methods are known; thin-plate splines, Radial Basis
functions and the regression technique known as “kriging”. The thin
plate spline is defined by a specific smoothness condition. It is shown
that this equivalence can be extended providing a simple extension
of splines to the multivariate case and incorporating the “undersam-
pled” case, e.g., wherein values for some components are not known
at some sample locations. In each of the three formulations, the in-
terpolator is written in terms of a kernel function which is positive
definite in a generalized sense. The kernel in turn defines an operator
on an appropriate function space which characterizes the smoothing
property of the interpolator.
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1. Introduction

In many applications in the Earth Sciences there are multiple variables of interest
and which are correlated but for which state equations describing the inter-relationships
are unknown. Moreover these variables are usually also associated with spatial coordi-
nates. One objective in the analysis of such data may be interpolation or contouring.
For example if one considers ore grades in a copper mine, copper may be of principal
interest but other metals such as molybdenum, gold, silver, zinc may also be of critical
interest. In the case of a coal deposit, the attributes of interest might include the thick-
ness of the seam or depth of overburden, BTU content, percent ash or sulfur content.
Ore grades are by no means uniform throughout a deposit and in the exploration stage,
data (assayed sections of drill cores) are relatively sparse. Empirical evidence has long
shown that samples are correlated approximately inversely with distance and that there
is some degree of correlation between the different attributes not only at the same loca-
tion but perhaps also at a distance. There are other applications wherein one attribute
is of principal interest but it is sampled in different scales, for example rainfall measured
by rain gauges vs radar measurements or insolation measured by heliographs vs satellite
data. In such cases the objective may include calibration of one form of measurement
against another in order to enhance contouring using the cheaper, quicker method of
measurement. If a copper deposit is to be exploited by an open pit mine then it is
necessary to estimate the average grade of each of the projected mining blocks, i.e., a
spatial average. Although additional information will be available at the mining stage,
at the exploration stage most blocks will not contain any samples. An overall average
would not provide sufficient information since there will be a selection process based on
a cutoff grade. The problem may be one of estimation of linear functionals of a vector
valued function.

The spatial correlation of a single attribute might be characterized in several ways.
One possibility is to assume that the interpolated surface must satisfy a smoothness
condition which then implicitly imposes a spatial relationship. If the linear functionals to
be estimated do not correspond to point evaluation then it is less obvious how to impose
the smoothness condition. For example, is it imposed on the interpolated surface and
then the linear functionals computed (which imposes further smoothing), or is it imposed
on the interpolated linear functional surface? Is the degree of smoothness determined by
the sample information or simply by mathematical convenience? The appropriate way of
describing inter-variable correlation by a smoothness condition is even less obvious. The
alternative that has been used in geostatistics is to consider the data as a (non-random)
sample from one realization of a random function and describe the spatial correlations
and inter-variable correlations by (generalized) covariances and cross-covariances. This
has two disadvantages; the smoothness is characterized only indirectly, and secondly,
the covariances and cross-covariances must be chosen somewhat arbitrarily or they must
be estimated from the data. In the latter case distributional assumptions must be made
or little will be known about the reliability of the estimators of the parameters since
the sampling is non-random as well as generally not on a regular grid. Two classical
methods have commonly been used that are similar to this alternative. The first, known
as the polygonal method, considers each sample location as the barycenter of a polygon
and then assumes that grades are constant on each such polygon (an extreme local
smoothness condition). To estimate the grade at an unsampled location or the average
grade over a block it is sufficient to find the nearest sample then the grade of this
nearest sample is “extended”. This method is highly dependent on the sampling pattern
and would not reflect differences in the spatial correlation between different metals or
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attributes in the same deposit. The second method is Inverse Distance Weighting (IWD)
and is well-known in many contexts, it implicitly incorporates spatial correlation but
in a crude kind of way and does not directly determine a smoothness condition. While
these latter two methods are relatively simple to apply, the results were frequently found
to be less than satisfactory. Neither of these latter two methods extends easily to the
vector case. In the following section three methods; splines, radial basis functions and
kriging, are reviewed for the case of m = 1. These three seemingly different methods
are in fact essentially equivalent but kriging is more easily extended in a natural way
to the case of m > 1, in addition the thin plate spline is somewhat more complicated
in the case of k > 1 in contrast to the other two methods. The extension of kriging to
m > 1 and the implications for extensions of the other two are discussed in subsequent
sections as well as difficulties, special cases and open problems.

2. A brief review: three methods

A. Splines. The interpolation of a function in R; ( and to a lesser extent in
R3) by the use of a thin plate spline is well known. Given the values of an unknown
function f(z,),...,f(z,) at a finite number of locations, one utilizes a function g(z)
with continuous second derivatives such that the L% norm is minimal and g(z;) = f(z:);
t = 1,...,n. These conditions might be re-stated in more general form as follows: Let
Hy, Hy be two Hilbert spaces of functions, B a bounded linear operator from H; onto
H,. Let Ly,...,L, be continuous linear functionals in the dual of H;. The “spline” is
the element, g in H; such that B, has minimal norm in H; and the L;(g); i =1,...,n
have prescribed values. In the simplest case the linear functionals are point evaluations.

B. Kriging. Suppose instead that Z(z) is a (real-valued) random function defined
in R such that Z(z) = Y (z) + m(z) with

(1a) E[Z(z)] = m(z) = 3 ar fr(z),
(1b) 4(h) =0.5Var[Z(z + h) — Z(z)] = 0.5 Var[Y (z + h) — Y ()]

where the fi’s are known functions (often taken as monomials in the position
coordinates) and v(h) is assumed dependent only on h. Usually one of the f; is taken to
be identically one. The data is taken to be a (non-random) sample from one realization of
Z(z). Under an independence assumption the estimator might be taken to be the mean
and hence estimable by the sample mean. Instead a more general linear combination
is used with two conditions imposed; namely unbiasedness and minimal mean square
error. That is,

Z*(z) = ¢i(x)Z(z:) (2)

where
E[Z*(z)— Z(z)]=0 and Var[Z*(z)— Z(z)] is minimized. (3)
A sufficient condition for the first part of (3) is that
Zd),-(z)fk(z,') = fi(z); k=0,...,p. (4)

Minimizing the variance of the error of estimation subject to the conditions given in (4)
produces the following additional equations

Y di(@)v(ei = 2) + Y (@) fr(z) = 1@ —2;); j=1,...,n (5)
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This stochastic/regression formulation was described independently by Matern (1960),
Matheron (1965), and in slightly different form by Goldberger (1962). It is contained
at least implicitly in the work of others and has been re-discovered, sometimes in lesser
generality, a number of times since. Matern assumed second order stationarity for Z(z),
and used (auto) covariances. Matheron placed more emphasis on the use of the vari-
ogram which only requires second order stationarity of the first order differences and
called the method Universal Kriging (D. Krige is a South African mining engineer whose
ideas led Matheron to this formulation). The stationarity is necessary for the estima-
tion of the covariance or variogram (Originally Matheron called 24 the variogram). In
the case where Z(z) is second order stationary with covariance o(h), it is easily seen
that y(h) = ¢(0) — o(h). The covariance is always bounded but variograms need not
be. Covariances must be positive definite and this implies the boundedness whereas
variograms need only be conditionally negative definite.

It is convenient to write the interpolator given in (2), as well as the system of
equations, in matrix form since it de-emphasizes the dependence on both m, k as well
as makes the connection with the other two formulations more apparent. (2) may be
re-written as

Z*(z) = [$1(2), . -, ul2), Hoy - - -, 1p)[Z(21), - . ., Z(20),0,...,0]T (2"

or

Z*z)=[y(z —z1),...,7(x — z5), fo(z), ..., fp(2)][b1,...,bn,a0,.. .,ap]T (2")

and the combined system of equations in (4), (5) can be written as
K
& 5= [R] LA S)3)= 6] ©

C. Radial basis functions. Hardy (1971) proposed the used of an interpolator
given by (2”) except that the terms corresponding to the f’s and the a’s were omitted.
For the kernel function « he used a bi-harmonic function since he was considering the in-
terpolation of gravity potential. Subsequently Micchelli (1986) showed that conditional
positive definiteness of the kernel with respect to the functions fy, ..., f, is sufficient for
a unique solution to the system given in (4’) which is obtained from requiring that the
interpolator be exact. Micchelli only considered isotropic kernel functions and assumed
that the functions fo, ..., f, were polynomials. As noted in Myers (1988c), this positive
definiteness condition is easily generalized to anisotropic kernels and to a more general
definition. This generalization is implicit in the work of Matheron (1973).

3. The general problem

A vector valued function Z(z) = [Z1(z), ..., Zm(z)] defined in Ry is observed at a
finite number of locations, the objective is to estimate the value of a linear functional of
some or all of components of Z. In practice the linear functionals of interest are point
evaluation (at an unsampled location) or average over a volumes. It is also assumed
that there is some form of interdependence between the components of Z otherwise the
problem may be reduced to that discussed above. The data may be incomplete in the
sense that at some locations data is available on only some of the components (this
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is frequently referred to as the Undersampled case). In general the only knowledge of
Z is given by the data and the interpolation method must incorporate some form of
model. If Z is considered as a random function and the multivariate density is known or
assumed then conditional expectation would provide the best interpolator. Inferring the
density from a non-random sample from one realization of the random function would
not be possible. One alternative is to assume at least a weak form of stationarity and
utilize an interpolator which only requires second moment properties.

A. Co-kriging
Assume that Z(z) has the following form

Z(z)=Y(2) + M(z), E{Z(z)} = M(z) =F(z)M (5a)
where

F(z) = [fo(2),..., fp(2)] (50)
7(h) = 0.5E{Y(z + h) — Y(2)}T{Y(z + h) — Y(z)} exists and depends only on h. (5¢c)

The components in F(z) are usually taken to be linearly independent monomials in the
position coordinates and in particular fo(z) is taken to be identically one. The matrix
of coefficients M is unknown however. One of the simplest ways to incorporate the data
for all components at all sample locations is to use a linear estimator of the form:

Z (z) = ) Z(x:)Ti(2). (6)

Theorem 1. (Myers, 1982). If Z(z) satisfies the conditions (5a), (5b) and (5c) above
and the interpolator in (6) is to be unbiased and with minimum variance in the following

sense:
Z a?Var {Z}(z) — Z;(z)} is minimal for any choice of the a;’s )

then the weight matrices in (6) are obtained as the solution to the system of matrix
equations

Z’r‘(z; —z;)Tj(z) + Fre(zi)pr(z) =F(zs —2); i=1,...,n (8a)
Y Fi(z:)Ti(z) = Fi(z); k=0,...,p (8b)
Fi(x:) = fi(z:)I (8¢)

It was subsequently shown (Myers, 1984) that a simple modification of the system
given in (8a), (8b), (8¢c) would incorporate the undersampled case and this was incorpo-
rated in a program (Carr, Myers and Glass, 1985). It was also shown that the solution
is independent of the weights in (7) and in particular the case of one weight equal to one
and all others equal to zero corresponds to the case of estimation of only one compo-
nent. Early applications considered only this case and it was not noted that when the
system given in (8a, b, c) is written in matrix form analogous to that of (4’) then the
coefficient matrix is the same whether estimating one component or all (Myers, 1988b,
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¢). This reformulation (sometimes called the Dual form) is given in Myers (1988a) and
shows that the Radial Basis formulation is easily generalized to the vector case and to
the undersampled case as well as allowing for incorporation of anisotropies. If linear
functionals other than point valuation are to be estimated then it is only necessary to
modify the right hand side of (8a).

B. Inference

Application of co-kriging assumes knowledge of the functions in F(z) (or at least
the maximum order if monomials are used) as well as the variogram matrix function
F(h). In the case of m = 1, necessary and sufficient conditions are given as well as
an integral representation theorem which generalizes the Bochner theorem. A form of
positive definiteness is required in order that the variance in (3) be positive, this same
form of positive definiteness is the sufficient condition for the coefficient matrix in (4’)
to be invertible as noted in Micchelli (1986) and Myers (1988c). In practice scalar
variograms are estimated by sample variograms using the data and then fitting to a
positive linear combination of valid models. This procedure is not as appropriate in the
vector case. In particular the positive definiteness condition is more complicated. The
following section presents three equivalent forms of positive definiteness arising out of
three different formulations of the estimation problem. In turn this provides a practical
method for modeling matrix variogram functions.

4. Positive definiteness

A. General co-kriging

In the general formulation of co-kriging, with all the weights in the sum of the
variances equal to one, the “variance” is given by a matrix quadratic form

— trace Z Z I77(z; — z;)T; . 9)

This quadratic form should be positive for all points z1,...,z, and all weight matrices
T;,...,T,; which satisfy the following conditions

> F(zi)li=0; k=0,...,p. (10)

It is easy to see that this definition of positive definiteness is the same as positive
definiteness of the matrix whose sub-blocks are the values of the matrix valued function
F(z; — zj). In non-matrix form this becomes

Y S S Gy (o — 2)CE > 0. (1)

where 74 (h) is the general entry in F(h).

B. Linear combinations

In the case of ore grades, as well as in some other applications, it makes sense
to form linear combinations called equivalent grades obtained by weighting by relative
prices. It is then possible to avoid the necessity of joint estimation of the components of
the vector function by converting all data to equivalent grades and then the interpolation
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is applied to the linear combination. As noted in Myers (1983) this is suboptimal but
it is instructive to consider the translation of the positive definiteness condition. Let
W(z) = Z(z)B be a linear combination then the variogram for W in terms of the
variogram for Z is given by

Jw(h) = BT7;(h)B. (12)

When the positive definiteness condition is applied to yw (h) the result is equivalent
to (11). This approach is completely analogous to that used by Grenander (1957) for
covariances.

C. Single component estimation

In it’s earliest form, co-kriging was used only for estimation of one component but
using data from the other components. This can be written in the form

Z(x)= )Y Z(z:)Ci, (13)

and the error variance is of the form

=222 Civae(ai — )C] (14)

i.e., exactly the same as (11).

D. A generalization

The extension of Micchelli’s theorem given in Myers (1988c) can be extended to
the vector case. Let fo,..., fp be linearly independent functions and as above let F; be
fiI (I an m x m identity matrix ) then it is easily seen that

> Fi(z)ri=0 (15)

implies that all the I'; are zero matrices, i.e., the linear independence of the scalar
matrix functions fo, ..., f, is equivalent to the linear independence of the scalar matrix
functions Fy,..., F,.

Definition. Let Fy, ..., F, be linearly independent scalar matrix functions defined on
R; and g(z,y) be a function from R; x R into the ring of m x m real symmetric
matrices. Without loss of generality assume that the identity matrix is one of the
linearly independent scalar matrix functions. Then § is said to be positive definite with
respect to the Fy,..., Fp if for all sets of points z;,...,z, in R

Tr Y Y ITg(z1,2)05 >0 (16)
for all T'y,...,Iy such that
> Fi(zj)[j =0 for i=0,...,p. (17)
Consider now a vector estimator/interpolator of the form

7 (¢) = )_ Biglzi,z) + ) AiFi(z) (18)
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where By,...,B; and Ay,...,A, are m x m matrices. Given data —Z—(zl),.‘.,f(zn)
and requiring that the interpolator be exact, ie., Z (z;) = Z(z;) fori = 1,...,n a
linear system of equations is obtained. Unless the kernel function is positive definite in
the strong sense then the coefficient matrix may not be invertible, however by impos-
ing additional conditions on the Bi,..., B, a unique solution is obtained. The term,
Y A;Fj(x), will be seen to determine the behavior of the estimator outside of the con-
vex hull of the sample/data locations. The form of the estimator given by (18) is also

seen to be a slight generalization of the dual form of the co-kriging estimator as given
in Myers (1988a).

Theorem 2. Let Fy,..., Fp, g(z,y) be as above; By, ...,By and Ay, ..., A, as in (18)
then the latter are obtained as the unique solution to the system

"9z, z1) ... F(zize) Folzi) ... Fy(z)] | Bl [2(=0)7]
¥(zn,z1) ... F(zn,za) Fo(zn) ... Fp(zn) BT Z(z,)T

= . (19)
Fo(zl) FQ(.’E,,) Ag 0
L Fo(xl) Fp(.’l:n) 4 _AT_ L 0 d

The proof is completely analogous to the case when m = 1 as given in Myers
(1988b). If as was assumed above, the identity matrix is one of the linearly indepen-
dent matrix functions then the sum of the B’s is the zero matrix (i.e., this is one of
the equations in (19)) hence if g(z,y) is a constant matrix for the distance between
z,y sufficiently large then Z (z) is determined only by the second part of (18) when
the minimum of the distances z — z; is large enough. The upper portion of (19) is
obtained by imposing the exactness condition and the lower part corresponds to the un-
biasedness conditions if formulated in the context of co-kriging. However the estimator
can be obtained without the stochastic formulation and provides a natural general-
ization of a spline. The choice of § is determined by a smoothness condition. From
the geostatistical/co-kriging perspective 7 is assumed to be “uniquely” determined by
the data and the principal problem is one of adequately estimating/modeling the ker-
nel function as well as determining the appropriate order of the polynomial functions
whereas from the perspective of splines or radial basis functions the choice of the lin-
early independent functions and the kernel function is more arbitrary and determined
by external conditions imposed on the estimator.

4. Applications to image analysis

Remotely sensed data is usually available on a dense grid but may also be available
only with low resolution. One way to enhance the use of such data is to calibrate it
against ground-based high resolution data. Co-kriging provides a method for carrying
out this calibration. Examples of such data include the measurement of daily insolation
by satellite vs measurement by heliograph or rainfall as measured by radar vs that
measured by rain gauges. Co-kriging incorporates spatial variability for each attribute as
well as inter-attribute correlation and it also incorporates the scale of the measurements.
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Another direction is suggested by the work of Switzer and Green (1984). Prin-
cipal Components Analysis has frequently been used to distinguish noise from signal
in images, Switzer and Green applied PCA to the covariance matrix of the first order
differences. This is analogous to a diagonalization of the variogram matrix function as
suggested in Myers (1988a). Ma and Royer (1988) have shown that the smoothing prop-
erty of the kriging estimator can be re-formulated as filtering when applied to images.
By using co-kriging the same results can be extended to multi-spectral images.

5. Final remarks

In practice not all of the data set is used for each estimation, instead a moving
neighborhood is used. The vector of weight matrices is a function of the variogram
matrix, the order of the functions in F(z), the moving neighborhood (that is, the search
method). To characterize the continuity it is necessary to define a neighborhood. In
the univariate case three different neighborhood definitions are given in Myers (1985a,
1986) but none will easily generalize to the vector case.

One advantage of the stochastic formulation for the interpolator is that it lends
itself to simulating new realizations but preserving first and second moment properties
as well as the marginal distribution. The algorithm/program given in Carr and Myers
(1985) partially extends this to the vector case, the algorithm given in Myers (1989)
provides a full extension.

Notice

Although the research described in this article has been funded wholly or in part by
the U.S. Environmental Protection Agency through a Cooperative Research Agreement
with the University of Arizona, it has not been subjected to Agency review: therefore,
neither does it reflect the views of the Agency nor should any official endorsement be
inferred.
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