
Stochastic Orders and Decision under Risk
IMS Lecture Notes - Monograph Series (1991)

PRESERVATION AND ATTENUATION OF INEQUALITY
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The Lorenz order is defined on the class of all non-negative random vari-
ables with positive finite expectations. Interest has often focussed on character-
ization of transformations, defined on the space of such random variables, which
either preserve or attenuate inequality. Results of this genre involving determin-
istic and random transformations are surveyed. In some settings distributions
are changed by weightings (in the sense of Rao (1965)) or by mixing, rather than
by transformations. Preservation and attenuation results in such scenarios are
summarized.

1. Introduction. Let C denote the class of all non-negative random
variables whose expectations exist and are strictly positive. With any random
variable X in C with distribution function Fx, there is associated a Lorenz
curve Lx defined by

Lχ{u) = Γ
Jo

Fχ\s)ds/ [Fχ\s)ds, u e [0,1] (1.1)
J
[
o

where Fχ1(s) = sup {x : Fχ(x) < s}. This definition of the Lorenz curve can
be traced back explicitly to Gastwirth (1971). The Lorenz partial order on C
denoted by <L is defined by

X <L Y^=>Lx(u) > Lγ(u) V u e [0,1]. (1.2)

If X <L Y then we say that X exhibits no more inequality than does Y. We
define the strong Lorenz order, X <L Y by

X <L Y*=ΪX <L Y and Y£LX,
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in such a case we say that X exhibits less inequality than Y. The Lorenz
order is the natural mathematical abstraction of Lorenz's (1905) comparison of
income distributions via nested Lorenz curves. Lorenz's original order relating
to finite populations can be subsumed within our Lorenz order on non-negative
integrable random variables. A finite population with elements X\,X2,..., xm

can be identified with a discrete uniform random variable which takes on
each of the values £i,#2,..., #m with probability 1/ra. The Lorenz order
is closely related to majorization. If two vectors x_ = (a:i,x2? X n) &nd
2/ = (2/1,2/25 ., 2/n) have the same dimension n and satisfy Y%=1Xi = ΣΓ=i2/ή
then x_ <M y (x. is majorized by y) if the corresponding discrete uniform
random variables are Lorenz ordered. See Marshall and Olkin (1979) for an
extensive survey of the properties and applications of the majorization order.

Since the distribution of an arbitrary member of C can be represented
as a weak limit of a sequence of discrete uniform distributions, it is possible
to prove some results for the Lorenz order by limiting arguments applied to
analogous majorization results. Generally speaking a direct general proof is
more efficient. There are fundamental differences between majorization and
the Lorenz order. For example (see Section 3) it is possible to find functions
which preserve the Lorenz order but do not preserve majorization.

A useful characterization of the Lorenz order is provided by the following
theorem due in essence to Hardy, Littlewood and Polya (1929) and Karamata
(1932).

THEOREM 1.1 (HLP-Kara.mata). X <L Y if and only if for every contin-
uous convex function g we have

An alternative characterization highlights the role of averaging in the
Lorenz order. In a majorization context, where it involves doubly stochastic
matrices, it is attributable to Hardy, Littlewood and Polya (1929). In a more
abstract setting, the result is usually associated with Strassen (1965).

THEOREM 1.2. (HLP-Strassen). X <L Y if and only if there exist ran-

dom variables Y', Z1 with Y=Y' and X=cE(Y'\Z') for some c> 0. (Here =

indicates equality in distribution.)

The present paper surveys results dealing with preservation and atten-
uation of inequality under various operations on C (transformations, mixings
and weightings). The results are treated in the abstract setting but are most
clearly motivated by envisioning operations on finite populations of income
earners.
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The result of a taxation or welfare policy on a finite population of incomes
is to replace incomes #i,£2> ~>χm by new incomes ff(#i),<jf(£2)? ,<K#m)
Attention is naturally focused on functions g which attenuate inequality and
functions which preserve inequality. In the context of the Lorenz order on £,
we seek to characterize functions g for which (i) X <L Y=^g(X) <L g(Y)
(inequality preserving) and (ii) g(X) <L X VX £ C (inequality attenuating).
An obvious inequality preserving transformation is g(x) = ex for some c > 0.
There are a few others as we shall see in Section 3.

The classic papers on inequality attenuation are Fellman (1976) and
Jakobsson (1976) (analogous results in the *-ordering context are to be found
in Marshall, Olkin and Proschan (1967)). Attenuation results are covered in
Section 4.

Weighted distributions were introduced by Rao (1965). In the present
context we can envision situations where the propensity of an individual to
file an income tax form may well depend on the size of the individual's income.
Thus, rather than observing random variables with density /(#) we actually
observe random variables with density proportional to g(x)f(x) where g{x) is
a weighting function (the particular case of size biased sampling has received
much attention in the literature, here g(x)(xx). It is quite clear that weightings
will affect inequality as measured by the Lorenz order. It is then natural to seek
characterizations of inequality preserving weightings (Section 5) and inequality
attenuating weightings (Section 6).

The third operation on C that we wish to investigate is that of mixing.
What if we combine two finite populations of income earners into one larger
population. How does the combined population compare with the component
populations with regard to inequality? Some results in this direction are avail-
able and are described in Section 7. Interesting partial results are available
regarding the effects of differential tax policies within subpopulations.

Random taxation is discussed briefly in Section 8. Certain results on
misreporting of income can be subsumed in such a scenario.

2. Two Useful Lemmas. Arnold and Villaseήor (1985) provided the
following elementary observations regarding the Lorenz ordering of distribu-
tions with common two point support.

LEMMA 2.1. Suppose 0 < x\ < X2 If we have random variables X and Y

defined by

P(y =

then X and Y are not comparable in the Lorenz ordering except in the trivial
cases when p = p',pp' = 0 or (1 - p)(l - p') = 0.
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LEMMA 2.2. Suppose x > 0. If we have two random variables X and Y
defined by

then p < p'^X <L Y.

These results are readily verified by sketching the corresponding Lorenz
curves.

3. Inequality Preserving Transformations. The basic reference
here is Arnold and Villasenor (1985). Denote by Q the class of all inequality
preserving transformations, thus,

G = {g : X <L Y^g(X) <L g(Y)} (3.1)

In order for the Lorenz inequality to be well defined, it must relate members
of C. Consequently, any member of Q must map [0, oo) into [0, oo) and must
also have the property that X £ C=ϊg(X) 6 C.

THEOREM 3.1. The only functions which belong to Q (i.e. which preserve
the Lorenz order) are those of one of the three following forms.

9i,α(x) = α#,# > 0 where α G (0,oc)

92,b(x) = b,x > 0 where b € (0,oo)

= c,# > 0 where c £ (0,oo).

PROOF. The details may be found in Arnold and Villasenor (1985). Re-
peated use is made of Lemmas 2.1 and 2.2. One interesting step in the argu-
ment is that, for g G £7, if #(0) > 0 then g must be a constant function while if
g(0) = 0 then g must be non-decreasing. Thus members of Q are measurable
and, in fact, linear on (0, oo). I

If instead one seeks functions which preserve majorization (instead of the
Lorenz order), it is readily verified that such functions, if measurable, must be
linear (cf. Marshall and Olkin (1979, p. 116)). Knowing that a function pre-
serves the Lorenz order does not imply that it preserves majorization or even
weak majorization. Although, there are no anomalous (i.e. non-measurable)
functions which preserve the Lorenz order, the possible existence of non-
measurable majorization preserving functions is not ruled out by the Marshall
and Olkin result. Finally, functions of the form #3>c which are non-linear and
measurable do preserve the Lorenz order but do not preserve majorization.
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If, as is deemed desirable in many economics contexts, we seek functions
which preserve strong Lorenz ordering, the picture is somewhat simpler. Ev-
idently the only functions which preserve the strong Lorenz order are of the
form </i,α(#) = ax, x > 0 for a G (0, oo).

4. Inequality Attenuating Transformations. Conditions that a
tax policy must satisfy in order to guarantee that it will reduce inequality
have been of interest for many years. Fellman (1976) and Jakobsson (1976)
are names associated with the early characterization of inequality attenuating
policies. In short, they must be progressive (condition (ii) below) and incen-
tive preserving (condition (i) below). Early proofs often involved unnecessary
regularity conditions or limited areas of applicability. In our general setting,
dealing with mappings from C into £, the result is expressible in the following
form

THEOREM 4.1. Let g : R + —• IR+. The following are equivalent,

(i) g(X) <L X for every X € C

(ii) g(x) > 0 for every x > 0,g(x) is monotone non-decreasing on [0, oo) and
g(x)/x is monotone non-increasing on (0,oo).

PROOF, (ii) =*• (i). Suppose g satisfies (ii), X 6 C and Y = g(X). Since
g(x) > 0 for x > Q,E(X) > 0^E(g(X)) > 0. Since g(x) is non-decreasing
on [0,oo), we have g(X) < g(l) when X < 1. Since g(x)/x is non-increasing
on (0,oo), we have g(X)/X < g(l)/l or g(X) < Xg(l) when X > 1. Thus
g(X) <(X + l)g(l) and, hence, E(g(X)) < oo. Thus, Y = g(X) e C.

Following Fellman, but without any regularity conditions, we can then
write, for u £ [0,1],

Ly(u) - LX(U) = £ I ^ - M ) - # < . ) § [ $ j J ^ . (4.1)

Since g(x)/x is non-increasing on (0,oo), the integral in (4.1) assumes its
smallest value when u = 1. However Lχ(l) = Lγ{l) = 1. Consequently
Lγ(u) > Lχ(u)V u € [0,1], i.e. g(X) = Y<LX.

The converse is proved by contradiction making use of Lemmas 2.1 and
2.2. Details are in the Appendix of Arnold and Villasenor (1985). See also
Arnold (1987). |

Analogous arguments allow one to characterize inequality accentuating
transformations. One finds:

THEOREM 4.2. Let g : ]R+ -• R + . The following are equivalent.

(i) X <L 9{X) for every X <E C.
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(ii) g(x) > 0 for every x > 0, g(x) is monotone non-decreasing on [0, oo) and
g(x)/x is monotone non-decreasing on (0,oo).

Strong Lorenz order versions of Theorems 4.2 and 4.2 may be formulated.
For example

THEOREM 4.3. Let g : IR+ —• R + . The following are equivalent,

(i) g(X) <L X f°r every non-degenerate X in £.

(ii) g(x) is strictly increasing on [0, oo) and g(x)/x is non-increasing on (0, oo).

Note. Fellman (1976) essentially provided the above sufficient condi-
tions for a transformation to be inequality attenuating. An analogous result
was proved earlier by Marshall, Olkin and Proschan (1967) in a majorization
context. They proved that if φ is star shaped on [0,oo) [i.e. if φ(x)/x is
non-decreasing] then for a vector x_ £ ]R+ we have

Σfei *n ώίir W
( Xl Xn \ , v

\2 χ 2 x

where <M denotes majorization. This of course is precisely Lorenz ordering
for a discrete uniform random variable with possible values xχy #2,..., xn- The
sufficiency part of Theorem 4.1 could then be obtained from (4.2) using a
limiting argument. Kakwani (1980, p. 163) shows that X <L (>L)g(X) if
g'(x)x/g(x) < (>)1 for x > 0 and g'{x) > 0 for x > 0. However these are
evidently conditions essentially equivalent to those given in Theorems 4.1 and
4.2 above, under the additional regularity condition that g be different!able.
Nygard and Sandstrδm (1981, pp. 176-186) provide an extensive discussion of
these and related conditions; again under differentiability assumptions.

Eichhorn, Funke and Richter (1984) provided a careful discussion of in-
equality attenuation without differentiability assumptions. They credit Jakob-
sson (1976) with being perhaps the first to formulate the fact that Fellman's
conditions were necessary and sufficient, although they note that Jakobsson's
arguments did not prove the assertion. Eichhorn et al. (1984) restrict atten-
tion to finite populations α?i, #2, •? χn but suitable limiting arguments can be
used to extend the result.

5. Inequality Preserving Weightings. As described in the introduc-
tion, we consider a situation where instead of observing random variables from
a density proportional to f{x) we actually observe random variables from a
weighted version of the density. We use the following notation.

Suppose that X € £ and that g is a suitably measurable non-negative
function (a weighting function). The g-weighted version of X, denoted Xg, is
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defined to be a random variable such that

P (Xg < x) = Γ 9(y)dFx(y)/E[g(X)] (5.1)
Jo

provided 0 < E[g(X)] < oo. Note that if X £ C then in order to have Xg £ C

we will require that 0 < E(g(X)) < oo and 0 < E(Xg(X)) < oo.

We will denote (7i, the class of all inequality preserving weightings, thus

ΰi = {9 : * <L Γ=>X, < L Ya} (5.2)

Note that Q\ is not empty. Trivially the function g{x) = c is a member of £i.

There is little scope for variation from such homogeneity. In fact, g 6 Q\

if and only if g is of the form

<7(0) = a

g(x) = β , x>0 (5.3)

where a > β > 0.

The proof is detailed in Arnold (1987). It makes repeated use of Lemmas

2.1 and 2.2 to show that any violations of (5.3) will destroy hopes of inequality

preservation.

The essential conclusion is that no non-trivial inequality preserving weight-

ings exist.

6. Inequality Attenuating Weightings. Again define Xg using (5.1).

Now we focus on the class Q2 of inequality attenuating weightings:

G2 = {g: XeC^xg<Lx}. (6.1)

The class of inequality attenuating weightings is non-empty since g(x) = c

trivially attenuates inequality in the sense that Xg <L X for every X £ C. In

order to have Xg <L X, it must first be true that Xg £ C for every X £ £. This

requires that g(x) > 0 for every x > 0. Once again repeated use of Lemmas

2.1 and 2.2 (see Arnold (1987)) rules out all but a trivial class of inequality

attenuating transformations. One finds that g £ Q2 if and only if g is of the

form

5(0) = α,

g(x) = β , x>0 (6.2)

where β > 0 and 0 < α < β.

If we wished to have inequality preservation and attenuation then g would

have to assume the trivial form g(x) = a for a > 0.
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7. Mixtures. In an income setting involving finite populations interest

has focussed on the effects of pooling populations on inequality. In particular

we could imagine a scenario in which we have n\ "native" wage earners with

empirical income distribution F\{x) and n<ι "immigrant" wage earners with

corresponding distribution ί^aO The pooled population will have empirical

income distribution

In the context of such finite populations, Lam (1986) addressed the issue of

when we might find that the combined population has less inequality than one

of the component populations.

Lam's result extends without difficulty to a setting in which we consider

mixtures of random variables in £. Let X and Y be arbitrary members of C.

For a G (0,1), an (α, 1 — a) mixture of X and Y is a random variable Xa

defined by

Xa = IaX + (1 - Ia)Y (7.1)

where X and Y are taken to be independent and Ia is a Bernoulli (0,1) random

variable independent of X,Y with P(Ia = 1) = α.

The question at issue is: Under what circumstances will we have Xa <L

XΊ The first result in this direction is

THEOREM 7.1. (Lam, 1986). Suppose X,Y £ C said Xa is as denned in

(7.1). IfE(X) = E(Y) and Y <L X then Xa <L X.

PROOF. Without loss of generality assume E(X) = E(Y) = 1 and hence

E(Xa) = 1. We may use the HLP-Karamata condition for Lorenz ordering

(Theorem 1.1). Consider an arbitrary convex continuous function g. We have

E(g(Xa) = aE(g(X))+(l - a)E(g(Y))

< aE(g(X)) + (l - a)E(g(X)) (since Y <L X)

= E{g{X)).

Thus Xa <L X. I

Lam also observed that the conditions in Theorem 7.1 are almost nec-

essary. He assumed all incomes under discussion were positive. Some such

condition is needed. Consider the following example.
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Take X and Y with distribution functions

Fχ(x) = 0, x < 0

= 2x, 0 < x < -

= 1, x>-

and

Fγ{x) = 0, x < -

= x, - <x < 1

= 1, x > l .

Consider a ( | ; | ) mixture of X and Y, denoted by Xi. By inspection of

the Lorenz curves we find that Xi <L X even though E(X) φ E(Y).
3

However, if i^ 1(0) > 0 (i.e. if X is almost surely bounded away from

0) then E(X) φ E(Y) guarantees that Xa £L X (as Lam observed in finite

populations). To see this, first observe that necessarily -Fy1(0) < -Fγ1(0)

and F- χ ( l) > ^ ( l ) . Consequently, if E(X) > E(Y) then E(X) > E(Xa)

and L'x\θ) < L'Xa(Q), whence Xa £L X. If E(X) < E(Y), then L'x{\) >

X7

Xα(l) and, again; Xa £L X. If we have E{X) = £(Y) (= 1 without loss of

generality) and Y £L X then by the HLP-Karamata theorem (Theorem 1.1)

there exists a convex continuous g for which E(g(Y)) > E(g(X)). Then for

that g we will have E (g(Xa)) > E (g(X)) and consequently Xa £L X- Thus

we have a partial converse to Theorem 7.1.

THEOREM 7.2. Suppose X,Y € C and Xa is as denned in (7.1). Assume

Fχ

τ(0) > 0. IfXa <L X then E(X) = E(Y) and Y <L X.

In the real world it is not unusual to encounter situations in which dif-

ferent tax schedules are used for different subpopulations. Lambert (1988)

provides an interesting introduction to this area. The general impression is

that reasonable tax schedules within subpopulations generally lead to over-

all inequality reduction. He however presents a simple example to show that

inequality reduction need not occur. One can have progressive incentive pre-

serving taxes within subpopulations that, in a global sense, increase inequality!

We will review Lambert's partial results and reiterate his call for more study

of this interesting problem.

In our notation, each subpopulation (for simplicity of discussion we focus

on the case of two subpopulations) can be associated with a non-negative

random variable. The combined population can be associated with a suitable

mixture random variable (as in (7.1)). We envision two tax schedules to be
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applied within subpopulations that are assumed to be inequality attenuating
within subpopulations. They can be associated with two functions g\ and g2

satisfying the conditions of Theorem 4.1. The combined pre-tax incomes can
then be associated with the mixture random variable

Xa = IaX + {l-Ia)Y (7.2)

while the combined post-tax incomes will be associated with the random vari-
able

Xa = I«9x(X) + (1 - Ia)92(Y) (7.3)

The question to be resolved is: Assuming that both g\ and g2 are inequality

attenuating, when can we conclude that Xa <L XaΊ

It is convenient to define the average tax rate associated with the appli-

cation of g to the random variable X by

T(g,X) = E(X-g(X))/E(X). (7.4)

The first result provided by Lambert, then takes the form

THEOREM 7.3. (Lambert, 1988). If gι and g2 are inequality attenuating

and ifT(gι,X) = T(g2,Y) (equal average tax rates within subpopulations)

then Xα <L Xα (overall inequality attenuation).

PROOF. Use the HLP-Strassen result (Theorem 1.2).

By directly studying the Lorenz curve of the mixture Xα, Lambert gives

two other conditions for inequality attenuation.

THEOREM 7.4. (Lambert, 1988). If Lχ(Fχ(x)) > Lγ(Fγ(x)) Vz and

T(guX) > T(g2,Y) then Xα <L Xα.

THEOREM 7.5. (Lambert, 1988). If X=Y, F^(0) > 0 a n d ^ corresponds

to a proportional tax (i.e. g(x) = ex) while g2 is inequality attenuating, then

Xα <L Xα if and only if T(guX) = T(g2, Y).

Theorem 7.4 is probably of only theoretical interest as Lambert observes

since it is unlikely that the hypothesis X=Y (which translates to identical

income distributions within subpopulations) will be encountered in practice.

The general problem of delineating interesting sufficient conditions on
the distributions of X and Y to ensure that inequality attenuation within
subpopulations results in overall attenuation is worthy of further research.

8. "Random" Taxation. It is natural to consider extension of the

results of section 4 to cover the case where the transformations have random

components. We are thus led to consider a random variable X € £ (pre-tax
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income, if you wish) and an associated random variable Y (post-tax income)

defined by
Y = φ(X,Z) (8.1)

where φ is deterministic and Z is random. When can we conclude that

φ(X,Z) <L X (attenuation) and when that φ(X,Z) >L X (accentuation).

Accentuation is most probable in the sense that our transformation involves

addition of "noise".

It is possible to view Theorem 7.3 as an instance in which random taxation

can result in inequality attenuation. Arnold and Villaseήor (1984) provide

the following general result identifying a broad class of situations in which

inequality accentuation is encountered.

THEOREM 8.1. Suppose φ : R^ —• R + is such that φ(z,x) and φ(z,x)/x

are non-decreasing in x for every z. Assume that X and Z are independent ran-

dom variables with X € C and ψ(X, Z) G C. It follows that X <L ψ(X, Z).

PROOF. Condition on Z and use the HLP-Karamata characterization of

the Lorenz order (Theorem 1.1). Note that without loss of generality E(X) =

E(φ(X,Z)).

A simple example in which Theorem 8.1 can be applied is one involving

random misreporting of incomes. The model relating reported income Y to

true income X takes the form

Y = ZX (8.2)

where Z and X are independent and Z is the misreporting (or dishonesty)

factor (usually Z < 1). Theorem 8.1 applies and implies that X <L Y, i.e.

misreporting accentuates inequality.

In fact in (8.2) full independence is not required. A direct argument using

Jensen's inequality and the HLP-Karamata theorem can be used instead of

Theorem 8.1 to conclude that a sufficient condition for X <L Y in (8.2) is

that E(Z\X) = c.

Misreporting can thwart inequality attenuating efforts. We might pick

an attenuating function g and apply it to reported income (rather than true

income). In that setting, true post-tax income will be given by

Y = X-ZX + g(ZX).

We cannot be sure that Y <ι X here. A trivial counterexample involves a

degenerate X but non-trivial examples also exist.
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