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ABSTRACT

The work reported in this paper grew out of an investigation into the
use of “refinement” methods to obtain restorations of an image with
detail at alevel finer than the pixel grid on which records are observed.
A “cascade” algorithm is presented that produces restorations on
successively finer pixel grids, starting with a single large pixel and
ending with the original grid.
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1. Introduction

Recent developments in statistical image restoration use a Bayesian approach. One
observes a degraded version of a true scene after the addition of noise and possibly,
blurring. If the degradation process and noise distribution are known, the likelihood
of the record can be combined with a prior probability model to produce a posterior
distribution for the true scene. A common approach is then to seek the mazimum a
posteriori (MAP) estimate of the scene and present this as the restored image.

For computational purposes it is extremely convenient to work with Markov random
field (MRF) models. Under a MRF model the scene is divided into pixels, each of which
can take a single color or grey level, a neighborhood structure for the pixels is specified
and the key property of the model is that the distribution of the coloring of any pixel
is conditionally independent of all other pixels, given the coloring of its neighbors.

There are two main approaches to searching for the MAP estimate. Geman &
Geman (1984) proposed the method of simulated annealing. They have shown this to
be a versatile and effective method although the amount of computation involved is often
high. Besag (1986) suggested a computationally simpler method which he refers to as
the method of iterated conditional modes (ICM). This method will normally converge to
a local rather than global maximum of the a posterior: likelihood; however, convergence
is rapid and, given the approximate nature of the MRF model, failure to find the global
maximum may not be a serious drawback.

Jennison (1986) and Jennison & Jubb (1987) have shown that the same form of
MRF model can be used to obtain restorations of an image with detail at a finer level
than the pixel grid on which records are observed. In their original examples the noise
level was very low. The work reported in this paper grew out of an investigation into
the use of “refinement” methods in the presence of greater noise: the main problem
in this case is to find a good starting point for the refinement algorithm. In some of
our exploratory examples we discovered that the ICM method itself experienced serious
difficulties at very high noise levels. One solution to this problem is to increase the
signal to noise ratio by aggregating the records of, say, each 2 by 2 block of pixels into
a single record: satisfactory results were obtained by applying ICM to the aggregated
signal and then using the resulting restoration as the starting point for ICM on the
original pixel grid. A natural extension of this idea is a “cascade” algorithm, similar
to that of Gidas (1989), which produces restorations on successively finer pixel grids,
starting with a single large pixel and ending with the original grid. We have found
that this approach provides a simple and efficient way of adapting the ICM method to
very noisy data. It also solves the refinement problem, since the end product of this
algorithm, or even a restoration based on aggregated data, will provide a good starting
point for the refinement process.

Our intention in this paper is to follow the ICM approach as much as possible.
There are several places where simulated annealing might be incorporated but it would
require substantially more computing, and there is no guarantee that it would provide
better results. The main advantage of simulated annealing is that it allows one to escape
from a local maximum of the posterior likelihood by a process of trial and error, however,
use of the cascade algorithm to choose a good starting point for the deterministic ICM
algorithm may be just as effective. We do introduce a version of simulated annealing to
implement the refinement method of Section 5. Although this provides a very convenient
way of exploring a larger set of restorations, its impact on the final restored image for
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our example is slight.

Some comment on the role of the prior model for the true scene is called for. Gidas
(1989) goes to great lengths to ensure that, in his cascade algorithm, the models at
different pixel sizes are mutually consistent. We are not committed to a single model
and will be happy as long as the final restoration is a good one. It should also be
remembered that all that we require of the end product of one stage of the cascade
algorithm is that it should provide a good starting point for the next. We do not
assume that we have a global MAP estimate at any stage, nor do we try to make use
of such a property.

We shall use a single illustrative example throughout the paper. In the original
image the boundaries of objects are smooth in parts but irregular in other places and
certain features are extremely difficult to restore given the level of noise in the data.
Thus, the example shows both the power of the proposed method and its limitations.

2. Model and notation

We first consider a rectangular region partitioned into pixels labelled 1,2,...,n
each pixel is colored black or white and the color of pixel i is denoted by z; which takes
the value 0 for white and 1 for black. The z} are unobserved. It is assumed that the
conditional density function f(y;|z}) is known and for the remainder of this paper we
shall assume that the records y; are independently distributed as Gaussian with mean
z} and variance o2. The set of records is denoted by y = {y;;i = 1,...,n}. A coloring
of pixel 7 (not necessarily the true coloring, ) is denoted by z; and a specific coloring
of the whole region is denoted by =z = {z;;1=1,...,n}.

In the MRF model for the true scene we shall use a neighborhood system in which
pixels are considered to be first order neighbors if they are horizontally or vertically
adjacent to each other and second order neighbors if they are diagonally adjacent. In
our model, the prior distribution for the true scene, p(z), is

p(z) o exp[—{B121(2) + B Za(2)}], (2.1)

where Z;(z) is the number of discrepant first order pairs in the scene z, i.e. the number
of pairs of first order neighbors which are of opposite color, Z,(z) is the number of
discrepant second order pairs and $; and f; are fixed positive constants.

The MAP estimate of the true scene is the value of  which maximizes P(z|y), the
conditional probability of z given the record y. By Bayes’ theorem

P(z|y) o I(ylz)p(z), (2.2)

where l(y|z) is the conditional likelihood of the observed record y, given the true col-
oring, z, and p(z) is the prior probability of z. Thus, the maximization of P(z|y)
corresponds to the minimization of

% z(yi - xi)z + [,3121(1') + ﬂzZz(fl?)], (23)
i=1

over values of z = {z;;k =1,...,n}.

Besag’s (1986) method of iterated conditional modes updates each pixel in turn,
choosing for it the most likely color based on its record and the current coloring of its
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neighbors, i.e., minimizing (2.3) with respect to z; with all the other pixel colorings
fixed. The expression in (2.3) must decrease or remain constant at each updating but
convergence will usually be to a local minimum. We shall see later in this paper that
the choice of the initial coloring can have a great influence on the accuracy of the final
restoration. Throughout this paper, when ICM is applied, a second order neighborhood
system will be used with 8 = (2 /\/5, this ratio of §; to 2 minimizes the rotational
variance of the second term of (2.3) with respect to the positioning of the pixel grid on
a given scene (see Brown, Jennison and Silverman, 1987).

In the above model for the true scene it is assumed that each pixel is colored
wholly black or white. This is at best an approximation: more generally, one might
expect pixels on the boundary of an object to contain areas of each color, in which
case the record y; will be distributed as Gaussian with variance 0% and mean equal to
the proportion of pixel i colored black. Although we shall consider problems in which
there is a general true scene, we start by considering restorations based on a discrete
MRF model in which each pixel has a single color. The refinement method described
in Section 5 does, however, allow boundary pixels to be colored partly black and partly
white.

3. An example

An example of a binary scene containing two separate objects is shown in Figure 1.
A 256 by 256 pixel grid was superimposed on this scene and the proportion, p;, of black
of pixel i as calculated for each pixel. The record y; was obtained by adding Gaussian
noise with variance 4 to this proportion, p;. Figure 2 shows the closest mean classifier
for this record, in which a pixel is colored black if its record is greater than 0.5 and white
otherwise. One would not normally hope to recover an image which has been exposed
to such a large amount of noise and Figure 3 shows the rather unsatisfactory restoration
obtained by applying ICM with 8; = 4. The value #; = 4 is unusually high but we
found this to give the best results. (Note that even if 8; — oo certain configurations of
pixels remain unsmoothed.)

Figure 1. The true scene.

The major problem in our example is the low signal to noise ratio. This ratio may
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be improved by aggregating the record, i.e., by replacing sets of 2 by 2 pixels by a single
large pixel with record equal to the average of the original four. This also corresponds
to viewing the original image on a coarser grid. The variance of the new record is
one quarter that of the original but the range of the p;’s is still [0,1]; thus there is
a substantial increase in the signal to noise ratio. The restoration shown in Figure 5
was obtained by applying ICM to the aggregated record; the prior model for the true
scene had the same form as (1.1) but was applied to larger pixels, the value 3; = 4
was also used here as it was found to give the best results. The clear superiority of this
restoration to that shown in Figure 4 demonstrates the advantage of working with the
aggregated record. One explanation of the success of this restoration process is that it
allows the ICM algorithm to look further afield when gathering neighbor information;
ICM on the original pixel grid can easily be trapped in a local maximum of the a
posteriori likelihood when only one pixel is allowed to change at a time.

Repeating the aggregation process gives the restoration shown in Figures 5 and 6,
which are the restorations at two and three levels of aggregation respectively. These
restorations were obtained using #; = 1, a more typical value, which we have found
gives good results in cases where the signal to noise ratio is moderate. Note that the
computational time and storage requirements for the processing of a 32 by 32 image are
approximately & times those needed to process a 256 by 256 image.

So far, we have followed Besag’s method and used the closest mean classifier as our
initial coloring for the 256 by 256 case and this partly responsible for the poor quality
of the restoration in Figure 3. A better initial coloring might be the final restoration
obtained from an aggregated record. Figure 7 shows that result of using Figure 5 as the
initial coloring for ICM on the 256 by 256 grid with 3; = 4; a similar result is obtained
with 8; = 1. The superiority of this restoration to that of Figure 3 demonstrates the
influence of the initial coloring on the resulting image.

The method of simulated annealing is less dependent on the initial coloring, since it
can progress from one local minimum of (2.3) to another whilst passing through higher
intermediate values. Thus, simulated annealing is able to search at least a little further
afield than the myopic ICM strategy. An advantage of using an aggregation procedure
is that it allows the ICM approach to use more distant neighbor information whilst
maintaining its computational speed.

4. The Cascade algorithm

In the previous section we introduced the idea of using the restoration obtained
from an aggregated record as the initial coloring for restoration on a finer scale. We
now extend this idea to define a “cascade” algorithm in which restorations obtained
from 2™ by 2™ grid are used as the initial colorings for restorations on 2™m+! by 2m+1
grid. A single pixel restoration is obtained by aggregating the record until it is one pixel
in size: this is then used as the initial coloring for the ICM method on the 2 by 2 grid.
This restoration is in turn used as the initial coloring for ICM on the 4 by 4 grid and we
continue in this way, obtaining restorations right up to the level of the original record.
The last six in the series of restorations for our example are shown in Figures 8-13; the
value #; = 1 was used at each level, though it is interesting to note that using higher
values at the 128 and 256 levels made virtually no difference to the image obtained.

The method of Gidas (1989) is very similar to the procedure we have just described.
However, Gidas uses a single MRF model defined on the finest pixel grid and employs
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Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figures 8-13.

Figure 13.
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the “renormalization group” approach to compute the models implied for coarser grids.
Both the complexity of the models at the aggregated levels and the use of simulated
annealing at each stage makes this a computationally demanding method. We have
tried to keep computation to a minimum at the expense of a less rigorous treatment of
the prior model: given the approximate nature of this model, we would argue that this
is not unreasonable.

One might at least try to develop theoretical arguments to produce a “correct”
sequence of values of §; for use at different stages of the cascade algorithm. Brown,
Jennison and Silverman (1987) interpret the second term of (2.3) as a penalty and
suggest that it should be chosen to be approximately independent of the pixel grid
superimposed. They suggest that this penalty should approximate a constant multiple
of the total boundary length in the image. In our application this would imply that
the parameter 3; be halved as the pixel sizes are quartered but we have not found this
to be very successful in practice. Using the same value of §; at each stage produced
substantially better results.

When processing the larger images we avoid unnecessary computations by storing
the coordinates of pixels whose colorings have changed in the current iteration. If the
number of these is small, only pixels whose neighbors have changed color in the last
iteration are considered for updating in the next iteration. For each of the images
shown in Figures 8-13 one complete iteration plus some minor changes was all that was
required. Summing a geometric series, we see that the total computation required is
approximately equivalent to 13 iterations of ICM on the finest pixel grid.

We have seen that the restorations obtained on the finer grids have been insensitive
to the choice of B;. This is partly attributable to the high noise level (updating is
essentially by the “majority vote rule” at quite high values of §;) but also suggests
that, for a given image, restoration at too fine a pixel level is unnecessary, adding
only computation and superfluous detail to what is already a satisfactory restoration.
We are able to make a direct comparison of restorations obtained at different levels of
aggregation by superimposing the the finer grid on the coarser image and calculating
penalties for both, based on the finer record and the MRF model at that level. The
coarser image is disadvantaged, since it was chosen when searching for the minimum
of a different penalty. We measure the benefit of restoring at the finer level by the
percentage decrease in the penalty. The values are tabulated below.

Grid size Grid size percentage
of coarse of fine reduction
restoration restoration in penalty
2x2 4x4 68.1
4x4 8x8 75.8
8 x8 16 x 16 49.6
16 x 16 32 x 32 21.5
32 x 32 64 x 64 5.2
64 x 64 128 x 128 1.6
128 x 128 256 x 256 0.6

Analysis of these values is purely subjective but appears to suggest that the 64 by 64
level is satisfactory. Inspection of Figures 8-13 also leads to the same conclusions.
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5. Subpixel refinement

So far the restoration techniques we have used have colored each pixel wholly one
color, even though pixels on the edges of objects in the true scene may be partly black
and partly white. We now consider techniques which allow both colors to appear in
a single pixel. Jennison (1986) used a modification of the ICM method to obtain a
restoration in which each pixel was divided into a 4 subpixel quarters and a separate
color allocated to each subpixel. His method used the ICM restoration at full pixel size
as a starting point for restoration at the subpixel level. The success of this technique
prompted Jennison and Jubb (1987) to consider the further refinement of pixels.

Since the number of different coloring of a pixel grows exponentially with the num-
ber of subpixels, the extension of Jennison’s method to a finer subdivision of each pixel
is computationally prohibitive. However, the limit of this process, in which an arbitrary
coloring of each pixel is allowed, can be made tractable. Rather than specify a MRF
model for the true scene we interpret the minimization of (2.3) as a form of penalized
maximum likelihood. The second term of (2.3) is, approximately, a multiple of the total
boundary length in the image, . Thus, an analogous penalty for a general restoration,
z,is

523 O (wimi(z))? + AL(), (51)
i=1

where p;(z) denotes the proportion of black in pixel ¢, L(z) is the total edge length in
scene z and f is a fixed constant. For computational simplicity we restrict attention
to restorations in which pixels are either of a single color or are separated into areas
of different color by a single straight line with the line segments defining such areas in
adjacent pixels meeting at a point.

A black and white image can be regarded as a series of line segments separating
the two colors. Jennison and Jubb (1987) use the restoration obtained from Jennison’s
quarter pixel method is used an initial representation for the line segments. The updat-
ing process treats pixels in pairs, selecting the best place for two edges to meet, given
the current restoration of neighboring pixels. We repeat the details for completeness.

As an example, consider the configuration at pixels i and j shown in Figure 14. The
distances a and b are determined by the current coloring of neighboring pixels and treats
as constant for the moment. The distance W is chosen to minimize the contribution
from pixels ¢ and j to the total penalty (5.1), i.e.

g(W) = % > (w —pew)? + Blew + ejw), (5.2)
k=i j

where exw is the length of edge in pixel k& when the join is at W and prw is the
proportion of black in pixel ¥ when the join is at W.

For the case shown in Figure 14, this penalty is
1 1 1
91(W) = 551y —a = (W - a))?+ (g —b— (W - b))%}
+B8{VT+ (W —a)2 +/1+ (W - b)%}.

This can not be minimized directly but the form of

dnW) 1 W —a) w-1)
dw _402(2W+ 2y +b—2y) + P V1I+ (W —=a)?  /1+ (W —b)?
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i j

Figure 14. Updating the position of edges in pixels i and j.

suggests an iterative approach. Given an approximate solution W,_; we solve

1 (W, - a) (W_, _ b)
— W, +a—-2y; +b—2y;) + o
40’2( Y yJ) ﬂ [\/1 + (W-’—l - a)2 \/1 + (W,_l — b)2
to obtain
2 a b o -
_ 40°p [\/1+(W,_,-a)= + \/1+(W,_1—b)9] + 2y —a+2y; —b)
2 1 1
2+ 4028 [¢1+(w.-,-a)= + \/1+(W,_1—b)2]

Starting from any sensible initial value, Wy, accuracy to 3 decimal places was achieved
after at most four iterations. In practice we take Wy to be the value of W prior to this
update.

Different forms of (5.2) are possible depending on which neighbors of pixels ¢ and
J contain both colors. There are only four distinct cases that may arise and these are
shown in Figure 15.

We have shown the method of solution for case (i); cases (ii)—(iv) are solved in a
similar way. All other cases can be reduced to one of the above by means of exchanging
and/or inverting the pixels and their colours. The edge pixels are updated in turn,
following an edge around, completing circuits of the edge until convergence.

The complete restoration algorithm
We can now combine both aggregation and refinement into a three stage algorithm:

Stage 1: Apply the cascade algorithm using ICM on the aggregated records up
to a suitable point. The record is now fixed at this level and no further
use will be made of the original record. (If the record is still aggregated
at this level substantial savings in computation will result).

Stage 2: Iterate Jennison’s quarter pixel refinement to convergence. This is very
quick and supplies a good starting point for the line fitting process.

Stage 3: Apply the line fitting algorithm to convergence.



160 Jubb & Jennison - XII

/
— S AN S S/ s/
s\ 7 7 Vv 7/ s\ /7 7
VA A S S T N

(i) (ii)

T~ 7
AR aN /\

T AN //‘f’/'\

(iii) (iv)

Figure 15. Possible configurations of edges in two neighboring pixels.

A development in the line fitting algorithm

In the line fitting algorithm described by Jennison and Jubb (1987) the route that
the lines take through pixel edges is determined once and for all by the restoration
obtained at the quarter pixel level.

We have now extended the algorithm to allow changes in this route. Each time
the point at which the edge crosses a pixel boundary is updated an alternative route is
compared. A number of cases have to be treated separately; three qualitatively different
configurations are shown in Figure 16.

existing route

""""" alternative route

Figure 16. Examples of configurations at which alternative routes are considered.

The contribution to the total penalty from all four pixels is calculated for each of
the two routes with line edges chosen optimally for that route. In the basic method,
the route which has smallest penalty is then chosen.

Figures 17 and 18 show the restorations obtained from applying the line fitting
method to the aggregated record in the example. In Figure 17 the cascade algorithm
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was applied until the grid size was 32 by 32, and in Figure 18 a 64 by 64 grid was used.
In the previous section we suggested that a grid of 64 by 64 would be sufficient and the
restoration shown in Figure 18 is indeed satisfactory. In both cases we used Br=1at
the ICM and quarter pixel levels of restoration and 2 = 4 for the line fitting.

Figures 17-18.

The updating process in the above line fitting procedure has the general character-
istics of an ICM method: the penalty (5.1) is minimized with respect to one component
of the boundary whilst everything else is held fixed. This method will generally yield a
local minimum of (5.1) and it is possible that the final restoration could be improved
further by making a number of route changes simultaneously. For example, the penalty
(5.1) might be reduced by moving a long vertical edge one pixel to the left whereas it
would increase initially if only one route change were made at a time.

To allow further exploration of alternative routes we have implemented a form
of simulated annealing. This method retains the property that for a given route the
point on a pixel edge at which two line segments meet is chosen optimally. However,
when comparing the minimum penalties for different routes we allow the route with
the larger penalty to be chosen with non-zero probability. Suppose two routes, 4 and
B, have minimum penalties pens and penp then, when the annealing process is at
temperature T' we select route A and its optimal edges with probability

e(~pena/T)

e(-pena/T) 4 o(—pens/T)

otherwise we choose route B. Of course, only the contribution to the total penalty from
the four pixels concerned need actually be calculated.

By restricting the random choice to the route alone, we ensure that, effectively,
the annealing process is applied to a fairly low dimension problem, the number of
variables being of the order of the number of boundary pixels. Theorem B of Geman
and Geman (1984) demonstrates the convergence of their simulated annealing method.
In its stated form, this theorem does not apply to our hybrid procedure whose iterative
steps combine a random choice of route with a deterministic choice of edges given that
route the currently fixed end points. Perhaps a sufficiently general result could be proved
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but this would, presumably, still only apply for gentle cooling schedules. However, we
prefer to think of the annealing method simply as a convenient numerical procedure
which searches a little further afield than the ICM approach.

We have experimented with a variety of cooling schedules for our example using the
aggregated record at both the 32 by 32 and 64 by 64 grid levels. The best results were
obtained using a cooling schedule in which T decreased logarithmically from 3.5 to 0.5
over several hundred sweeps and linearly from 0.5 to zero over several hundred more. We
then continued to update using T = 0 until convergence, which usually required only a
few sweeps. This corresponds to ICM and guarantees convergence to a local maximum.
Although simulated annealing often produced a lower penalty, the restoration produced
was never visually superior to that obtained using the local maximization procedure.

Our conclusion is that the starting point provided by the cascade algorithm was
sufficiently good that the deterministic line fitting algorithm was very nearly optimal.

6. Concluding remarks

Combining the line fitting procedure with the cascade algorithm has produced a fast
and effective method for obtaining a high quality restoration from noisy data. Further
work is required to provide an automatic choice of suitable values of §; at different grid
levels and a criterion for terminating the cascade algorithm at the most appropriate
level of aggregation. Although we have considered only two-color images in this paper,
it is clear that the basic ideas are more generally applicable: we hope to continue work
on the development of an aggregation and refinement algorithm for grey level images.
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