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ABSTRACT

The spatial models considered in this paper are Gibbs processes with
pair wise interaction potentials, which provide a rich framework for
models where the likelihood of a particular configuration of points de-
pends on attraction or repulsion between neighboring pairs of points.
However, standard statistical estimation techniques, such as maxi-
mum likelihood estimation, have been extremely difficult or impossi-
ble to use because of an awkward normalizing constant in the prob-
ability density function.

We develop an estimation method based on an idea of Besag's (1975),
who outlined a straightforward estimation procedure that places a fine
grid over the realization of a point process and uses a pseudolikelihood
method to estimate the parameters of the resulting lattice process.

We show that Besag's pseudolikelihood procedure is equivalent to
maximum likelihood estimation of a certain logistic regression model,
and we prove convergence of the sequence of the pseudolikelihood
(parameter) estimates as the mesh of the grid becomes fine, and con-
sistency as the domain's size increases.

We compare the pseudolikelihood method to a graphical maximum
likelihood method with a simulation study. In addition we illustrate
the procedure using logistic regression to fit several models to Strauss'
(1975) redwood seedling data.
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1. Introduction

Spatial point patterns in a Euclidian region arise in several disciplines, such as
forestry, genetics, ecology, epidemiology, and physics. Although many of the spatial
point processes of interest will occur in a two-dimensional or three-dimensional region,
we may also consider one-dimensional point processes such as the location of plants
along a line transect or the traditional point process in time. Given a sample from
a spatial point process, one often begins an analysis by looking at departures from
a homogeneous Poisson process (Diggle, 1983, Chapter 2). If we reject the Poisson
process hypothesis we may wish to fit a model to the data, to make inferences about
the mechanisms generating the point process or to give a concise description of the
data. In many cases one is interested in spatial point processes that result from local
pair wise-interactions between individuals, such as attractions or repulsions.

The spatial models considered in this paper are Gibbs processes with pair wise in-
teraction potentials (see Cox and Isham, 1980, pp 155-159; Diggle, 1983, pp 63-66).
These processes provide a rich framework for models where the likelihood of a par-
ticular configuration of points depends on attraction or repulsion between neighboring
pairs of points. However, standard statistical estimation techniques, such as maximum
likelihood estimation, have been extremely difficult or impossible to use because of an
awkward normalizing constant in the probability density function. Various methods
have been proposed (Strauss, 1975; Ripley, 1977; Ogata and Tanemura, 1989) to ap-
proximate the normalizing constant so as to permit maximum likelihood estimation. In
general, these methods can be quite difficult to implement in practice. In order to make
these spatial models more accessible, we would like to have an estimation method that
can be easily applied with the use of standard statistical packages.

Besag (1975) outlined a straightforward estimation procedure that places a fine grid
over the realization of a point process and uses a pseudolikelihood method to estimate
the parameters of the resulting lattice process. Besag et al. (1982) justify this procedure
by proving a limit theorem that shows that general pairwise-interaction point processes
can be obtained as the limit of a suitable sequence of auto-logistic lattice processes.
Convergence of the lattice process to the point process as the cell size of the grid
decreases does not, however, necessarily imply convergence of the sequence of lattice
parameter estimates or consistency of the estimator.

In this paper, we show that Besag's pseudolikelihood procedure is equivalent to
maximum likelihood estimation of a certain logistic regression model; thus any statisti-
cal package that will perform logistic regression can be used to estimate the parameters
of many Gibbsian processes. We show convergence of the sequence of the pseudolike-
lihood (parameter) estimates as the mesh of the grid becomes fine, and consistency as
the domain's size increases. We compare the pseudolikelihood method to a graphical
maximum likelihood method with a simulation study. In addition we illustrate the pro-
cedure using logistic regression to fit several models to Strauss' (1975) redwood seedling
data.

2. Background

2.1 Models

We begin by describing the spatial processes of interest in this paper. The treatment
is rather informal; for a more mathematical account see Besag e_t aj. (1982). We then
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proceed to give some examples of the spatial processes, and indicate the pseudolikelihood
approach to parameter estimation.

The spatial processes are taken on D, a bounded subset of two dimensional Eu-
clidean space. The treatment for dimensionality other than two is entirely analogous.
Until further notice D will be taken to have unit area. Events in D will be denoted by
ξi. For n > 0 let xn denote an ordered set of n such elements. Thus xn is an element
of Dn, and we write x for a generic element of the set

Ω = U {Dn}.
n = 0 l J

The spatial point process defines a distribution on the subsets x of Ω. Let μ denote
the the distribution corresponding to the Poisson process on D with unit intensity, such
that n is a Poisson random variable with mean 1 and the distribution of x given n is
uniform on Dn. We can then define the distribution for a new spatial process in terms of
a function g(x) that specifies how likely the realization x is relative to the unit Poisson
process.

The processes we will consider in this paper are Gibbs distributions. For such
processes we can write the probability density function with respect to the unit Poisson
process as

f(x) = (l/Z)exp[U(x)] (2.1)

where the normalizing constant Z = f eu^dμ is finite. In particular, we will consider
pair-potential models where the potential function U is of the form

U(x) = an(x) + Σ Σ u(||ξ, - fc||). (2.2)

In (2.2), n(x) denotes the number of events in x and the pair-potential function u(r)
indicates the interaction between events ξi and ξj. Positive values of u(r) correspond to
attraction between events at separation r, and negative values to repulsion. If we take
u(r) = 0 we obtain a new Poisson process with intensity ea.

In applications, u is taken to be of some fairly simple form characterized by a small
number of parameters. Some potential models that have been used to model biological
phenomena include the square-well and the Lennard-Jones (Fig. 1). For the square-well
potential, u(r) is given by

u(r) = β co<r<cι (2.3)
= 0 c\ < r

which has the Strauss process and the hard-core model as special cases. The Strauss
process is obtained when c0 = 0 and β is non-positive; in the hard-core model β is zero.
The square-well potential can be generalized to a step function potential with

u(r) = β{ if c<_i <r<Ci for i = 1,. . . , Jb (2.4)

where c0 = 0, Ck — oo. In order for 2.4 to describe a valid potential, βγ must be
non-positive and βk = 0. For k large enough, we should be able to approximate many



II - Logistic Regression for Spatial Pair-Potential Models 17

continuous potentials. However, we may wish to fit a continuous model with fewer
parameters such as the Lennard-Jones potential, where u(r) is given by

u(r) = βr~κ + Ίr-L β < 0. (2.5)

Here K and t are suitable integers with K > L (For the three-dimensional models in
physics, the usual choice is K — 12, t — 6.) Other potential models are described in
Ogata and Tanemura (1989).

2.2 Maximum Pseudolikelihood Estimator

As noted earlier, maximum likelihood estimation of (2.1) for non-Poisson processes
is generally infeasible because the normalizing constant Z is intractable. One way
around this, suggested by Besag (1975, 1977), begins by placing a grid over D. Let Ai
denote the ith cell of the grid and let n, be the number of events in Ai. For a sufficiently
fine grid n t is either 0 or 1. The pseudolikelihood of the {rii} is defined to be

i

and a maximum pseudolikelihood estimator (abbreviated MPE) is a parameter value
that maximizes (2.6). In particular, since (2.6) does not involve Z, such estimators are
not difficult to compute. In the next section we examine their properties more closely.

3. Some Aspects of the MPE

3.1 Logistic Regression Estimation

Let Ai be a cell of size a in the unit domain D, and write Xi for the intersection of
x and D\Ai. Let ηi be the centroid of Ai and let ξ be a generic event in Ai. Then the
odds-ratio of the conditional probabilities in (2.6) can be written as

P(m = l\xi) fξeΛif(t>χi)dt = f( w,r . M m ,
P(rn = 0\xi) /(*••) n η " ι ) / J { %) K ' K ' '

where o(a) denotes a quantity εa such that εα/α tends to zero as a tends to zero for
every x. Thus the log-odds or logit is

Logit {P(rii = l\xi)} = ln(α) + AUi(x) + o(a) (3.2)

where Δ£/t is the change in potential resulting from the addition of an event at ηi to the
configuration xt . This is a logistic regression estimation model, with binary dependent
variables n .̂ Although the n; are, of course, dependent, maximization of (2.6) is equiv-
alent to formal maximum likelihood estimation for the logistic regression (3.2), and can
thus be implemented by an iteratively reweighted least squares procedure on standard
computer packages such as BMDP (Jennrich and Moore, 1975). For the potentials dis-
cussed in section 2, the logits are linear functions of the unknown parameters, and thus
any statistical package that will perform logistic regression can be used.

As an example, consider the step function potential (2.4). Neglecting the o(a) term,

(3.2) becomes

Logit {P(πi = l\xi)} = ln(α) + a + Σ βμμ (3.3)
ii
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where n, is an indicator variable of presence/absence of an event in A{ and zμ is the
number of events ξ G x% where Cj_χ < \\% — ξ\\ < Cj. Similarly for the Lennard-Jones
potential (2.5),

Logit {P(m = l\xi)} = ln(α) + a + βιrκi + β2rέi (3.4)

where rKi = Σ\\ηi - ζj\\~κ,Ru = Σ\\ηi - ξj\\~έ, and βι < 0. The intercept from most
programs will estimate [ln(α) + α]; it may be adjusted to give the estimate of α, since
a is known.

The logistic regression procedure has a number of practical advantages. Step func-
tion models can be used to suggest other continuous potential models. Different models
can be easily fit to the data and compared informally through their pseudolikelihood
ratios. Other diagnostics provided by some of the programs, including the predicted
probabilities and maximum number of correct predictions using an optimal cut-off value,
may be useful for model comparisons.

3.2 Convergence of the MPE as a Tends to Zero

The logistic regression procedure involves division of the domain D into TV = I/a
cells. The limiting behavior of the logistic regression estimator as a tends to zero
deserves some attention. For a given realization x with n events, the number of cells
with n, = 1 stays fixed at n while the number of cells with n, = 0 namely, (N — n) tends
to infinity as a tends to zero. For simplicity, suppose we use all N cells in the regression.
Let θ be the vector of model parameters and denote by θa the MPE corresponding to a
grid with N cells each of size α. We now show that the sequence of MPE's θa converge
to a nontrivial limit θ* as a tends to zero. This limit will, of course, generally differ
from the true 0, as it depends on the single realization x.

Number the cells so that the first n are those with n, = 1. This will be possible
if a is taken to be sufficiently small. Let Δ, denote the increment f/(r/j ,Xj) — U(xi),
resulting from the inclusion of an event at the centroid of cell i. Neglecting terms that
are o(α), we have

(3.5)

P(m = 0\xi) = 1 - a exp(Δt )

Then the logarithm of the pseudolikelihood (2.6) is

n N

LPL = n ln(α) + Σ Δx + Σ ln(l - a exp(Δ{)),
1 n + l

which reduces to

LPL = ΣAi-a Σ exp(Aή (3.6)
1 n-f 1

apart from a constant. We can write this as

LPL* = Σ Δ, - (exp(Δt )> + O(a) (3.7)

where ( ) denotes the operation of averaging over the TV cells, and the O(a) term
arises from the inclusion of the first n items in that average. Now as a tends to zero



II - Logistic Regression for Spatial Pair-Potential Models 19

the average tends to the spatial integral of exp(Δt ) over D. Hence, apart from the O{a)
term, (3.7) is independent of a. A simple continuity argument then shows that if Θa

denotes a parameter value that maximizes (3.7), then the sequence {θa} tends to a limit
as a tends to zero.

3.3 Consistency

A minimal requirement of an estimator is that it is consistent as the domain D
becomes large. To discuss this we need to relax the requirement that D is of unit size
and instead consider a sequence of domains Dm, with sizes dm that tend to infinity
as m tends to infinity. Associated with these will be a sequence of functions {fm(x)}
specifying the density of the point process with respect to a unit Poisson process on
D m , where fm(x) has potential function

Um(x) = anm(x) + Σ Σ «(||fc - ξj\\), (3.8)

and a and the parameters β characterizing u are independent of m. Let θ = (α,/?), and
denote by θa>m the MPE corresponding to a grid with cell sizes all equal to a. Then the
consistency result is

As m tends to infinity and a tends to zero, the sequence of MPE's
converges almost surely to θ.

We offer an informal justification. For fixed m let /^(n, θ) be the density for a Markov
random field on the cells of Dm] f^ is of form (2.1), with potential function U specified
by θ. Corresponding to / ^ is a point process obtained by choosing an event from a
uniform distribution on A% for each % where n, = 1. Besag et. al. (1982) show that
the resulting density functions tend to fm(θ) for (almost) all x as a tends to zero.
On the other hand, Geman and Graffigne (1987) have shown that, for a sequence of
Markov random fields {/^} with fixed a and common parameter 0, the MPE sequence
θm converges almost surely to θ. Hence, taking both limits, we obtain the result.

We note that it is not necessary to take the product (2.6) over all cells Ai for
consistency to obtain. It follows from the arguments of Geman and Graffigne (1987)
that it is sufficient that the number of cells used in the pseudolikelihood tends to infinity
with m. It is, of course, required that the choice of cells to use is made independently
of the realization x. Two obvious procedures are

(i) sample the requisite number of cells at random

(ii) select the cells as far apart as possible, in a regularly spaced pattern.

We would recommend the latter, as it would be expected to yield the more efficient
estimator and is easier to carry out. Evidently a compromise must be made in the
choice of α; a small value will require a large number of cells to result in an acceptable
number with n, = 1, whereas a large value will produce a biased estimator. We offer
some comments on this in the next section based on a simulation study.
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4. Simulation Study

We carried out a simulation study to examine the behavior of the logistic regression
procedure for a one-dimensional spatial point process on the unit interval. We used
a square-well potential (2.3) with a hard-core radius of 0.0001 and interactive range
0.0001 < r < 0.0005. The intensity parameter, α, was chosen to be 5.2 so that there
would be approximately 100 (= exp(5.2)) points in the interval over the range of β's
studied from —1.0 to 0.0. Realizations of the process were generated using a spatial
birth and death process (Ripley 1977).

In general maximum likelihood estimation using (2.1) is infeasible because of the
normalizing constant Z. However, we can estimate β using a maximum likelihood
procedure based on graphical methods. Let Y be the number of interacting pairs; that
is,

Y = #(&,£) such that 0.0001 < ||n, - nj\\ < 0.0005.

This is the sufficient statistic for β if a is known, so that the MLE for β satisfies the
likelihood equation

Y = Eβ(Y) = Z'(β)/Z(β)=g(β).

Although g is unknown, we can approximate it by plotting simulation based sample
averages of Y against β. The curve in Figure 2 represents the smoothed means of Y for
500 simulations each for 50 β's between —1.0 and 0.0.

Using Figure 2, we can obtain the MLE of/? and compare this to the MPE, either
with a known or with both a and β jointly estimated from the data. For the MPE,
the cell size a was taken as the hard core radius, 0.0001, and the complete grid was
used. Figure 3 compares the three methods in terms of mean-square error and bias for
11 different β's. The MPE with α known is actually somewhat better than the MLE in
terms of bias and MSE. The MPE with both a and β estimated from the data is only
slightly worse than the MLE in terms of MSE. Since the MLE requires a to be known,
the former comparison seems to be more appropriate.

We also examined how changes in a affected the MPE by estimating a and β with a
ranging from 0.001 to 0.00005. Figures 4 and 5 suggest that there is very little change in
the parameters for α's smaller than twice the hardcore radius. In general, if one has the
computing facilities available decreasing values of a should be used until the parameter
estimates stabilize.

5. Example

We applied the logistic regression procedure to Strauss's (1975) redwood data, using
the region previously analyzed by Ripley (1977) and Diggle (1983) so that the results
will be comparable (Figure 6). We considered a series of models based on the step
function potential u(r) defined below, with an intensity parameter a.

We define models 1 through 9 as follows:

Model 1 is the Poisson Process with intensity a.

Model 2 is a square-well with intensity a and interaction parameter /?2

For 2 < i < 9, Model i is a step function with intensity α and interaction
parameters /?2,. ., β%.
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The hard core radius was set equal the minimum inter-point distance. We used SAS's
CATMOD procedure to perform the logistic regressions for Models 1-9. Figure 7
shows the parameter estimates based on Model 9 (full model). The parameter esti-
mates appeared to be fairly stable over the different models. Figure 8 compares the log
pseudolikelihoods for the various models and the log pseudolikelihood ratio of Model i
to Model i -f 1 for the contribution of βi+ι in the model. Although we cannot do any
formal significance testing, it appears that three parameters (i.e. Model 3) are sufficient
in this context. With this model the range of interactions corresponds to about 6 feet in
the original units, and had been previously suggested as the likely range of interaction
(Strauss 1975). The negative estimate for βγ may not be significantly different from
zero, or may correspond to repulsion among the parent trees (stumps) in the area from
which the seedlings possibly sprouted.

We could also continue to subdivide the interval and add more steps to determine
if a continuous potential with a decaying interaction function is appropriate. Although
the step functions require estimation of more parameters they do provide a way to
explore pair-wise interactions over different ranges, so that one may then select possible
continuous potentials to fit to the data.

A final cautionary note should be sounded about the use of potential models that
are attractive in part of their range. For sufficiently strong attraction (depending on
the range and number of points) the probability is very large that the realization will
consist mostly of a single cluster of points. For any particular case the issue can In
principle be resolved by long simulation runs of the model; but in practice the results
often depend critically on the initial realization.
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Figure 1. Pair potentials: (a) hard core; (b) Strauss; (c) square-well; (d) Lennard-
Jones.
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