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Some explicit results and bounds are derived for integrals of functions

on product spaces assuming the knowledge of certain multivariate marginals of

the underlying distribution. One class of bounds is obtained by using a general

reduction principle and the relation to Bonferroni type bounds. A further method

is to reduce the problem by conditioning to a problem with simpler marginal

constraints. It is proved that one can reduce general decomposable marginal

systems to the case of series and star-like systems. For this reason, series and

star-like systems are given special consideration. For some nonregular systems,

one can derive good bounds by considering all regular subsystems. This method

implies, in particular, a characterization or the marginal problem for a circle

system of marginals. The special queston of construction of optimal couplings

for random vectors w.r.t. the Xp-distance is discussed. This question is related

to the investigation of sharp inequalities of the type f(x) + g(y) < |# — J/|p.

Finally, a combinatorial application is given to the support of multidimensional

permutation matrices.

1. Introduction. The formal definition of the model with multivariate

marginals is the following. Let S = S\ x x Sn be the product of n Borel

spaces with σ-algebra B = 0 ^ = 1 ^ n B% the Borel σ-algebras on S{. Let £ C

V{1, , n}, the system of all subsets of {1, , n}, with \JJeε J = {1, , n}

and let for J G £, Pj € M1 (ΠjeJ SΛ be a consistent system of multivariate

distributions on πj(S) = ΠjeJ ^i = : ^J> π j being the J-projection from S to

Sj and Mι(Sj) denoting the set of all probability measures on Sj. Consistency

means that Ji, J2 € £, J\ ΠJ2 Φ 0 implies that K^n^Pji = 7rJinJ2^
>J2- Define

eS) (1)

to be the set of all probability measures on S with marginals Pj, J € ί.
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Models of this type arise in applications in the following situation. Sup-
pose that concerning a system of n components there are several studies, each
study investigating the common behavior of a part J of the components. If
the number of measurements in each study is large enough, one obtains in
this way the joint distribution Pj of the components in J (at least approxi-
matively) for each J in the system ί of studies available. To make this more
concrete, assume that in order to classify a patient into two possible states
I, II of illness there are n diagnosis methods, each method i yielding in case
I the distribution P t, in case II the distribution Q%, 1 < i < n. If one does
know the joint distributions of the different methods, the relevant model is
Ms, with € = {{1}, , {ft}}> the system of simple marginals. An interesting
question in this situation is whether it is possible to combine the diagnosis
methods in order to obtain a better diagnosis than the best one of each of the
individual methods. Note that the underlying spaces Si of the observations
may be very different. In this example, e.g. x\ 6 S\ might be a vector in ΈLk

(a fever curve), x<ι a random set (distribution of particles in blood serum), xs
a continuous time process (EKG) etc., so that some of the classical methods
to determine dependence properties (like correlation, regression, etc.) are not
applicable and explaining, therefore, the assumptions made above partially.
A main tool for investigating this problem are bounds of the type consid-
ered in this paper. For a detailed discussion of this and other statistical and
probabilistic applications we refer to the review paper [31].

A more theoretical problem is the question whether Ms φ 0 (the marginal
problem). For "decomposable" or "regular" systems ί consistency of {Pj\ J 6
S} implies that Mε Φ 0 (cf. [36], [14], [32]). The simplest indecomposable
(nonregular) system is given when n = 3 and ε = {{1,2}, {1,3}, {2,3}}. In-
decomposability of systems is a consequence of the existence of "cycles". In
[32] decomposable systems are called regular (simplicial) complexes.

The aim of this paper is to investigate bounds for

Mε{ψ) = sup{ / ψdP\P £ Ms} resp.

t (2)
mε{φ) = inf{ / φdP; P € M£} = -Mε{-ψ)

for measurable funtions φ : 5 —• R 1 . For A 6 B\ ® ® Bn we define
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Mε(A) = MCO-A), fnε{A) = mε(1A) Trivially we have

Mε(φ) < U(φ) := inf \ ^ / fjdPj; Σfjoτj>φ) (3)

and

j £ /mε(φ) > I(φ) := sup j £ / fjdPji Σ/j o TΓJ < φ \ . (4)

From duality theory it is know that, under some additional assumptions on φ,

equality holds in (3), (4) (cf. [16] and [27], Th. 3, the proof there being valid
for bounded continuous φ).

For the case of given one dimensional marginals in Si = R 1 , several
bounds and sharp results have already appeared in the literature (cf. [38],
[3], [22-25], [27], [35], [8]). In this paper we will restrict mainly to the case of
multivariate marginals, for which only few results are known. This problem has
a well established applied motivation and an obvious relation to the stochastic
ordering of multivariate distributions. But there seem to be no general results
on the stochastic ordering w.r.t. larger function classes as e.g. convex functions
etc. applicable to this kind of question.

To mention some applications of this type of results, let ί = {{1}, {2}}
and S\ = S2 = Y be a partially ordered space with partial order <. Let
A = {(z,y) € Y x Y : x < y} be closed and PUP2 G M\S), then (cf.
Strassen [33]): Ms(A) — 1 if and only if Pi<st-P2> where <s^ denotes the
stochastic order. This a.s. representation result has been very influential in
applied problems on the ordering of queues, etc. One can determine Ms(A)
explicitly in terms of Pi, P2 generally (cf. (29)). A different type of applications
concerns the construction of minimal metrics which are of importance for
approximation problems. Two famous examples are the description of the
Levy-Prohorov metric as the minimal Ky-Fan metric, due to Strassen [33]
and the representation of the minimal L1 -metric (the Kantorovic-Rubinstein
theorem) saying that for φ(x7 y) = d(x, y), x, y 6 Y, a metric space with metric
d, mε(φ) = sup{/ fd(Pι-P2); f € Iip(Y), / € &&)}, where Lip(Y) := {/ :
Y —• R1; \f(x) — f(y)\ < d(x,y), Vx,y} is the set of all Lipschitz-functions.
This result is of importance for the transportation problem (cf. [19], [28]).
For Y = R1 , mε(φ) is noted Gini's measure of discrepancy. Its properties
were studied at the beginning of this century by Gini. It was later shown by
Salvemini (1943) and DalPAglio (1956) that mε(φ) = / \Fχ(x) - F2(x)\dx, F<

the distribution functions of Pt .
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For the notions of orders and related functions (like Schur-convexity, su-

peradditive functions, etc.) we generally refer to the book of Marshall and

Olkin; the basic notions of convex analysis can be found in the book of Rock-

afellar.

In Section 2 we formulate a general reduction principle. As a very spe-

cial case of this reduction principle the construction of the copula function

is obtained. Section 3 includes a very natural explanation of the identity of

Frechet- and Bonferroni-type bounds based on this result. For some cases

one can improve the Bonferroni-type bounds by conditional bounds which are

discussed in Section 4. The idea of conditional bounds is to reduce a model

with marginal constraints by conditioning to a model with simpler constraints.

Based on this idea we in particular obtain a characterization of the marginal

problem in the simplest indecomposable case. In Section 5 we discuss inequal-

ities of the type f(x)+g(y) < \x - y\p. This problem is essential for solving the

dual problem for φ(x,y) = \x — y\p (cf. [3]). Finally, in Section 6 we discuss

an application to a combinatorial optimization problem.

2. A Reduction Principle. Let hi : Si —• Wi^ 1 < i < n, where Wi are

also Borel spaces and define W = ΠΓ=i Wi>

h = (h1, ,hn):S-+W,

h(x) = (h1(x1), --,hn(xn)), (5)

hJ = (hj)j€J : Sj -*• Wj.

Then we can formulate the following reduction principle, which will be applied

in the following sections to derive bounds for functions of the type φ o h as

e.g. ΠΛ, (a;, ) or max{/i, (x;)}.

PROPOSITION 1. With M% = {Ph;P € Mε}, Ph the distributon of h

w.r.t. P:

(a) M£ = M(Pj, J€S)hC M{P^,J £ S).

(b) For φ € &{M$) = ΠQ^M^HQ) we have:

Mε(φ oh) < sup{ / φdQ] Q <

f H
 ( 6 )

mε(φ oh)> inf{ / φdQ; Q € M(P$J,J € €)}.

(c) I f f = {{l} , . . ,{n}}, then

••••,Pnn) and equality in (6) holds. (7)
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PROOF. The proof of (a) and (b) is obvious. For the proof of (c) let
μ € M(P1

Λ'1, ,P^ n ) , let (Ω,A,R) be a nonatomic probability space and
U : (Ω, A, R) -+ (W, σ(W)) with Ru = μ. Then pf = Rui and by Proposition
1 of [20] there exists a random variable Xj : (Ω,,4) —• (Sj,Bj) such that
hj o Xj = US[R], 1 < j < n, and Rx> = P,. Therefore, X = (Xu ,Xn) :
(Ω,Λ) -+ (5,5), # * G M(Pi,. . ,P n) = Mε and Λ(X) = ff[Λ]. This implies
that μ = (Λ*)'1 and, therefore, MίP/11, - , P%») C M(Pi, , P n ) Λ .

We give a second proof of (c) based on duality theory.

Second PROOF. Considering the set of finite measures supplied with the
topology of weak convergence, (7) is equivalent to Me(φ o h) = sup{/ φdQ :
Q € M(P^, , Pnn)} for all bounded continuous functions ψ : S —• B,1, as
follows from an application of the Hahn-Banach separation theorem. From
duality theory we have

Mε(φoh) = inf \J2 ί fidPi'Λi € ̂ (P t),l < % < n , ^ Λ o πt >ψoh\
^ t = i J t=i J

= inf I Σ /9i ° Λ d p 5 f fΐ ° h i G £ l ( p * ) ? Σ
 Λ ° π i - φ \

(define g%{y) = inf{/t (x);/ιt (x) = y} if there exists an x with hi(x) = y and

arbitrary otherwise) = inf j Σ /gidP i' : ΣΓ=i &' ° πt ^ Ψ \ = S U P { / ψdQ\

REMARK 1. In general one only has an inequality in (a). Let e.g. S{ = R 1 ,
S = {{1,2}, {2,3}, {1,3}} and P 1 2 = P i 3 = P23 = R{UA'U\ where Ru is the
uniform distribution on (0,1) and where R(Uil~u) is the distribution of the pair
(Z7,1 — Z7) which is uniform on the diagonal {(M, 1- u); u G [0,1]} C [0,1]2, then
M(P 1 2,P 1 3,P 23) = 0. For hx = h2= id R i , h3 = c e (0,1) holds P^12 = P 1 2 ,
P^13 = iί(0,1) ® 6C, P ^ 3 = i£(0,1) ® ec, ec the one point measure in c, and
therefore, M(P&, P^1 3, P^23) jέ 0. I

A constructive proof of the reduction principle can also be given in the
following case of a series marginal configuration.

PROPOSITION 2. Let £ = {{i, i + 1}, 1 < i < n — 1}, then

£ ^ l < i < n - l ) . (8)

PROOF. For the proof it is enough to consider the case n = 1; the general
case follows by induction. Also we may assume w.l.g. that Si = W{ = R 1 ,
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1 < i < n. For μ G M(P^\P.^3) holds

μ = / μ̂  l j 2 ' 3 ' ' 2"~ 2dP22(h2). (9)

Since

and

we obtain by (7) (cf. also the proof of Theorem 3 in [27]) a Markov kernel λ from
( H 1 , ^ ) to (1R2,3B2), Ί3 the universal completion of ΊB1 (the intersection
of all completions of ΊB1 w.r.t. all P G M ^ R 1 , ^ 1 ) ) such that λ(Λ2, ) G

-\h2=h2^ p*β|Λ2=Λ2j a n d t h e i m a g e A(fc2,.)(
fciW = μ(i.^)l^=Λ2. Define

t; := / λ(Λ2(«2), •) ® €X2dP2{x2) (10)

then by construction v G M(P12,P23) and by (9) vh = μ.

Second PROOF. AS in Proposition 1 we give a proof by duality theory in
the case n = 2. By duality

Mε(φ o Λ) = inf{y f12dPl2 + j fadPn] fu G Cι(P12)

/23 e£1(P23),/l2(^

Defining f 12(^x2) = inf{/i2(^i,^2): ^i(^i) = M , hzfaM) = inf{/23(^2,
^3) : ^3(^3) = ^3} we see that we can restrict to functions of this type. For
μ G M(PS 1 'π 2 ),P 2

(* 2 ' / l 3 )) define

h 2 ( x 2 ) = Λ 2 )

g 2 3 ( h 2 ( x 2 ) , h 3 ) = E μ ( f 2 3 ( x 2 , h 3 ) I ̂ ( ) ^ )

Then

f gi2dP[2^
2) = J

= J
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and, similarly,

M) = f h*{χ2

Furthermore, 512,523 are admissible since

M + 523(^2, h) = Eμ(fι2(hux2) + h23(x2,h3) I h2(x2) = h2)

> Eμ(φ(huh2)) = φ(huh2).

So we have

Afe(y> 0 /ι) = inf { / gudPfy2 + / g2zdP^z 512 o τri2 + 523 o π 2 3 > y>}. I

In the next step we consider a star-like configuration.

PROPOSITION 3. Let E = {(1, j),2 < j < n}, then

M£ = M(PΪ*j,2<j<n). (13)

PROOF. AS in the first proof of Proposition 2 for μ € M(PXj2,2 < j < n),
we write

and have

We can then proceed as in the proof of Proposition 2 using Proposition 1 for
n - 1. A duality proof of (13) similar to that of Proposition 2 can also be
given. I

We now can prove the reduction principle in its general form.

THEOREM 4. (Reduction principle). If 6 is a decomposable (regular)
system, then

£ * J € E ) . (14)

PROOF. We shall use the terminology on simplical complexes from the
paper of Shortt [31]. Since £ is regular, there exists a normal sequence £ =
£0 3 £1 D 3 £r = 0 such that £j+i is normal in £j, i.e. there exists an
extremal simplex Tj £ Sj such that £ j + i = {T1 e Ej\T' Π p(\Ej\,Tj) = 0},
where \Sj\ is the vertex set of £j and Kl^jl^i) are the proper vertices of Tj.
Let Rj denote the maximal intersecton of Tj with maximal simplices in £j+i
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(which is the independent of these simplices since Tj is extremal). We call Rj

the splitting set of Tj. Now our proof goes by induction on r = 1(8) the length

of E.

If r = 1, then S is of the type S = ({Tu ••,!*}), where Ti, ,Tfc are
maximal, pairwise disjoint and ( ) denotes the generated (simplicial) complex.
So in this case Theorem 4 follows from Proposition 1.

r —f r + 1. Let £ = £0 D ί\ 3 D £r+i = 0 be a complex of
length r + 1. Let To £ £o be extremal in £o such that S\ is normal in £o
w.r.t. To with splitting set Ro. So ίx = {T; G £o = £;T' np(T 0,£) = 0}
is a regular subcomplex of SQ of length r. If μ G M(PjJ ,J G £), then by
the assumption of induction there exists an element v G M(Pj,J G £i) such
that with Λ' = (^j)je|£i|? yh = A*π|fll With the notation a = (j)jep(T0,£)?
& = (i)j€Ro a n d c = (i)i€|ft|\Λo w e h a v e t h a t M € M(P^b,P^bc) with Pfec = ϋ,
α̂fe = ftb- Therefore, by Proposition 2 there exists an element r G Λf(Pχo,t;)

with τh = μ. So r solves the problem. |

EXAMPLE.

(a) Let S = Co = {345,234,278,12,19}; then we obtain the following normal
series, with extremal simplices Tt and splitting sets R{. To = {345}, Ro =
{34}, εx = {234,278,12,19}, Tx = {234}, Rx = {2}, £2 = {278,12,19},
Γ2 = {278}, R2 = {2}, £3 = {12,19}, T3 = {12}, E 3 = {1}, £4 = {19},
£5 = 0. So the length of ε is /(£) = 5.

(b) The system £ = {123,35,456,57,678} is not regular since it contains a

"cycle" {456}, {57}{678}. I

3. Bonferroni-Type Bounds. An interesting special case of the re-
duction principle in Prop, l.a) and (6) arises, when hi = 1^, A{ G # t ,
1 < i < n. With J5t := S% x x At x x Sn and assuming that ε is
a complex (i.e. J\ G ̂ , J2 C Λ implies that J 2 G έ̂ ), it can be seen that for
all P G Af(Pj, J G S) = M^, we have

(15)

while the information that Q G M(PjJ,J € £) is, under the validity of the
reduction principle, equivalent to the knowledge of

pj = P I f | Bj J , where pj := P J ( A J ) , Aj = J J A,. (16)

V
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So one consequence of Prop, l.a) and (6) is

Mε(Ax x x A n ) < Mε(PJ, J€€):= s u p ί p ( f ] B, )

(17)

with equality if the reduction principle is valid. This means that the upper

bounds in Prop, l.a) and (6) are exactly the Bonferroni bounds (of higher

order) for sets (Bj). For this reason we call the bounds in (6) Bonferroni-type

bounds. But the duality theory, the transition from Mε(φ) to Ms corresponds,

for φ = Ψ{1AX ? * * ? lAn)> to the transition

U(φ) < i n f I Σ W i Σ jA>> J ^ Ψ > J € BJ>PJ Λ J ) \
[ Jeε ) ( 1 8 )

which for the special case φ = 1AIX-XAU reduces to

= inf I 5^ αjpj; ^ αj>l, ζ α j > 0 , VE C {1, ,n} 1 , (19)
JCE

(cf. Hailperin [11]).

As a consequence of the reduction principle, we obtain an explanation

for the identity of the Frechet-bounds and the Bonferroni bounds of first order

proved in [23]. Using Proposition 1 we obtain

PROPOSITION 5. Assume that ί = ({1}, , {n}), then:

(a) (cf. [23]) IfAi eBi,l<i< n, and p{ = Pi(Ai), then

sup{P(A! x x An)\ P € M(Pχ, - ,Pn)} = min{pt },

mf{P(A1 x . . . x An);Pe M(PU- ,Pn)} = ( Σ Λ - (n - 1))+, (20)

with x+ = max(x,0).

(b) (cf. [22], [35], [25]) If Si = Wi = R 1 and φ is Δ-monotone or Δ-monotone

in pairs, and uniformly integrable w.r.t. M(P\, , Pn), then

;Pn)} = J (21)
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where Fhi is the df of P^.

(c) (cf. [20]) Define

U
\J\=k

the event that {JΓ, £ Aj) for at least ^-components, then

sup{P(Zfc); P € M{Pr, • , Pn)} = bk

inf{P(XJ t);PGM(P1, ,Pn)} = αfc,
 l J

where

the ordered vector of (pi, ,Pn)- I

Δ-monotone functions are essentially measure generating functions (for

definition cf. [22]). "Δ-monotone in pairs" means that a function is Δ-

monotone when fixing all up to two components. An equivalent notation is

"Z-superadditive function" (cf. [25]).

We next list some consequences of the reduction principle in connecton

with Bonferroni-bounds of higher order. For reference on Bonferroni-bounds,

we refer to the books of Galambos [9] and Tong [34].

PROPOSITION 6.

(a) For Ai 6 # t , we have

Mε(Aι x xAn)< minPJ(AJ). (23)

(b) If S = J% = {T C {l, ,n},|Γ| = k}, then Mε(Ax x x An) <

k

mε{A1 x - x An) > 1 + J2(-l)sq8 for k £ 2N - 1 (24)

wiere qa :=
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(c)

\ Σ = i ( ) ^ for n

mε(AιX xAn) >
( ί 1 - minixi^.! PT(AT) if n €

where rs := Σ\τ\=s

pτ(Aτ)

(d) lίί = J2, qi := Pii'Aξ), qij := P^Ai * A%

x x An) < 1 - 2 ^ qi -

' ΐ f<> (25)
™>ε(M x x An) > 1 - ^2 qi + sup ^^ ftj?

«=1 T (tj)€τ

where the supremum is on the set of all spanning trees of the complete graph

with n nodes.

PROOF, (a) is immediate from (18); (b) are the usual Bonferroni-bounds.
(c) the inductive bounds in (c) are a modification of Poincare's Theorem (c.f.
Warmuth [37]). (d) follows from (18), since for P G Mε and with ψ :=
maxi<t <n l{τrt€Λ?} = 1U{TΓJG.A?}

 w e have P(Aχ x x An) = 1 - P(U{τrt £
A?}) = 1 — / φdP and

Mε(φ) < Mε(φ) = U(φ)

_ r Ί

I "̂̂  "̂"̂  "~ J

ί v^ v-> 1 (26)
< inf < ΣctiPi - ΣoiijPij; α, j > 0, > α t - > α t j > 1, VJ >

= Σp t - sup
τ

(c.f. [18], Prop. 1, and [12]). An even simpler and more direct proof of (d) is
immediate from the inequality

n

* - Σ W^' ( 2 7 )
=1
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holding for all trees r, where a spanning tree is a system of n — 1 edges (i, j)
containing each of the n nodes of a graph. I

REMARK 2.

(a) For Sj = R 1 , Aj = (-oo,Zj], P e Mε follows from (23):

(x) < min FJ{XJ),FJ := F P j . (28)
j £t

For the case ε = J£ = {Γ C {1, ,rc}, |T| = A;} (28) was established
by Warmuth [37]. The right hand side of (28) does not define a df with
marginals Pj (in contrast to the statement in Theorem 2.3 in [37]) and,
therefore, (28) cannot be claimed to be a sharp bound as the following
example shows.

EXAMPLE. Let n = 3, Fu(x,y,z) = mm(xy,xz,yz), x,y,z € (0 ,1) , i.e.

we consider the case Pu = P\z = P23 = Λ(0,1) ® i2(0,1). Suppose that
Fu is a df; then let X, Y, Z be rv's with df Fu. Since

' xy if x,y<z

xz if x,z < y

yz if y, 2 < x

we obtain for all x,y C [0,1], 0 = Fu(x,y,z) — iΓW(x,y,max(x,y)) =

P(X < #,Y < y,Z > max(x,y)) implying, that max(X,Y) > Z a.s.

Similarly, max(X, Z) > Y a.s. and max(Y, Z) > X a.s. implying X =

Y = Z a.s. and, therefore, .F(;rfγ;jz)(&, y, ̂ ) = min(x, y, z) a contradiction.

(b) Warmuth [36] applied Prop. 6.c) to derive inductive lower bounds for the
case ε = /£. But again the resulting lower bounds do not define df's and,
therefore, the bounds cannot be claimed to be sharp. Similarly, one can
also derive inductive upper bounds corresponding to Prop. 6.c). Various
other bounds, such as Chung-Erdδs bounds, can be applied in specific
applications.

(c) Similarly to (d) if ε = {(i, i + 1); 1 < i < n - 1}, mε(Aλ x x An) >
1 — X^=1 Qi + Σ7=i ?ίt+i More generally for any complex ε (i.e. J 6 £,
T C J =» Γ G O in (18) and (19) one can restrict to aj 6 {-1,0,1}.
The minimal admissible a = (aj)j^ε are related to some interesting
combinatorial configurations. I

4. The Method of Conditioning. In Section 2, we have seen that the
general decomposable (regular) case of marginal constraints can be reduced
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to some basic simple configurations namely M(Pi, , Pn) (which was treated
in Section 2), the sequence structure M(Pi2, P23, > Pn-i,n) and the star-like
structure M(Pij,2 < j < n). In this section, we will derive (sharp) bounds
for these basic structures by the method of conditioning and then apply this
method also to some (nonregular) circle structures like M(Pi2,P23,Pi3).

For B £ B\ ® #2 one has the "explicit" result

U12(B) : = sup{P(£);P € M(P1,P2)}

(cf. Strassen [32] and Kellerer [15], Prop. 3.3). Similarly, the dual result holds

L12(B): = mΐ{P(B);P € M(P1,P2}

= suV{P1(B1) + P2(B2)-l;BDB1xB2}. ( }

These bounds imply for any integrable function ψ

U12(φ) = suvij φdP; P € M(PU P2)}

= sup j j H P(φ>t)dt- j P(φ<t)dt;PeM{PuP2)\ (31)

i oo rθ

< / Uuίf > t)dt - / L12(φ < i)dt.
Jo J-oo

For some cases with known sharp bounds cf. Remark l.b). Now let € = {{1,2},
{2,3}} be the basic sequence structure and define

Pi\X2 := p^*2=X2 the conditional distribution. (32)

Define for x2 € S2, B £ Bι ® Bz

UIZ]X2(B) := inf{P^Bi) + P3\X2(B3); B C Bx x S2 U Sx x B3) (33)

and

ί ^ ) + P3\X2(B3);B D Bx x B3}.

PROPOSITION 7. For B eBχ®B2®B3, S = {{1,2}, {2,3}} we have

Mε(B)= IU13[x2(BX2)dP2(x2)
J

f , (34)
m£(B) = J L13\X2(BX2)dP2(x2)

BX2 being the x2section of B.
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PROOF. For any P G Ms we have P(B) = f Pi3\X2(BX2)dP2(x2), where

Pi3\X2 = p i ™ " 1 ™ G M ( P φ 2 , P 3 | * 2 ) .

Therefore, M 5 ( 5 ) < / Ulz\X2{BX2)dP2{x2) and m^(5) > / ^ O W

dP2(x2) Let, on the other hand, x2 -+ P*3. 2{BX2) be a maximum point of

x2 -» sup{Q(BX 2); Q € M(Pι\X2,P3\X2)}> which can be chosen as a Markov

kernel w.r.t. the completed σ-algebras as in [27]. Then P* := PΪ3ιX2 xP\(dx2) G

Mε and, therefore, Mε{B) = / P ^ ^ ί ^ J c Z P s ί x ί ) = P * ( 5 ) ' I

REMARK 3.

(a) Similarly to (34) one obtains for ί = {{1,2}, {2,3}}, ψ = ^ ( ^

Mε(φ) = J U13\X2φX2dP2(x2) (35)

and

™>ε{ψ) = I L13\X2φX2dP2(x2),

ψX2 denoting the section at x2.

(b) For the case M(Pi2,P23,P34), we now can use the representation

M ( P 1 2 P 2 3 , P34) = U M(Q(u)3, P34), (36)
Q(12)3€Λf(P12,P23)

and, therefore,

Mε(φ) = sup{^(Q(i2)3); Q(u)3 e M(P 1 2 , P23)} (37)

with

Φ(Q(i2)z) := suV{JφdQ;Pe M(Q{12)3,P34)}.

This can be generalized by induction to Pi2, ,Pn-i,n? but generally

will be difficult to apply. |

PROPOSITION 8. For ί = {{1, j},2 < j < n} we have with

>;PG
J

and

2, .;n\x1 φ = inf {J φXl dP; P G M(P2\Xl, , Pn\Xl)}
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Mε= IU2^n]xiφdP1(xι)
Jr (38)

me - J 2,

PROOF. The proof is analogous to that of Proposition 7. |

We now turn to the simplest nonregular structure, a circle of length 3.

As a consequence of (34) and (35) we obtain

PROPOSITION 9. If ί = {{1,2}, {2,3}, {1,3}} and φ = φ(xi,x2, x3), then

Ms{φ) < min{ / U23\Xl(φXl)dPι(xι),

I U13\X2(φX2)dP2(x2), I U12\X3(φX3)dP3(x3)} = : U(φ)
J J (39)

™ε(φ) > max{ / L23\Xl(φXl)dP\(x\),

j L13\X2(ψX2)dP2(x2), I L12{xz(φX3)dP3(x3)} = L(φ).

PROOF. (39) follows from the relation M(Pi 2 ,Pi 3 ,P 2 3 ) = M{Pλ2,P23) Π

P 2 3) Π M(Pi2, Pi3) and Proposition 7. I

REMARK 4. For A = A\ x A2 x A3, x\ G A\ holds U23\Xl(AXl) =

42 x A3) = min(P2 |a ; i(A2), P3\Xl(A3)) and, therefore,

U(A) < min{P12(Ai x A2), P13(AX x A3), P2 3(A2 x A3)} (40)

is an improvement of the Bonferroni-bounds in (23). I

We now consider the so called marginal problem for a cycle, i.e. the

question whether M(Pi 2 ,P 2 3 ,Pi 3 ) φ 0. Let

C(Pi 2, P 2 3) = {P1 3 G M\S1 x S3)', M(P12j P 2 3 , P 1 3) ί 0} (41)

denote the compatibility set of Pχ2, P23 DalΓAglio [5], [6] has shown that

(in the case S% = H 1 ) the set of df's F\3 corresponding to elements P13 G

C(Pi2,P23) is convex and has a minimum and maximum element

F(3(xux3) := Jma^Fx^Or!) + F3\X2(x3) - l,0}dP2(x2)

< F13(xux3) < F ^ i ^ s ) := J mm{Fllx2(x1),F3\X2(x3)}dF2(x2).

((42)
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On the other hand, an example in [5] shows that the inequality (42) does not

imply that P α 3 G C(P12,P23).

REMARK 5. For general Z it is well known that Ms Φ 0 if and only if for
bounded, measurable fj : Sj —• R 1 , J G ί

/j o πj > 0 implies ^ / fjdPj > 0 (43)
Jeε

(cf. [14]). But (43) is difficult to verify. On the other hand in some cases
a construction is easy. Let e.g. £ = {{1,2}, {2,3}, {1,3}} Pi 2 = Pi ® P 2,
P13 = Pi ® P3, then C(Pi 2,Pi 3) = M 1 ^ x 53), since for P 2 3 G M α (5 2 x 53),
P(A) := /P23(Aa7l)cίP1(xi) defines an element from M(Pi 2 ,Pi 3 ,P 2 3 ) . (For
some general constructions cf. [29]). I

For φ = φ(xijX3) define

U13\2(<P) - = / U13\X2(φ)dP2(x2)y with
J (44)

φdPX2;PX2 £ M(P1 | α ? 2,P3 | : C 2)},

and, similarly, £i3|2(<^). The bounds in Proposition 9 allow to prove a charac-
terization of the marginal problem for a cycle.

THEOREM 10. Pχ3 € C(Pi2,P23) ^ V<p = φ(x\,x3) > 0 measurable,

bounded we have

Li3\2(ψ) < PM < U13\2(φ) (45)

^ (45) is satisfied for continuous, bounded φ > 0.

PROOF. "=Φ>" follows from Proposition 8. "<=" U\3\X2, Lλ3\X2 are subad-
ditive resp. super additive functionals. Define

r(f) := J τX2(f)dP2(x2)

for / bounded, measurable. Then the condition (45) is equivalent to Pi 3(/) <
r(/) = / τX2(f)dP2(x2), V/ G 5(SΊ x 53). By Strassen's disintegration the-
orem (cf. [32]) Pχ3 has a representation P\3(φ) = / Pi3\X2(ψ)dP2(^2)
a Markov kernel Pi3|a;2(<,p) < τX2(φ), Vx2, Vφ or, equivalently,



L. RUSCHENDORF 301

Pi3\x2{ψ) ^ Ui3\x2(φ) for y > 0 bounded, measurable. Define for A =

Aι x A2 x A3

P(A) := J Pis\X2(A^)dP2(x2), (46)

then Pxai^ = P13\X2 and for A = Ax x A 2 x A3, L13\X2(AX2) = U13\X2(AX2 =

P1 ) x 2(Ai) for z 2 € A2 i.e. P(AX x A2 x S3) = P\2(M x A2). Similarly, P(SΊ x

B2 x B3) = P2s(52 x J33) and by definition P(BX xS2xB3) = J P13\X2(B1 x

B3)dP2{x2) = P 1 3 ( 5 ! x B3) i.e. P € M(Pi2, P13, P23). I

REMARK 6.

(a) In the example of Dall'Aglio [5] it is easy to see that condition (45) is

not fulfilled for certain φ = 1^. For φ = 1A the upper and lower bounds

in (45) were determined explicitly in (32), (33). It is enough to postu-

late (45) for functions fn = ΣctklAkxAk, α^ > 0, using approximation

properties of £i3|2, Ϊ7i3|2. It is not enough to consider indicator functions

φ = 1B in (45) only.

(b) For more general nonregular cases, it seems in analogy to Proposition 9

to be a good strategy to consider good or optimal bounds for the maximal

regular sub configurations of £. |

5. Inequalities of the Type f(x) + g(y) < \x — y\p and Minimal Lp-

Distances. In this section we consider the problem of determining solutions

of

σp(P l 9P2) = mΐ{Ed*(X,Yy,X - PUY ~ P2}, (47)

where Pi ,P 2 are probability mesures on a separable metric space (5,d) and

p > 1. Random variables X , F , which solve (47) are called optimal couplings

w.r.t. the Xp-distance. From the point of view of stochastic orderings, a more

ambitious aim would be (in the case S = IR*) to describe the pairs of random

vectors (X, Y) such that X ~ Pi, Y ~ P 2 and X -Y is minimal w.r.t. Schur

order (assuming w.l.g. that first moments of Pi, P 2 are identical). It is easy to

see that there is not one smallest pair for k > 1, while for k = 1 the quantile

transforms X = F^1(U)J Y = Fγι(U) are solutions. Therefore, considerations

on the Schur-ordering do not imply immediately the construction of optimal

couplings (for some special results cf. [26]).

The Kantorovich dual representation (cf. [19], [15]) gives

σp(Pi, P2) = s u p { | fdP1 + j gdP2; f(x) + g(y)
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and by Theorem 2.21 of [15], there exist solutions /, g of (48) if / <P(x, a)dPι(x)

< oo, / dp(y, a)dP-ι(y) < oo. Define the conjugate /* and the p-subdifferential

0 p /of/by

f*(y) : = mf(\x - y\p - f(x)),

dPf(x) = {y : /(*) + Γ(») = I* " yΠ (4 9)

These notions are defined in analogy to the corresponding notions in convex
analysis, where \x - y\p is replaced by (x,j/). Then one gets

PROPOSITION 11. Let J dp(x,a)dP1(x) < oo, / dp(y,a)dP2(y) < oo for
some a 6 S. Then there exists a solution X, Y of (47). (X, Y) is a solution
of (47) if and only ifY G dpf(X) a.s. for some f € >C1(Pi) or, equivalently, if
and only if X 6 dpg(Y) a.s. for some g e C1(P2).

PROOF. If Y e dpf(X) for some / £ ^(Pi), then for any X ~ Pu Ϋ ~ P2

we have Ed?(X,Ϋ) > Ef(X) + Ef*(Ϋ) = E(f(X) + f*(Y)) = £dp(X,Y),
i.e. (X, Y) is a solution. The converse follows from the existence of solutions
of the dual problem from general duality theory. I

Therefore, the problem of determining the minimal £p-metrics is reduced
to the determination of the p-subdifferentials or, equivalently, to the discussion
of sharp inequalities of the type f(x) + g(y) < \x - y\p. For p = 2 and
S = H a Hubert space one gets this way a complete characterization of optimal
couplings by means of the conjugate duality theory of Rockafellar (cf. [30],

For general p > 1 we start the discussion of inequalities as above in the
case S = 1R1. For monotone, bijective, differentiate functions φ : ΊR} —• R 1

the question is to prove the existence of functions, /, g : R 1 —> IR1 such that

: \x - y\p and f(x) + g{φ(x)) = \x - φ(x)\p, x, y G R 1 . (50)

Prom (50) we obtain that

H(x, y) := \x - y\* - f(x) - g(y) > 0 (51)

has for x fixed a minimum point in y = φ(x), and, therefore,
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where
ί 1 if x > 0

s(x) :=
[ - 1 i f z < 0

is the sign function and where g is assumed to be differentiable, i.e. gf(φ(x)) =

p\x — φ(x)\p"1 s(φ(x) - x). This implies with y = </>(x) <7;(y) = |< "̂"1(2/) -
1 1 or, equivalently,

= C! + Γ p\φ-\u) - u^siu - φ-\u))du.
Jφ(o)

(52)

Similarly, H(x,y) has for fixed y a minimum in x = φ"1(y), so we get the

necessary condition

f(x) = c2+ [ p\u- ^(tOΓ"1^tι - φ{u))du. (53)

We choose

cι + c2 = \φ(o)\p

and can state

PROPOSITION 12. For p > 1 and φ as above there exists exactly (up to

constants) one pair of difEerentiable functions /, g satisfying (50). /, g are given

by (52), (53) and (54).

PROOF. The uniqueness of solutions follows from the discussion above.

By the substitution v = 0"1(w) i.e. du = φ'(v)dv we obtain

9{y) = ci - / p|ι> - tftOΓ1^ - φ(v))φ'(v)dv. (55)

So we obtain

f(x) + g(φ(x)) = Γp\u - φiuψ-hiu - φ(u))(l - φ\u))du + \φ(o)\*>
J° ,x (56)

= \φ(o)f+ d(\u-φ(u)n^\x-φ(x)f.
Jo

To prove the inequality

H(x, y) = \x - y\p - f(x) - g(y) > 0. (57)

it is enough to show that H(x, ) has a local minimum in y = φ{x), since

y = φ(χ) is the only critical point of H(x, •). First consider the case y < φ(x).
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Then with

we have for x < y < φ(x), Φ"x(y) < x < y, so D{y) = p\x - y | p - 1 -p\φ~Ύ{y) -
y]?-1 < 0. If x > φ(x) > y, then φ'\y) < x < Φ~λ{x), so D(y) = -p\x -
y|p-i _ p|^-1(y) - y|p - 15(y - φ~ι(y)) < 0, since for y < ^"1(y) we have
\x - y\ = (x - y) > φ~τ(y) - y = l ^ ί y ) - y, while for ^ ( y ) < a; both
summands have a negative sign.

In the second case: y > φ(x) first consider the case x > y > φ(x). Then
^ ( z ) > φ'λ{y) > x and so D(y) = -p\x - y\p^ + p\φ'x{y) — 3/| > 0.
In the case: x < φ(x) < y holds: φ~λ(y) > x > φ'1(x) and so D{y) =
p|x - ί/1^1 - p^-^y) - y\*-Ύs(y - φ-^v))- ^V< Φ~~l{v), then D{y) > 0; if
y > </>""1(y), then |x - y| > |y - φ"x{y)\ and, therefore, jD(y) > 0. Altogether,
we found that H(x, •) has a local minimum in y = φ(x). I

REMARK 7. From Proposition 5 we obtain the (well known) consequence
that a pair (X, φ(X)) is an optimal coupling w.r.t. σp distance for φ monotone,
bijective, differentiable. If the image of φ is any interval / C 1R1 we can
modify the above proof by defining g{y) for y € / as in (52) and g(y) =
infpdz — y\p — f(x)) otherwise. I

Consider now the case S = TR,k and \x — y\ = (Σ(xt ~yt )
2) 1/ 2 the euclidean

distance and let φ : TR,k -> It* be bijective differentiable and satisfy (50) with
x,y € H and f,g differentiate. Then as in (51) - (53) we obtain unique
differentiable functions / , g by

f(x) = ci + / p\u - φ^Γhiu - φ{u)) du (59)
Jδ(o-+x)

where δ(o —* x) is a continuous path from o to x and s(w — < (̂̂ )) = (s(u{ —
φ(u)i)). Similarly,

g(y) = ci + / P I ^ ^ V ) - ^ - ^ ( v - ( Γ 1 ^ ) ) d v (60)
JΊ(φ(O)->y)

Ί(Φ{O) —> y) a continuous path from φ(o) to y.

LEMMA 13. If cx + c2 = |<£(o)|p
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PROOF. With the substitution v = <^>~1(M), i.e. u = φ(v), du = Dφ(v) dυ

9(y) = c2+ f p\v-φ(v)\p-1Dφ(υ)s(φ(υ)-v) dv
JΊ(o^φ~\y))

= c2 - ί p\v- ^(v)|p"1I>^(v>(v - φ(υ)) dv.
J-f^o-t-φ-1^))

Therefore,

f(x) + g(φ(x)) = C l + c2 + / p\v - φWΓhiυ - φ(v))(l - Dφ(υ)) • dv
J6(o->x)

= \φ(o)\<> + I d{\v - φ(v)\»)
Jδ(o-*x)

= \φ(o)\" +\x- φ(x)\p - \φ(o)\" = \x- φ(x)\>. I

Using \x - y\P - [φ-^y) - # = / ί r , ( ϊ W du(\u - yψ) = Js{φ-ι{y)^x)

p\u — y\v"1s{u — y)du, the inequality

/(x) + g{y) = f{χ) - f(φ-\y)) + fiΦΛv)) + 9(v) (62)

= \Φ~\y) - V\P + [ P\u - Φiuψ-hiu - φ{u))du <\x- y\p,
J ( l ( ) )

is equivalent to the following conditions on φ:

f(x) - f(φ-\y)) <\x- y\p - \φ-\y) - # , Vx, y (63)

and also to:

\p\u-y\p-1s(u-y)-p\u-φ(u)\p-ιs(u-φ(u))]du>0, Vx,y.
(-i(y)^x)

(64)
For p = 2 this is satisfied if φ = V/ is the gradient of a convex function
/ : ΈLk -• K 1 (cf. Knott and Smith [17], Th. 2.1). For general p we do not
have a corresponding simple condition and so state this as an open problem.

PROBLEM. Find simple conditions on φ such that any of the inequalities

(62), (63) and (64) is satisfied. Is the condition valid for p = 2 also sufficient

for any other pi

6. A Combinatorial Application. Let ηn be the set of permutations

of {1, , n} and define for πi, , πm £ ηn

S(* i r ' , < ) = {( W O r ^ m ( O ) ; l<i<n} (65)
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and

U = {S(πu , τrm); πt e 7n, 1 < < < m}, (66)

the "clutter" of supports of m-dimensional permutation matrices (the notation

clutter meaning that no member of TZ is contained in any other member).

Finally, let 7 = b(TZ) denote the blocking clutter of TZ consisting of the minimal

subsets of {1, , n } m + 1 that have nonempty intersection with each element of

7£. The following theorem extends a theorem of Gross [10] who considered the

case m = 1. Our proof is related to the Frechet-bounds. For further results

on the support of m-dimensional stochastic matrices cf. [1], [2], [4], [13].

THEOREM 14. Tie blocking clutter ofTZ is given by

( m+i ϊ

7 = < Ax x . . . x A m + 1 C {1, • , n } m + 1 ; £ \Ai\ = mn + 1 \. (67)

PROOF. For the proof we proceed by a series of some lemmas.

LEMMA 1. For A{ C {1, , n}, 1 < i < n + 1, holds

a,) min 7 r i , . . . , 7 r m € 7 n |5(πi, . . . ,π n )ΠAiχ. . .χA m + 1 | = max{0,ΣXi 1 |At |-raπ};

b) max7 Γ l )... ) 7 Γ m €7n |S'(7r1,...,7rm)Π Ai x .•• x A m + i | = min{|At | : 1 < i <

m + 1}.

PROOF. For πi, «, π m € ηn holds

|5Όri, >*m)nAi x x Λ m + i | = n - | 5 ( ί Γ i , , ί r m ) n ( Λ i x x A m + i ) c | .

Since

m-fl

(Ai x x A m + i ) c c y ^ M x - - x Aj x - - - x M,
t = l

M := {1, , n}, it follows that

m+l m+l

l ^ i Γ ^ m ί Π A i x . . . x A m + i | > n- ] ζ |A |̂ = J ^ |At | - mn.
i = l «=1

So the right hand side in a) is a lower bound. If, conversely, Σ|At | > mn, then

it is easy to construct permutations πj, , π^, such that ^ ( π j , , π^)Π A\ x

• x A m + i | = max{0, Σ|At | - mn) observing that one can find n — \Ai\ points

in M m + 1 with ith components |A, | + 1 , , n and jth components smaller than

or equal to |Aj|, j φ i. The proof of b) is similar. |
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Note that Lemma 1 can also be deduced from the Frechet-bounds (cf.

Next define for 1 < r < m + 1, Erik to be the set of all elements of

{l, , n } m + 1 with fixed rth coordinate &, 1 < k < n (i.e. Er^ is the r-

hyperplane in point k). The proof of the following ra+1-dimensional version of

Hall's theorem on systems of distinct representatives is obvious from Theorem

5.4 of Jurkat/Ryser [13], who considered the case ra = 2.

LEMMA 2. Let A C {1, , n } m + 1 . There exist 7Γi, ,τrm G 7 n such

t h a t S f ( π χ , , τ r m ) C A if a n d o n l y if for a n y l < r φ r f < m + l a n d

1 < *i» '»Λ/ < n, there are 1 < fci, ,fc/ < n and a?i, •••,«/ G A witή

LEMMA 3. If A C {1, , n } m + 1 and A Π 5(τri, , τrm) φ 0, Vτrt e 7 n ,

then there exist At C {1, , n), 1 < i < m + 1 with Ai x x Am +χ C A

and Ai x x A m + i Π 5(τri, , τrm) φ 0 for π t e 7n-

PROOF. By assumption there is no 7Γi, , π m G 7 n with 5(7Γi, ,τrm)

C Ac. Therefore, by Lemma 2 there are r / rf and hyperplanes JE,.^!, , ϋ?r,λ*

but no ^ r;-hyperplanes as in Lemma 2 (with Ac now). Let ^ be minimal

with this property. Then there are a?i, , x^_i G Ac and k[, , A:J_1 with

xf G ErM Π £ Λ J k { , 1 < i < ί - 1. Define B := An U t i ( ^ r , ^ Π U,¥ f c; Eτ.j)\

then JB is a product set since otherwise one could find k't φ k{, i < ί — 1 and

%e € Ertkt Π Erifi in contradiction to the construction of I. Clearly, for B and

&i, , kι as introduced above there are also no kf

v , k\ and £χ, , xt G 5 C

such that X{ G ̂ r,fci Π Er£t, 1 < i < ^, and, therefore, by Lemma 2, 5 C does

not contain the support of an m-dimensional permutation. |

As an illustration of the method of proof of Lemmas 2 and 3 consider the

following example with n = 10

A the region in the boundary, B = {2, -,8} x {7,8,9,10}, kx = 10, k2 = 9,

k3 = 8, fc4 = 7, fc; = 10, ϋ£ = 1, kf

3 = 9.

Combining Lemma 1 and Lemma 3, we obtain that minimal blocking sets

are product sets A\ x x Am+\ with Σ ^ 1 1 At | = mn + 1, i.e. the proof of

Theorem 14.

As a corollary to Theorem 14 and to the combinatorial duality Theorem

of Edmonds and Fulkerson [7] we obtain
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COROLLARY 15. Let α, lf...ft m + 1 , 1 < ij < n, be a real array, then

max mm
,-,irm€7n l<t<n

min max

(68)

I

REMARK 8. Gross [10] has also given an algorithm to solve the bottleneck
problem for m = 1. This algorithm can be generalized in an obvious way to
the general case m > 1. •
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