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ABSTRACT

Some operations defined in mathematical morphology (e.g. erosion,
dilation, opening, closing) can be used in the definition of useful
statistics to be computed from an observed image. Images generated
by a stochastic mechanism, and observed on a window, are considered
and two statistics are defined. The uniform almost sure convergence
of these statistics is studied in the situation where the size of the
window increases, and also in the situation where many independent
copies of the image are observed on a fixed window. The convergence
in law to a normal distribution is also considered. Two examples are
presented.
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1. Introduction

Mathematical morphology is a powerful tool to study images (see Serra (1982)).
Among the basic concepts of this theory we find a class of four basic operations defined
on sets: the erosion, the dilation, the opening and the closing. These operations and
their properties constitute what is sometimes called the Serra's calculus. The utility of
these operations to summarize binary images is clearly shown by Ripley (1986).

In this paper we consider binary (black, white) images on R2 generated by a stochas-
tic mechanism (process). The image I will be identified with its black part i.e. / is the
random set made of the black points in the image; we assume the set / is closed. Let
W be a window on which the image I is observed. Two forms of statistics will be
considered:

__ mes{x : JmodT r D {x},x G WoTr}

and
mes{x : /modΓ r D {x},x € WoTr}

W(T) " m e s { i : / D { x } , i € i f o T r }

where mod Tr denotes a fixed basic morphological operation using a structuring element
T of "size" r, and W o Tr is the subset of points x in IV for which it can be verified if
the random set 7modTΓ includes x or not, it will be a sequence of one or two erosions
of W (see Ripley (1986)). For example, if modTΓ is the opening by Tr then

mes{x : (I ΘTr) ®Tr D {x},x eW θ (Tr ®fr)}= ~
mes[Wθ(Γ rΘTΓ)]

where θ and φ are respectively the Minkowski subtraction and addition, and Tr =
{ - * : * £ T r } .

Considered as functions of r these statistics define curves that can be used to study
or compare different images. This is well illustrated by Ripley (1986).

For certain stochastic processes V the statistics S\v(f) can be considered as an
estimate of the probability that an image / generated by V covers a given point (the
origin 0 say) after having been transformed by modTr i.e. P[J mod Tr D {0}] = F(r).
In some applications it is necessary to consider also conditional probabilities. For ex-
ample if Tr is a disk of radius r, P[(J©TΓ) φTΓ D {0}|J D {0}] = G(r) is known as the
"repartition granulometrique" in metallurgy. The function 1 — G{r) can be estimated
by the statistic U\v(r) with Tr being the disk of radius r and modTr being the opening
byT r .

The sample functions 5w(r) and Uw(r) can be used to test if an observed image
has been generated by a given stochastic process V (goodness-of-fit test). To this end
the sample function (e.g. S\v(r)) is compared to the "theoretical function" under V
(e.g. F(r)). It is then necessary to know the theoretical functions for different processes
V. In general It is not possible to obtain these functions analytically. We present some
asymptotic results useful to approximate these functions by simulations.

In Section 2 some remarks are made about the first two moments of the statistics
considered, and about the mathematical foundations. Section 3 is devoted to the almost
sure convergence of the statistics. Two situations are considered, the one where the win-
dow is enlarged and the one where a large number of independent images are observed
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on a fixed window. It is verified that for many stochastic processes the limits are the
same. So to determine the theoretical functions by simulation we may use the average
of a large number of independent images generated by the process and observed on a
fixed window. The convergence in law of the statistics Sw(r) is studied in Section 4.
Finally, in Section 5 we mention two examples of image generating stochastic processes
for which all the assumptions made are satisfied.

Some of the considerations made here are related to some of those made by Baddeley
(1980). He considers statistics similar to Sw(r) but where the denominator is simply
mes[W]. The mixing conditions imposed by Baddeley seems more difficult to verify
than those imposed here.

2. The first two moments of the statistics

We consider first the statistics Sw(r) The theoretical functions we consider are
simply E[S\y(r)]- To give a precise meaning to this expectation the mathematical
structure has to be made more precise.

We have already assumed that an image / is a closed subset of R2, let X be the
class of such images (sets). The class X is equipped with the hit and miss topology, and
let S be the σ-algebra on X generated by this topology (Serra (1982) pp. 75 and 545). A
given process V generates a probability measure P on (X,«S). The structuring elements
we consider are non empty compact subsets of R2. For such structuring elements, and
for the four basic operations, the transformed image /modT r, / 6 X, is also an element
of X (Serra (1982), pp. 546). The processes we consider are assumed to be stationary
in the following sense.

Definition. An image generating stochastic process V is first order stationary relatively
to the morphological operation mod Tr if

P[{I: ImodTr D {x}}] = P[/modTΓ D {x}]

is independent of x £ R2 (so x can be taken to be the origin 0).

Note that from a result due to Matheron (see Serra (1982), Theorem XIII-3 pp.
547) the event {/ : 7modTΓ D {x}} belongs to S for every x £ R2. This result also
permits to apply the Fubini theorem in a classical way (Robbins (1944)) to prove the
following Proposition.

Proposition 1. if the image generating process V is ήrst order stationary relatively
to modT r ; then

E[Sw(r)] = P[ImodTrD{0}] (1)

and

Ve*[Sw(r)] = * / / {P[{I ImodTr D {x},ImodTr D {y}}]
(mes[W o ir\) JWoTr JwoTr

(2)
2

To the process V we associate the function

F(r) = P{ImodTrD{0}].
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From relation (2) the following proposition is easily obtained.

Proposition 2. If the image generating process V is first order stationary relatively
to mod Tr and if there exist a function φr(x1y) : R2 x R2 —> R such that

\P[{1: 7modΓr D {*}, 7modTr D {</}}] - F2(r)\ < φr(Xjy) (i)

and

J i m / / <pr(xiy)dxdy/mes[W] = O (ii)
W^R? Jw Jw

(W —* R2 means that W increases toward the whole plane), then (Sw(r)) converges
in probability (W —» R2) to F(r). Much stronger convergence results will be given in
the next section.

For the statistics {/^(r), due to their ratio form, it is more difficult to obtain ex-
pressions for their expectation and variance. However, if the assumptions of Proposition
2 are satisfied (U\v(r)) will converge in probability (W —• R2) to F(r)/F(0)] so this
ratio is consistently estimated by Uw(r) but the estimation will in general be biased. In
practice we are interested in functions of the form F(r)/F(Q) when the transformation
is decreasing (erosion and opening), in that case

Q(r) = P[ImodTr D {0}|7 D {0}] = F(r)/F(0).

When the transformation is increasing (dilation and closing) we could rather be inter-
ested in

Q(r) = P[ImodTr D {0}|J } {0}] =

In any cases consistent estimations of F(r) and F(0) lead to a consistent estimation of
Q(r).

3. Strong and uniform convergence

We consider first the convergence with respect to an increasing sequence of windows
and a fixed r. Let Wx C W2 C ... C Wn C ... be such that lim Wn = R2.

n—+ oo

Proposition 3. If

(i) the image generating process is ήrst order stationary relatively to modTr,

(ii) the function <pr(x,y) mentioned in Proposition 2 is such that

1 f ί C

L J M ^ *
ί

(mes[Wn o Tr\γ JwnoTr JwnoTr

 γrκ">y>"" "" - (mes[Wn o ΓΓ])*

where C and q are positive constants,

(Hi) the form of the Wn 's is such that

mes[WnoTr]
hm —r = K < oo,

n-+oo n£
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then

Proof. The argument is a standard one, we mention only the main steps. Let

_
_ mes{s: 7modΓ r D {x},x € ^ o Γ , ) - F(r)mes[WnoTr]

mes[WnoTr]

clearly E\Yn) = 0 and E\Y*\ < ( m e ψ £ . τ Γ ] ) ,

Let s be an integer larger than l/q and define the sequence (Y^) where Y'n — Yns.
For a fixed ε > 0 consider the events

4 0 = {|rήl>ε} " = 1 , 2 , . . . .

From the Chebyshev's inequality and conditions (ii) and (iii) we have

^} < oo

n = l

and so from the Borel-Cantelli lemma

' ]i.o.] = 0.

Since this is valid for every ε > 0 we have

,γn *_*• o that is (Yns) a-5 0.
n—^oo n-+oo

Let

C/n = max Yns -

n <m<(n+l)

Vn = max
n <m<(n+l)

T n = max |Yns-Ym | ,
n <m<(n+l)«

mes[Wnso7;]

y m o Γ f ]

Γ ]

clearly if (Un)
 β-i 0 and (K.) a-i 0, since (7ns) °-i 0, we have (Yn) "-4 0.

n»-oo n-*-oo n—^oo n-+oo

To prove that (Un) " ' 0 let ε > 0 be fixed and define the events

We have

P[BP] < E[U*\/ε*

and using condition (iii) it can be verified that

l < djr?
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where d is a positive constant. So, again from the Borel-Cantelli lemma,

P[\Un\>ε i.o.] = 0

and the (Un) " ' 0. A similar argument permits to show that (V"n) " ' 0. Q.E.D.
n—t oo n—t-oo

Consider now the situation where the window W is fixed, r is fixed and we have
access to independent copies /i, J2, .., Im, of images generated by the process V,
each being observed on W (we assume that W is large enough so that mes[VFoTr] > 0).
Let

Since the random variables S^/(r) are i.i.d. and take their values between zero and
one, we have

Q$\£ti\r)} = F(r)

(a.s. is with respect to the product measure).

This fact and the Proposition 3 indicate that to estimate F(r) we may use one
image observed on a very large window or, what is easier in practice, a large number of
independent images generated from V observed on a fixed window.

We now examine if the strong convergence for a given r, guaranteed by Proposition
3, is uniform with respect to r i.e. if

| m ( ) ( ) |
r>0 n—°°

We consider first the random variables

mes{x:ImodTrD{x},x£Wn}S^{Γ) = ^ra
These random variables do not exactly define statistics because it may happen that
for some points x £ Wn it is not possible to determine if 7modTr D {#}, so S{γn(r)
may not be computable from the data. However, since / is defined on the whole plane,
S'Wn(r) is well defined.

Proposition 4. If

(i) the assumptions of Proposition 3 with Wn oTr replaced by Wn are satisfied for each
r > 0 ,

(ii) ri < r2 implies that Tri C TΓ2 and all points interior to TΓ2 can be covered by a
translation ofTri remaining in TΓ2,

(Hi) mes[TΓ] is continuous with respect to r, then

sup\S'Wn(r)-F(r)\α-ί0.
r>0 n—°°
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Proof. The assumption (ii) implies that for every / G 2", S'Wn(r) is non increasing in r
if the operation is the erosion or the opening and non decreasing in r if the operation
is the dilation or the closing.

The assumption (iii) insures that S'Wn(r) is continuous to the right or continuous
to the left.

These facts permit to transpose directly the proof of the Glivenko-Cantelli theorem
(Loeve (1963), pp 20) to obtain the desired result. Q.E.D.

From this result for S'Wn(r) we have the following one for the statistic Swn(r).

Proposition 5. Suppose the sequence of windows (Wn) is such that for every n and r
there exists a n(r) > n for which

(i) W<r)oTn = W'nDWn,

(ii) the frontier of W^ and the frontier of Wn have a common part of positive length,

(iii) the W'n satisfy the assumptions made about the sequence of windows,

(iv) for each n and r there exists a m(n, r) such that Wn oΓ r = W'm,n r)>

(v) r\ < Γ2 implies that n(ri) < n(r2),

then under the assumptions of Proposition 4 with Wn replacing Wn (i-e. Wn o Tr is
replaced by Wn in the assumptions (ii) and (Hi) of Proposition 3), for every R > 0

sup \SWu(r)-F(r)\αΛ'O.
0<r<R n-*°°

Proof. From the assumption about the Wnj for every n and r there exists a n(r) such
that S'Wι (r) = SWn(p)(r) for every I £l. Since we assume that Proposition 4 is valid
when W'n replaces Wn we have that for every ε > 0 there exists a M€ such that

P[{I : sup \S'w,(r)- F(r)\ <ε for every ι/> M€}] = 1.
0<r<R

Let N = Mε(R) (as defined in the assumption about the Wn's), for each n > N and
r G [0, R] we have m(π, r) > Mε and

for every I

So

sup \SWn(r)-F(r)\= sup \S'W, (r) - F(r)\
0<r<R 0<r<R "»(Λ«r)

{/: sup \SWn(r) - F(r)\ <ε for each n > N} D
0<r<R

{I: sup \S'Wι(r) - F(r)\ < ε for each v > Mε}
0<r<R V
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and since this last event has probability one we obtain the desired result. Q.E.D.

Let / i , . . . , Im . . . be independent images from V observed on a fixed window W.
For a given R > 0 (R and W being such that m[W o TR] > 0) consider

m ) / \ _ 1 \ ^ mes{x T modΓr D {x},x G WoTR}

m .

Under the assumptions of Proposition 4 regarding the structuring elements Tr we have

sup |3#;i(r)-F(r)|β-4 0.
0<r<fl n-+oo

So it also possible to obtain, from many independent copies of the image, a uniformly
good approximation to F{r) on [0, R].

Concerning the statistics Uw(r), under the assumptions of Proposition 3, for every
fixed r, (Uwn(r)) converges almost surely to F(r)/F(0).

Also we easily see that under the assumptions of Proposition 5

Qsup^ \UWn(r) - F(r)/F(0)|n

αfo o0.

When independent images from V are observed on a fixed window we have

) F(r)
sup

0<r<Λ

aj. Q

if the structuring elements satisfy the assumptions made in Proposition 4.

4. Asymptotic normality

Our goal here is to establish the asymptotic normality of (mes[FΓno!
F(r)] for each fixed r. To simplify the presentation we assume that each Wn is a
rectangle which is a union of unit squares. Let {Cij : (ij) G Z2} be the partition of
the plane by unit squares Cij,(i,j) G Z2 identifying the lower left-hand corner of the
square. We assume also that

WnoTr= U Qj

and denote by \Wn oTr\ the number of squares required to cover Wn oT r .

We define the random variables

Xij = mes{a?:/modTr D {x}, xeQj}, (iJ)eZ2,

clearly \X{j \ < 1 and

SwΛr)=ΣΣXiil\WnoTr\. (3)
i=lnj=hn
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From Proposition 1, if the process V is first order stationary relatively to modTΓ then
E[X{j] = F(r). In order to obtain the asymptotic normality we formulate the following
assumptions.

Hi: The process V is first order stationary relatively to modTΓ and moreover is such
that the stochastic process {Xij] (i,j) G Z2} is stationary i.e. the joint laws of the
random variables Xij are invariant under translation (shift invariant).

H2: If Z C Z2,AZ will denote the σ-algebra generated by the Xij for which (i,j) G Z
and \Z\ will denote the number of elements in Z. Given two subsets of Z2, Z\ and
Z2, the distance between Zι and Z 2 is defined by

= , inf (4)

Let

akί(m) = 8up{|PμnB]-P[i4]P[B]| : A G A x , £ G A 2 , \Zχ\ = t, |Z 2 | = £,d(ZuZ2) > m}

where m is a positive integer and k,£ are positive integers or may be infinite. The
mixing coefficients aki(m) are assumed to satisfy the following conditions:

00

J2(i) for each ky£ such t h a t k + ί < 4, J2 motki{m) < 00,
m = l

(ii) lim m2αioo(m) = 0,
m--* oo

(iii) for some δ > 0, ]Γ) m[αn(m)]*/(2+*) < 00.
m = l

Under the assumptions i^i and H2 we have

\Cov(X0o,Xij)\<oo,

let

=

/ί3: The process V is such that σ2 > 0.

Proposition 6. Under assumptions H\, i/2 and H3 we have

Proof. From (3) we have

n oTr])ιl2[SWn{r) - P(r)] = \Wn oΓ,] 1 ' 2

4 m

Σ Σ
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The assumptions made guarantee that the random variables Xij and the regions Wn oTr

satisfy the assumptions made by Bolthausen (1982), so the result follows from his
theorem. Q.E.D.

Remarks.

1. Baddeley (1980) obtains a similar result but under a different type of mixing condi-
tion. In many cases we found the conditions given here easier to verify.

2. The conditions made about the form of Wn could be relaxed. Baddeley (1980) shows
how this can be done.

3. We verify that

σr= ί 17 ί P K / : ImodTr D {0},ImodTr D {y}}]- F2(r)}dy]dx.

So, if the process V is such that the inside integral has a value which is independent of
z £ Coo, we have

σr

2 = F(r) ί {P[/modTr D {y}|/modTr D {0}] - F(r)}dy.
JR*

5. Examples

A. The Poisson line process

First the plane is partitioned into convex polygons (cells) by lines randomly chosen
according to a Poisson process. More precisely, a line is described by (p, 0), p > 0, 0 <
θ < 2π, the polar coordinates of the foot of the perpendicular from the origin to the
line, and points (p>θ) are chosen according to an homogeneous planar Poisson process
of intensity A. When the plane has been so divided a color, black or white, is assigned
to each polygon. The color is randomly chosen with probabilities p and 1 — p. The
choice is independent from cell to cell and always made with the same probabilities.
Figure 1 shows a realization of such a process for which λ is such that an average of 60
lines cross the unit square and p = 1/2. The stationarity, isotropy and other properties
of this process are well known (Switzer (1965), Ahuja and Schachter (1983)). It is then
easy to verify that this process satisfy the assumption H\ of Proposition 6 (this for the
four basic morphological operations and every r > 0), clearly P[I D {0}] = p.

Given two points x,y at a distance d, the probability that they are in the same cell
generated by the Poisson line process is e""2λrf, then

P[{I: / D {*}, / D {y}}} - p2 = p(l - p)e- 2 λ d

and so the assumptions of Proposition 2 and assumption (ii) of Proposition 3 are satisfied
for r = 0. These assumptions are also verified for r > 0 (see below).

The main difficulty is in the verification of the assumption H<ι of Proposition 6. We
begin by considering the image itself (i.e. r = 0). We start with the mixing coefficient
αioo(m). Consider two sets of sites (i,i), the first one containing only one site, taken to
be the origin, the second one, Z) containing an infinity of sites but such that for every
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Figure 1. Image generated by a Poisson line process.

(i, j) G Z,d((0,0),(z, j)) = max{|i|, \j\} > m. Let A be an event generated by XOo and
B an event generated by the Xtj's, (i,j) 6 Z. We want to obtain an upper bound for
sap\P[A\B]-P[A]\.
A,B

We define the following eight regions of the plane (see Figure 2)

Λi = [l,oo) x [l,oo) # 5 = [l,oo) x [0,1)

R2 = (-oo,0) x [l,oo) R6 = [0,1) x [l,oo)

R3 = (-oo, 0) x (-oo, 0) R7 = (-oo, 0) x [0,1)

RA = [1, oo) x (-oo, 0) i£8 = [0,1) x (-oo, 0).

Let
di = | | ( l , l ) , ( i ; , i?) | |= inf {IKl.D.Ci.i)!! :(i,i) €^ Π Λ i > ,

||α,6|| denoting the Euclidean distance between the points a and 6. The part of the
disk of radius dx centered at (1, 1) and situated in R\ does not contain any point of
Z. If the process generating the lines gives at least one line crossing the two segments
[(1,1), (1 + di, 1)] and [(1,1), (1,1 + di)], then Co o will be separated from all the Qj for
which (i, j) £ ZΠR\ and the colors in Coo will then be independent from those in these
dj. The set of (p, θ) corresponding to the lines crossing these two segments is

Eι = {(p, θ) : 0 < θ < τr/4 and 0 < p < dλ sin θ, or τr/4 < θ < π/2 and 0 < p < dλ cos θ}

and the area of that set is d\[2 — >/2].

Similarly for the regions ^2,-^3 and R4 we define the distances dk and the sets
Eh,k = 2,3,4.

Consider now the region Rζ and let

d5 = i
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D

ΓT _

D
•

Figure 2.

D «,

Π

Denote by E*> the set of (p, Θ) corresponding to the lines separating Coo from all the
CijΛhJ) € Z Γ\R5. It can be verified that the area of E$ is 2[(1 + d\)ιl2 - 1]. For
the regions Rβ,R7 and Rg the distances dk and the sets Ek,k = 6,7,8, are similarly
defined.

We also denote by £",-, i — 1,... ,8 the events: "the Poisson line process generates
at least one line for which (p, θ) G Ef. Let F be the event E\ Π ... Π Eg, we have

P[A\B] = P[A\B ΓΊ F] + P[FC\B]{P[A\B n Fc] - P[A\B Π F]}.

If the event F is realized the cells intersecting Coo do not intersect any of the C, j ,
(i,j) G -Z. Then, since the color assignation is independent from cell to cell, Xoo is
independent from each of the Xij, (i,j) G Z. Also the fact that F is realized does not
give information about the black part of Coo, so P[A|£? Π F] = P[A] and

\P[A\B] - P[A}\ < P[F'\B] <
k=l

It is easy to see that P[i££|J9] < P[E%] i.e. the knowledge of B may indicate that some
lines indeed isolate Coo from the C,j, (i,j) G Rk Γ\Z. Then

sup \P[A\B] - P[A]\ <
Λ BΛ>B

k=l

and given the relation between the Euclidean distance and the distance define by (4),
there exists a constant v > 0 such that

8e~
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and so we have the condition (ii) of Hi.

The same type of argument gives that for each Ar, ί such that k -f ί < 4

θίkί{m) < Ke~υrn K, v > 0.

so condition (i) of Hi is satisfied, and condition (iii) of Hi is satisfied for every 6 > 0.

From the Remark 3 following Proposition 6 we have

The assumption Hi is also satisfied when r > 0. The proof in the case r = 0 is
based on a conditioning such that when an event F is satisfied, what happen concerning
the colors on a given set of squares is independent of what happen concerning the colors
on another set of squares far apart. So, the same argument leads to similar mixing
coefficients for any fixed r > 0.

From the Remark 3 following Proposition 6 we can verify that for each basic mor-
phological operation we have σ2 > 0.

In conclusion, all the results stated in Propositions 1 to 6 are valid for this image
generating process. Figure 3 shows, for the process with λ and p as in Figure 1, the
graph of an estimate of the function F(r) corresponding to the erosion by a square
structuring element. The estimate is the average from 250 independent simulations on
a fixed window.

10 12 14 IS

Figure 3. F(r) = P [ / θ % D {o}], Tr a square,
for an image generated as in Figure 1.

B. The Voronoϊ polygon process

Again here the image is generated in two steps. First the plane is partitioned into
convex polygons (cells) and then a color is assigned to each cell. The coloring process
is the same as in Example A. To obtain the cells we consider the realizations n , . . . of
a planar homogeneous Poisson process with intensity λ, and for each r, we consider the
cell given by the points x G R2 closest to r, than to any of the other Tj 'S. This process
is stationary and isotropic. Figure 4 shows a realization of this process, λ is such that
an average of 50 points τ, are generated on the square and p = 1/2.
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Figure 4. Image generated by a Voronoi polygon process.

It is easy to see that assumption Hi of Proposition 6 is satisfied (for the four basic
morphological operations and every r > 0). Given two points at a distance d we have

P[{I: I D {*}, / D {y}}) - p2 = p(l - p)e-

where k > 0 and a > 1 (Moore 1981), so the assumptions of Proposition 2 and assump-
tion (ii) of Proposition 3 are satisfied for r = 0. These assumptions are also verified for
r > 0.

Here again the main difficulty is with the assumption H2 of Proposition 6. Since
our argument is similar to the one used in Example A it will be sufficient to consider
the case r = 0. Also since the argument for the «jb£(m), k \ Ί < 4 is easy when we know
how to treat aioo(m) we consider only that case.

The sets of sites, the regions R\... Rg and the distance d\ are as in Example A.
Consider the line with slope one crossing Rι and let T be its intersection with the circle
of radius d\ centered at (1, 1) (see Figure 5). Let (Mi) and (*i,l) be the projections
of T on the axes defining R\. We consider two subregions of R\.

(a) The subregion R[ = [l,oo) x [*i,oo).

Let Dι be the part of the disk of radius (tfi — l)/2 centered at (Mi) and located
in R[. Let C\ be the part of the disk of radius {t\ — l)/2 and centered at (1, 1) and
located in (~oo, 1) x (—oo, 1) (see Figure 5). We can verify that for every y G R[

sup ||y,ti|| < inf ||y,t;||.
D v^°

(b) The subregion R'( = [*i,oo) x [l,oo).

Let D 2 be the part of the circle of radius {t\ — l)/2 centered at (ti, 1) and located
in R'{. For each y G R"

sup \\y,u\\ < inf ||y,v||.
D υ € C
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D

•
D

Figure 5.

Also for each pair of points x, y G C\ we have

||x,t/|| < inf | |#,u| | and

If dι is large enough Coo will be included in C\.

From these facts, if the Poisson process generates at least one point in Ci, at least
one point in D\ and at least one point in £>2, then each point in the C,j, (i,j) G ZΠRi,
and each point in Coo will belong to different cells i.e. Coo and the Cij,(i,j) G Z Π Rι
will be separated. Let E\ be the event "at least one point is generated in Ci" and Gu
be the events "at least one Poisson point is generated in Dtn{t = 1,2). Similarly the
events Ek and Gkέ, k = 2,3,4, ί = 1, 2 are defined for the regions Rz^Rz and Λ4.

For the region #5 the distance c/5 is defined as in Example A. Let C5 be the circle
of radius d5/4 centered at (1,1/2) and D 5 be the circle of radius </5/4 centered at
(d5 + 1,1/2). We can verify that for each x G Co o

sup inf

also for each (i,j) G Z Π Λ5 and each y G Ctj

sup ||y,t;|| < inf \\y,u\\.
D u£C

So, if the Poisson process generates at least one point in C5 and at least one point in
D 5 then Coo will be separated from all the C, j , (ij) G Z Π Λ5. Let £5 be the event "at
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least one point is generated in C5" and G5 be the event "at least one point is generated
in D$". Similarly the events Ek and Gk,k = 6,7,8 are defined for the regions Rβ, R7

and Λs

Let F be the event

UΊ^Λ Π (^^Gkij Π (f}6GkJ .

As in Example A,

sup \P[A\B] - P[A]\ < £ P[Et] + Σ Σ P ^ +
Λ'B k=l k=ll=l ib=5

and here we have

P[Et] = e " λ ^ / 1 6

These facts and the relation between the Euclidean distance and the distance defined
by (4) ensure the existence of positive constants K\ and K*ι such that

aloo(m)<Kι e-
κ*m2

and so the condition (ii) in H^ is satisfied.

From the Remark 3 following Proposition 6 it can be verified that σ;? > 0 for each
r > 0.

Figure 6 shows for the process with λ and p as in Figure 4, the graph of an estimate
of the function F(r) corresponding to the opening by a square structuring element. The
estimate is the average from 250 independent simulations on a fixed window.

Figure 6. F(r) = P[(/ θfr)φTrD {0}], Tr a square,
for an image generated as in Figure 4.

Remark

These two examples are based on the Poisson process. It is possible to give examples
for which this process is not involved. For example, image generating processes based
on spatial moving average processes (Moore 1988) can be defined. Since these processes
exhibit only a finite range dependence the assumptions made here are satisfied.
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