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Let C be a convex cone of functions φ : IRn —• IR; let X and Y be random

vectors. Write X <£ Y to mean Eφ(X) < Eφ(Y) for all functions φ in C such

that the expectations exist. Familiar examples of stochastic orderings that take

this form are obtained from the convex cones of (1) increasing functions, (2)

convex functions, (3) Schur-convex functions, and (4) centrally symmetric quasi-

concave functions. In the literature, various properties of the corresponding

orderings have been given, mostly on a case by case basis. The purpose of

this paper is to gain some understanding of how some of these properties arise

directly as consequences of conditions satisfied by the underlying convex cone C.

A collection of examples is given.

1. Introduction. For a class C of (measurable) functions φ : ΈLn —• It,
and for random vectors X and Y, this paper is concerned with the condition

Eφ(X) < Eφ(Y) for all functions φ € C

such that the expectations exist.

Write X <SQ Y to mean that (1.1) holds, or equivalently, when X has distri-
bution F and Y has distribution G, write F <g G.

Orderings of the form <*Q constitute a large class of what are sometimes
called stochastic orderings. Other possible approaches to stochastic order-
ings are reviewed by Mosler and Scarsini (1991), but in this paper, only the
definition via (1.1) is considered.

If (1.1) holds, then it is immediate that C can be replaced by the smallest
convex cone containing C, so in this paper it is usually assumed from the start
that C is a convex cone.

A number of orderings of the form <^ have been defined and studied in
the literature, usually with C specified, but sometimes with considerable gen-
erality. Some of these orderings are based upon the cone of functions isotone
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with respect to some preorder of R n . Of course, the example of prime inter-
est in many contexts is the cone of increasing functions, i.e., the cone of all
functions isotonic with respect to the usual preorder of H n . The cone of con-
tinuous convex functions is also of compelling interest in statistics, economics,
and potential theory, but this cone is not the class of functions isotone with
respect to some preorder; for it, somewhat different results and generalizations
are to be found. These and other examples are briefly discussed in Section 4.

The focus of this paper is on the class of orderings rather than on any
specific example, but the properties examined are those that are natural and
are known for the cone of increasing functions, where the notation <st is used
in place of <Q. The ordering <st with n = 1 possibly appeared first in the
context of statistics, but it has been widely applied; for example, it can be
used to define many of the classes of distributions studied in reliability theory.
The corresponding ordering for n > 1 was studied by Lehmann (1955) and a
number of subsequent authors. The following properties are well known (see
e.g., Marshall and Olkin, 1979, Chapter 17 for a summary and for references).

1.1. PROPERTY. If P(X € A) < P(Y € A) for all sets A with increasing
indicator functions, then X <8t Y.

1.2. PROPERTY. For random vectors X and Y, X <st Y if and only if, in
the univariate sense, φ(X) < s t Φ(Y) for all increasing functions φ.

1.3. PROPERTY. If X < s t Y, then there exist random variables X and
Y such that X and X have the same distribution, Y and Y have the same
distribution, and P(X < Y) = 1.

1.4. PROPERTY. If Xk converges weakly to X, Yk converges weakly to Y,
and Xk < 8 t Yk for all ifc, then X < 8 t Y.

1.5. PROPERTY. If X < 8 t Y and U < s t V where X and U> Y and V are
independent, then X + U < s t Y + V.

1.6. PROPERTY. IF X < s t Y and Y < s t X then X and Y have the same
distribution.

Orderings of the kind <*£ described above have to a large extent been
introduced and studied individually; often, but not always, properties analo-
gous to Properties 1.1-1.6 have been found. The purpose of this paper is to
obtain some such results directly from conditions on the underlying convex
cone. This approach offers an opportunity for a unified study of the various
orderings, and it provides some insight into why some of the properties do not
hold for all convex cones C.

Some required results concerning preorderings and/or partial orderings
are obtained initially (Section 2). Even though the primary focus of this
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paper is on the space IRn, it is worth working within the content of a real
topological vector space L because the additional generality involves little
additional complexity. Results concerning stochstic orderings in the general
sense are given in Section 3, and Section 4 is devoted to examples.

Most of the results of this paper are stated without proof because the
proofs are easily supplied. Thus, the intended contribution of this paper is its
viewpoint more than its propositions.

2. Preorderings. Let L be a real topological vector space, let M be a
subset of Z, and let C be a convex cone of functions φ : M —• 1R.

2.1. DEFINITION. For x,y in M, write x <c y to mean that φ(x) < φ(y)
for all φ in C. In this case, the ordering < c is said to be generated by the cone
C.

The relation < c is a preordering of M, i.e., for x, y, and z in M,

x <c *, (2.1)

x <c ί/; and y <c z implies x <c z. (2.2)

Although (2.1) always holds, it can happen that x <c y only when x = y\
this is the case, e.g., when L = It7 1, M = [0, l ] n and C is the cone of continuous
convex functions defined on M. At the other extreme, x <c y for all x, y in M
when C is the cone of constant functions.

2.2. REMARK. It is of interest to note that all preorderings of L arise from
a convex cone of real functions in the manner of Definition 2.1. To see this,
let < be a preordering of i , and for each x in i , let Ix denote the indicator
function of Hx = {y : x < y}. If C is the convex cone generated by these
indicator functions, then < is just the ordering of < c .

2.3. DEFINITION. Let C* denote the set of all functions φ : M —• 1R that
preserve the ordering < c; i.e., C* consists of all functions φ such that x <c y
implies φ(x) < φ(y) The set C* is called the completion of C. If C = C*,
then C is said to be complete.

Of course, C is a subset of C*, and it can be a proper subset. For
example, when L = 1R and C is the cone of convex functions mentioned in
Remark 2.2, C* is the cone of all functions mapping M to 1R; indeed this is
the case whenever φ(x) = x and φ{x) = — x both belong to C, because then
x <c V only if x = y. Nevertheless, cones containing these two functions can
be interesting in the context of stochastic orderings, as in Examples 3.18 and
4.2 below.
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2.4. PROPOSITION. If a convex cone C is complete, then it contains the
constant functions, it is closed under the topology of pointwise convergence
and it is closed under the formation of maxima and minima.

2.5. PROPOSITION. Let A be a set of functions φ : M —>ΊR, and let C be
the smallest convex cone containing A. Then x <c y in the sense of Definition
2.1 if and only ifφ(x) < φ(y) for all φ € A.

Definition 2.1 uses a class of order preserving functions to define an or-
dering; it is perhaps more usual to start with the ordering and use it to define
the order-preserving functions. In such cases, the ordering often comes from
a convex cone as in the following definition.

2.6. DEFINITION. Let H C L be a convex cone, and write x < y to mean
that y — x € H. The ordering < of L is said to be a cone ordering.

In addition to satisfying (2.1) and (2.2), cone orderings also satisfy

x < y implies x + z < y + z for all z £ L, (2.3)

x < y implies Xx < Xy for all λ > 0. (2.4)

If H is pointed, i.e., x € H and —x € H together imply x = 0, then

x < y and y < x implies x = y, (2.5)

so that in this case, the ordering is a true partial ordering.
2.7. EXAMPLE. Let L = lRn, and let < be the ordering of majorization.

This ordering fails to satisfy (2.5), and it is not a cone ordering. But on the set
D = {x : X\ > X2 > > xn}, majorization coincides with the cone ordering
determined by the convex cone

If C\ is the convex cone of permutation symmetric convex functions, then
C\ determines the ordering of majorization via Definition 2.1, but C\ is not
complete; its completion C\ is the cone of Shur convex functions. The Schur
convex functions are the completion of other convex cones besides C\\ examples
include the cone of symmetric convex functions φ such that <£(0) = 0, and the
cone of functions having the form φ(xχ, , xn) = Σψ(xi), where φ : I t —• R
is convex.

2.8. PROPOSITION. Let < denote the preordering of L determined by the
convex one H C L. If φ(x) < φ(y) for all functions φ e C* that preserve the
ordering < of L, then x < y.
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PROOF. Let φx(z) = 1 if z £ # + # , and φx{z) = 0, otherwise. To see that
Φx € C*, suppose that <fc(u) = 1 and u < v. Then, u £ x + H, i.e., u — x £ H.
But also, t) - ΐί 6 ί , so (M - x) + (v - w) = v - a; £ 5 , i.e. v £ x + Jϊ, and
thus 0a?(v) = 1.

But clearly, 1 = φx(x) < φx(y)\ this implies y £ x + H, i.e., x < y. I

Because of Proposition 2.8, all cone orders can be defined in terms of the
corresponding order-preserving functions as in Definition 2.1.

Of course both C and C* determine the same ordering via the procedure
of Definition 2.1. The following theorem gives conditions under which this
ordering is a cone ordering.

2.9. THEOREM. For each φ £ C*, each real vector u and each positive
number λ, let φu and φ^ be denned by

φu(x) = φ{x + u), φ(\)(x) =

If φ £ C* implies that for all real vectors u, φu £ C*, then < satisfies (2.3).

If φ £ C* implies that for all positive numbers X, φ^ £ C*, then < satisifes

(2A). If both conditions (2.3) and (2.4) are satisfied, then < is a cone ordering.

2.10. DEFINITION. Let < be a preorder of L. If {(#, y): x < y} is a closed

subset of X2, then < is said to be a closed preorder.

2.11. PROPOSITION. Suppose that < is the ordering determined by a

convex cone H as in Definition 2.6. Then < is closed if and only ifH is closed.

Because of this proposition, it is often assumed that the convex cone H deter-
mining an ordering is closed.

For orderings determined by Definition 2.1 the counterpart of Proposition
2.11 fails, and a counterexample can easily be constructed with L = I t using
the cone of functions that are multiples of the Heaviside function φ(x) = 0 if
x < 0, φ{x) = 1 if x > 0. On the other hand the result can be true under
some circumstances.

2.12. PROPOSITION. Suppose that there exists a subset A ofC* such that

(i) functions in A are continuous and (ii) C* is the smallest complete convex

cone containing A. Then <c is closed.

3. Stochastic Orderings. Let us turn our attention from orderings of
points in a linear topological space L to orderings of random variables taking
values in L. The sigma-field of subsets of L that is required for this purpose
is assumed without further mention to consist of the Borel subsets of L.
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3.1. DEFINITION. Let C be a convex cone of real functions φ defined
on a measurable subset M of a real topological vector space L. For random
variables X and Y taking values in M, write X <g Y to mean that

Eφ(X) < Eφ(Y) for all φ e C such that the expectations exist. (3.1)

When X <g Y, X is said to be stochastically less than Y (with respect to C).
In case M = K n and C is the cone of increasing functions, write X < s t Y in
place of X <g Y.

Some comments about this definition follow.

(i) A more usual procedure is to start with a preorder of M, and to take C to
be the cone of order-preserving functions (see, e.g., Kamae, Krengel, and
O'Brien, 1977, or Marshall and Olkin, 1979). In contrast to Definition
3.1, this procedure requires that C be complete. Elimination of this
requirement accommodates some interesting examples and raises some
interesting questions.

(ii) Although represented here as an ordering of random variables, it is im-
portant to realize that the ordering <g is more properly considered an
ordering of distribution functions or of probability measures, because the
ordering depends only upon the marginal distributions of X and Y and
not upon the random variables themselves.

(iii) If C and D are convex cones of functions φ : M —• R and C C D, then
X <%Y implies X <g Y.

3.2. DEFINITION. Let M be a measurable subset of the topological vector
space L and let C be a convex cone of functions φ : M —• R. The stochastic
completion of C is the convex cone C + of all functions φ : M —• It for which
X <g Y implies Eφ(X) < Eφ(Y).

Definition 3.2 can be understood in terms of iii) above; C + is the largest
convex cone for which C C C+ but still X <g Y implies X <g+ Y.

3.3. PROPOSITION. For all convex cones C, C C C + C C*, and
contains the constant functions. Moreover, C4" is closed in the sense of uniform
convergence, and any monotone (pointwise) limit of functions in C is in C + .

PROOF. Let xyy € M and suppose that x < y in the sense that φ(x) <
φ(y) for al φ in C If X and Y are degenerate at x and y respectively, then
φ(x) = £<£(X) < £<£(1O = # y ) for all 0 in C + . Thus, C+ C C*. The
remaining parts of the proof are even easier and are omitted. |

Unlike the completion of C, the stochastic completion of C need not be
closed under the formation of maxima and minima.
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Regarded as an ordering of probability measures, <g is always a cone
ordering. To see this, some definitions and notations are convenient.

Let S be the convex cone of finite signed measures σ defined on the Borel
subsets of M such that / dσ = 0. Let K C S be a convex cone and let C be
the convex cone of all measurable functions φ : M —• IR such that / φ dσ > 0
for all σ £ K. The K is said to be complete if / φ dσ > 0 for all φ £ C implies
σeK.

3.4. PROPOSITION, (i) Let C be a convex cone of measurable functions
φ : M —> IR, and iet K C S be the (complete) convex cone of signed measures σ
for which J φ dσ > 0 whenever φ is in C and the integral exists. Alternatively,
(ii) let K C S be a convex cone and let C be the (stochastically complete)
convex cone of all measurable functions φ : M —• H such that J φ dσ > 0 for
all σ e K such that the integral exists. Then X <g Y if and only ifF <<K) G,
where F and G are the respective probability measures induced by X and Y,
and < W is the cone ordering ofS determined by K.

Proposition 3.4 shows that there is a relationship between complete cones
if in 5 and cones C of real measurable functions defined on Af indeed, K is
often called the polar of C. Proposition 3.4 also shows that the ordering <^ is
a cone ordering when properly regarded as an ordering of distribution functions
or probability measures. The following proposition is a trivial consequence,
but a direct proof is given.

3.5. PROPOSITION. Suppose that XQ <§ YQ for all θ in the set B and
suppose that the distributions Fg and GQ are measurable in θ £ B. If X and
Y have respective distributions F and G where

F(x) = j F9(x)dH(θ), G(x) = J Gθ(x)dH(θ),

then X <g y.

PROOF. For any φeC, Eφ(X) = E{E[φ(X) \ Θ]} < E{E[φ(Y) \ Θ]} =
Eφ(Y) where Θ has the distribution if. I

The following proposition is related to Proposition 3.4 since it provides
a stochastic version of Theorem 2.9.

3.6. PROPOSITION. Suppose that φ € C implies that φu £ C + where φu

is defined in Theorem 2.9. If X <g Y and U <g V where X and U, Y and
V are independent, then X + U <QY + V. IfφeC implies φ(X) £ C where

is defined in Theorem 2.9, then X <g Y implies αX <g αY for all α > 0.

3.7. PROPOSITION. Let C{ be a convex cone of functions defined on a
measurable subset Mi of a topological vector space Li, i = 1,2, and let C be
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the convex cone of all functions φ denned on M\ x Mi with the property that
for each fixed y € Mi, φ( ,y) € C\ and for each fixed x € Mi, φ{x, ) G Ci.
IfX <gχ Y, and U <g2 V, where X and U, Y and V are independent, then
(X,U)<*S(Y,V).

PROOF. If φ € C, then Eφ(X, u) < Eφ(Y, u) for all u in M2 and all X < ^
Y. Consequently, Eφ(X, U) < Eφ(Y, V). Similarly, Eφ(Y, U) < Eφ(Y, V) for
all U <SS2 V. I

The following is a companion to Proposition 3.7.

3.8. PROPOSITION. Under the set-up of Proposition 3.7, suppose that
φ : Mi x Mi —• M\ has the property that (x, u) <c (j/, v) implies ψ(x, u) <cx

φ(y,v). If(X,U) <g (Y,V), then ψ(X,U) <SS, ψ(Y,V).

PROOF. Because of the condition on Φ, it is immediate that for any
φ € Ci, the composition φ o φ is in C. I

Propositions 3.7 and 3.8 can be used to obtain the first part of Proposition
3.6.

Much of the rest of this section is focused on the question of how Prop-
erties 1.1-1.6 extend to more general cones.

3.9. PROPOSITION. Let A be a, set of functions φ : M -* ]R, and let
C be the sma,llest convex cone containing A. Then X <^ Y if and only if
Eφ(X) < Eφ(Y) for all φ in A.

Of course the condition X <*£ Y can be replaced by X <^+ Y, or C
can be replaced by the smallest convex cone containing C that is closed under
monotone limits. In that form, Proposition 3.7 yields Property 1.1 as a special
case.

Now, consider Property 1.2 and its extension to the general setting, where
it becomes much more interesting. For this purpose some notation is conve-
nient

3.10. NOTATION. Under the set-up of Definition 3.1, write

X <£ Y if φ(X) < s t φ(Y) for all φ e C. (3.2)

Further, for any convex cone C of functions φ : M -> 1R, let

C = {/ : for some φ € C and increasing function φ :ΈL —>1R,, f = φ o φ}.

3.11. THEOREM. Theorderings <ζ and <~ are equivalent. Consequently,

(3.3) X <£ Y implies X <g Y.
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The orderings <ζ and <g are equivalent if and only ifC C C+.

PROOF. Suppose that X <ζ Y. Then for all increasing functions φ : R
iί and <£ G C, £ ψoφ(X) < E φoφ(Y), i.e., X <g Y. Suppose that X <g

Then for all increasing φ : R -+ R and φ £ C, £ V> ° <£W <Eφo φ(Y) i.e.,
<?!>(X) ̂ s t 0 0 0 Thisj>roves the first part of the theorem, from which (3.3)
follows because C C C. To prove the last part of the theorem, suppose first
that C C C + . It then follows that <ζ and <g are equivalent if it is shown that
X <g Y implies X <g Y. So suppose that X <g Y. Then £<£(X) < ^0(^)
for all <̂  € C+ , and in particular, this inequality holds for all φ 6 C. Thus,
E φ o <£(X) < E φ o φ{Y) for all increasing ^ and all φ £ C. Consequently,
φ(X) < s t φ{Y)t i e., X <Q Y. Now, suppose that <ζ and <g are equivalent,
and suppose that φ o φ e C. Then X <§ Y implies X <£ Y which in turn
implies Eφo φ(X) <Eφoφ{Y). Thus, φoφeC+. I

Property 1.3 is especially interesting and useful, so its extension is impor-
tant. Such an extension is given by Strassen (1965); see also Kamae, Krengel
and O'Brien (1977) or Marshall and Olkin (1979, p. 483). All of these refer-
ences make the assumption that the cone C is complete.

3.12. THEOREM. Suppose that L is a complete separable metric space, and
suppose that the preorder of L generated by the convex cone C via Definition
2.1 is closed. Then the conditions

(i) X <g Y and

(ii) There exists a pair X, Y of random variables such that

(a) X and X are identically distributed, Y and Y are identically dis-
tributed,

(b) P{X < c f } = l

are equivalent if and only ifC+ = C*, i.e., the stochastic completion C + ofC
is complete.

PROOF. Suppose first that C + is complete. The fact that (i) and (ii) then
hold is given by Strassen (1965) as an application of his Theorem 11; see also
Marshall and Olkin (1979, p. 483) where the reference to Strassen's equation
(10) should read (30). On the other hand, if (i) and (ii) hold then for all φ e C*,
P{φ(X) < φ(Ϋ)} = 1, and hence Eφ(X) = Eφ{X) < Eφ(Ϋ) = Eφ(Y) for all
φ e C*. Thus, C+ = C*. I

Extensions of Property 1.4 can be obtained in several ways. Perhaps the
following is the most obvious because it is an immediate consequence of the
definition of weak convergence.
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3.13. PROPOSITION. Suppose that C is the smallest convex cone con-
taining A and that φ € A implies that φ is bounded and continuous. If Xn

converges weakly to X, Yn converges weakly to Y, and Xn <*£ Yn, n = 1,2, ,
then X <g Y.

The proof that Kamae, Krengel and O'Brien (1977) give of their Propo-
sition 3 is easily modified to yield the following variation of Proposition 3.13.

3.14. PROPOSITION. Suppose that the conditions of Theorem 3.12 hold
and that C+ = C*. If Xn converges weakly to X, Yn converges weakly to Y,
and Xn <g Yn, n = 1,2, -, then X <g Y.

Property 1.5 has been extended by various authors in various ways; see
Proposition 3.6. The following extension of Proposition 3.6 and Property
1.5 essentially follows Scarsini and Shaked (1987), who treat the special case
discussed in Example 4.6 below. Their proof requires little modification here.

3.15. THEOREM. Suppose that φ £ C implies φu € C+ , i = 1,2 where
for some function ψ : M x M —• M,

= Φoφ(χ,u)ec+, φ%\χ) = φoψ(u,x)e

IfX<%Y and U <g V where X and U, Y and V are independent, then

PROOF. Since φfi e C+, it follows that Eφ£\x,u) < Eφ£\γ,u)9 and
hence, Eφ£\x,U) < EφP(Y,U). Similarly, Eφ£\ϋ,Y) < Eφ£\v,Y).
These two inequalities together yield the desired result. I

Property 1.6 extends to the general setting when the cone C is sufficiently
rich.

3.16. PROPOSITION. The condition

(i) X < ί̂ Y and Y <$ X implies that X and Y have the same distribution

is equivalent to the condition

(ii) Eφ{X) = Eφ(Y) for all φ e C implies that X and Y have the same
distribution.

It is not necessarily easy to determine if condition (ii) holds, but clearly it
holds if the associated cone K of signed measures (defined just before Propo-
sition 3.4) is pointed. Condition (ii) has been proposed by Kimeldorf and
Sampson (1987) as one condition for the ordering <$ to be a "positive depen-
dence ordering."

A collection of examples follows that are too simplistic to be of much
interest except for the purpose of illustrating the above ideas and conclusions.
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3.17. EXAMPLE. Let φ : M —• It be fixed and let C consist of all functions
of the form aφ + 6, where a > 0. If Eφ(X) and Eφ{Y) exist, then X <g Y
if and only if Eφ(X) < Eφ(Y). The special case M = I t and 0(x) = x gives
the ordering X <g Y if and only if Eφ(X) < Eφ(Y); then, x <c y means
x < y in the usual sense, so C* is the cone of all increasing functions. On the
other hand, C is stochastically complete, so C + and C* differ markedly. For
this example, it is clear that C = C* .

3.18. EXAMPLE. Let M = It, and let C consist of all functions of the
form φ(x) = ax2 + bx + c, a > 0. Then X <c Y means EX = £Y and
Var X < Var Y. This ordering is not without interest but its properties
are limited. Note that x <c y means x = y, so C* consists of all functions
φ : I t -» It . In this example, the inclusions C C C and C + C C* are both
proper, but C = C + .

3.19. EXAMPLE. The cone C\ of permutation symmetric convex functions
discussed in Example 2.6 is not complete and does not contain CΊ, but it
is stochastically complete. This means that Theorems 3.10 and 3.11 do not
apply. To see that C\ is stochastically complete, suppose first that there is a
function φ in C + that is symmetric but not convex. Then for some x, y in M,
a in (0,1), and some φ in C + ,

aφ(x) + (1 - a)φ(y) > φ(ax + (1 - a)y).

Let X be a random variable such that X = x with probability βα, X = y with
probability β{\ — α), and X = ax + (1 - ά)y with probability 1 — β. Let Y be
a random variable such that Y = x with probability α, Y = y with probability
1 - α. Then the condition Eφ(X) < Eφ(Y) is equivalent to

aφ(x) + (1 - a)φ(y) < φ(ax(l - α)y),

a contradiction.

Next, let φ be a function that is not symmetric. Then there is a point x
in M and a permutation π such that φ(x) > φ(πx). If X = x with probability
1 and Y — ΈX with probability 1, then Eφ{X) < Eφ(Y) for all functions φ in
C because equality holds, but Eφ(X) > Eφ(Y). Thus, φ is not in C + .

It is not yet clear how different C and C + can be, and this question is
the point of the following problem.

3.20A. OPEN PROBLEM. Determine necessary and sufficient conditions
under which C = C+. These cones are not necessarily equal, and the most
obvious examples of inequality are those for which C does not contain all of the
constant functions. Other examples of inequality arise when C is not closed.
A partial result related to this problem is given in the following theorem.
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3.20b. THEOREM. Suppose that M is compact. If C is closed (in the
topology of uniform convergence), contains the constant functions, and func-
tions in C are continuous, then all continuous functions in C+ are already in
C.

PROOF. First note that the space B of bounded measurable functions
on M is locally convex in the uniform topology (Taylor, 1961, p. 146), and
moreover B is locally compact. Next suppose that the theorem is false, and
instead that there exists a continuous function φ in C + that is not in C.
Because C is closed and convex, there exists a continuous linear functional /
on L such that f(φ) < inf{f(φ) : φ € C} (see, e.g. Day, 1962, p. 22). The
functional / can be written in the form / = / + - / _ where /+ and /_ are
positive linear functional defined on the space of continuous functions which
vanish off the compact set M (see, e.g. Halmos, 1950, p. 249). The positive
linear functionals /+ and /_ can be represented as integrals with respect to
measures, say μ+ and μ_ (see, e.g. Halmos, 1950, p. 247). This means that /
itself can be represented in the form

f(φ)= I φdσ
JM

where σ — μ+ — μ_ is a signed measure.

Since C contains the constant functions, it follows that constant functions
integrate to 0 with respect to σ, and this means that by a renormalization, it
is possible to take μ+ and μ_ to be probability measures. Because f(φ) < 0,
it follows that φ $ C + , a contradiction. I

4. Some Specific Cases. The following examples include the best
known special cases; other examples have been studied by Mosler and Scarsini
(1991) and by Bergmann (1991).

4.1. EXAMPLE (USUAL STOCHASTIC ORDERING). Let L = M = R, and let

C consist of all increasing functions. Then C is complete, and <c is the usual
notion of stochastic order. This order is also generated by certain other convex
cones of functions; for example, the cone of non-negative increasing functions,
or the cone of increasing functions φ such that φ(0) = 0. These alternative
cones are not complete or even stochastically complete because neither cone
contains all constant functions.

The set of non-negative increasing functions is the smallest convex cone
containing the set A of increasing step functions that is closed under monotone
convergence. Thus, according to Propositions 3.3 and 3.4 one can check that
X < s t Y by checking that Eφ(X) < Eφ{Y) for all increasing step functions
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φ. Of course this just says that the respective survival functions F and G of

X and Y satisfy

F(x) < G(x) for all x. (4.1)

Various multivariate versions of Example 4.1 have been proposed, but

one is of prime importance.

4.1.a. Let L = M = lRn and let C = C\ := {increasing functions φ :

R n -+ R } . The cone C\ is the smallest closed convex cone containing the

indicator functions of all upper sets and the constant functions. It is easy to

see that C\ is complete.

4.1.b. Let L = M = Etn and let C = C<ι consist of all distribution

functions (not necessarily normed) on R n . Then C<ι is the smallest convex

cone closed in the sense of weak convergence that contains indicator functions

of upper quadrants, i.e., sets of the form {x : x > xo}5 and so it provides

a natural multivariate version of (4.1). but when n > 1, the cone C2 is not

complete, and in fact, C^ = C\.

4.I.e. Let L = M = H n and let C = C3 consist of all survival functions

(not necessarily normed) on K.n. Then C3 is the smallest convex cone contain-

ing the indicator functions of lower quadrants. Of course the ordering obtained

from this example is not the same as that obtained from the cone of 4.1.b, but

the two orderings are equivalent for comparisons of bivariate distributions with

equal marginals.

4.2. EXAMPLE (BALAYAGE ORDERING). Suppose that M is a compact

convex subset of a locally convex space and suppose that C consists of all

continuous convex (or alternatively, concave) functions defined on M. In its

simplest form, this example was studied by Karamata (1932), and in more

general setting the ordering arises in the comparison of statistical experiments

(Blackwell, 1953). It also arises in probabilistic potential theory, where it

is often called balayage ordering, and it provides the setting for Choquet's

theorem (see, e.g., Phelps, 1966). In this context other cones of functions,

such as superharmonic functions or excessive function, are also of interest,

and consequently some results for the cone of convex functions have been

generalized (see Meyer, 1966, Chapter XI, Section 3, or Alfsen, 1971, Chapter

I, Section 5).

The ordering of Example 4.1 might be thought of as an ordering of loca-

tion, and the ordering here can then be thought of as an ordering of spread

about a common expectation. The properties of interest here are mostly dif-

ferent from the properties studied in this paper. As already mentioned, for

this example, C* consists of all functions mapping M to R, so x <c y only
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if x = y; the stochastic completion C+ of C consists of upper semicontinuous
convex functions.

4.3. EXAMPLE (SECOND ORDER STOCHASTIC DOMINANCE). When C con-
sists of the cone of increasing concave functions, the resulting order is of im-
portance in economics for comparing risks (Hadar and Russell, 1969; Hanoch
and Levy, 1969; and Rothschild and Stiglitz, 1970). In this context, the order-
ing of Example 4.1 is called "first order stochastic dominance," and functions
in C are utility functions.

4.4. EXAMPLE (STOCHASTIC MAJORIZATION). Let L = M = IRn, and let

C be the cone of Schur-convex functions. As noted in Example 2.6, this cone
is complete. For further results and references, see Marshall and Olkin (1979,
Chapter 11) and Rύschendorf (1981).

4.4.a. The cone C\ of permutation symmetric convex functions is often
encountered in applications but as mentioned in Examples 2.7 and 3.13, its
properties are somewhat limited.

4.4.b. The cone of quasi-convex functions arises in the context of Theorem
3.11 because this cone is just C\. As such, it may deserve more attention than
it has yet received. See Levhari, Paroush and Peleg (1975).

4.5. EXAMPLE (PEAKEDNESS). Let L = M = R n , and let C consist of
all centrally symmetric non-negative quasi-concave functions. If X and Y are
random variables with centrally symmetric distributions and if X <SQ Y, then
X is said to be less peaked than Y. This definition, due to Birnbaum (1948) in
the univariate case, has been studied by various authors (see Dharmadhikari
and Joag-Dev, 1988, p. 160, and Bergmann, 1991).

The cone of this example is not complete, and in fact its completion
consists of all reflection symmetric functions φ such that φ(ax) < φ{x) for all
x and all α in [0,1]. Of course the cone C does not even include all constant
functions. On the other hand, it is clear that C = C where C is defined in
Notation 3.10. This means that X <g Y if and only if φ(X) < s t φ(Y) for all
φmC.

Because C is generated as in Proposition 3.5 from indicator functions
of centrally symmetric convex sets, as well as the centrally symmetric log-
concave functions, various equivalent conditions for peakedness comparisons
can be given.

4.6. EXAMPLE (CONCORDANCE). If L = 1R2 and suppose that C consists
of the i-superadditive functions, i.e., functions φ for which
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whenever #i, #2 > 0 Then X <*$ Y if and only if X is "less concordant"
than Y in the sense of Cambanis, Simon and Stout (1976), Tchen (1976), or
Tchen (1980). Because of its connection with the notion of "positive quad-
rant dependence" (Lehmann, 1966), this ordering was introduced and studied
by Yanagimoto and Okamoto (1969). See also Marshall and Olkin (1979, p.
382) and Rϋschendorf (1980). It is easily shown that in this case, X and Y
necessarily have the same marginals.

The convex cone of Z-superadditive functions is stochastically complete
but not complete; in fact, its completion consists of all real functions defined
onIR2.

4.7. EXAMPLE (SCALED ORDER STATISTICS). Scarsini and Shaked (1987)
define a preordering < of non-negative random vectors by the condition that
the fcth order statistic of αχXi, , anXn be stochastically smaller than the fcth
order statistic of αiYi, , anYn for all α, > 0, i = 1,2, , n. They identify a
set of functions φ for which (3.1) implies X < Y in their ordering. It would be
of interest to characterize the convex cone generated by their set of functions.
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