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REMARKS ON A RANDOM SURFACE
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Oxford University and New York University

A simple discrete random surface is defined. Its stochastic ordering/ in-

equality properties are discussed and some open problems are presented.

In this paper we discuss a simple discrete random surface introduced
within a statistical mechanics context in [AN1, AN2]. Our purpose here is to
survey some stochastic ordering/inequality properties and some easily stated
open problems. For the sake of simplicity, we will mainly deal with a limiting
case (corresponding to infinite temperature) of the model treated in [AN1,
AN2]. We begin by discussing some of the physical motivation behind such
random surface models. For more physical background and for other random
surface models, see the papers in [DD] and the references in [AN1, AN2].

Consider a flat horizontal smooth solid substrate, in thermal equilibrium
at temperature T, with two immiscible fluids lying above it - one a liquid
labelled A (e.g., a lubricant) and the other a gas labelled B (e.g., air). It
can happen that above some temperature Tw, there is a macroscopic slab
of A between the substrate and 5, while below Tw, A is squeezed out (or
is of microscopic thickness). Above TWJ one says that A wets the substrate
perfectly, and the transition at Γ^, is known as a wetting phase transition. To
model this phenomenon, one may regard the interface between fluids A and
B as a two-dimensional surface and postulate an energy function E on some
space of allowed configurations of the surface. At temperature T, the surface is
random with a probability density proportional to exp(—E/T). When T = oo,
all allowed configurations are equally likely (see property (v) below).
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In [AN1, AN2], certain discrete versions of such random surfaces were

proposed. These are parametrized by both T and a finite set Λ describing the

horizontal extent of the substrate. The wetting transition is manifested by the

divergence (resp., boundedness) of the surface height as the substrate becomes

infinite, when T > Tw (resp., T < Tw). It is not known whether the surface

height divergence is accompanied by "roughening" - i.e., by the divergence

of height differences above widely separated points on the substrate (see (2)

below). Henceforth, we restrict ourselves to the random surface when T = oo.

For this case, wτe will prove that the surface height does indeed diverge as Λ

becomes infinite and we will discuss the open problem of roughening.

The surface is described by a function which gives an integer valued height

above each point i in the discrete plane Z 2 . We will "pin down" the surface in

the complement Λc of some finite subset Λ (e.g., a rectangle) of Z 2 ; the height

function will then be denoted HA = {Hf : i G Z 2 } . For any finite Λ C Z 2 , the

random surface (pinned down outside Λ) is defined by the following properties

of the height random field HA:

(i) JSrA = 0 for each i G Λc.

(ii) HA is a non-negative integer for each i ζ Λ .

(iii) \HA - HA\ < 1 when i and j are nearest-neighbors in Z 2 (i.e., when

||j - j | | = 1, where || || denotes Euclidean length).

(iv) For every i G Λ, there is some nearest-neighbor path from i to Λc along

which the height is decreasing (i.e., non-increasing). [This restriction al-

lows the surface to have multiple peaks and saddle points but no "hidden

valleys".]

(v) All height functions satisfying (i)-(iv) are equally likely.

Proposition 1, from [AN1, AN2], gives some of the basic properties of

the ίΓΛ 's. Its proof is based on a representation of the random surface, given

in Proposition 2 below, in terms of i.i.d. ± 1 valued variables.

PROPOSITION 1. (a) HA is stochastically increasing in A; i.e., Λ ' D Λ

implies E(f(HA )) > E(f(HA)) for any increasing function f (of finitely many

height variables).

(b) HA is a,ssocia,ted in the sense of [EPW]; i.e.,

Cov(f(HA),9(HA)) > 0

for any increasing functions f and g.

(c) HA —> oo as Λ —+ Z 2 ; i.e., for any i G Z2 and any finite Λ,

(1)
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Part (c) of Proposition 1 shows that as Λ becomes large, the surface

height diverges; it is not known whether the surface also becomes "rough":

Open Problem A. Property (iii) implies that for fixed j and fc, HA - HA

stays bounded as Λ —• Z 2 ; does the limiting height difference diverge as | | j -

Λ;|| —̂  oo ? I.e., is it true that for any ft,

. lim lim sup P{\Hf - HA\ < ft) = 0 ? (2)
IIJ-AII-OO Λ_^Z2

The next proposition, from [AN1, AN2], will be used to simplify this

open problem (see Open Problem A' below) and to prove Proposition 1.

PROPOSITION 2. Let X = {X{ : i € Z2} be an i.i.d. symmetric ±1 valued

random Held. For each finite Λ, denote by Γ(Λ,i) the set of nearest-neighbor

paths from i to Λc. Then the random field HA given by

Hi = min (no. of sign changes on XA along η) (3)
GΓ(Λi)

satisfies Properties (i)-(v). Here XA is denned to agree with X in Λ and to

be identically +1 in Λc.

PROOF. Properties (i)-(iii) are fairly obvious. Property (iv) can be seen

by choosing the minimizing path in definition (3). Property (v) holds because

the possible values of {XA : i G Λ} are equally likely and because (3) defines a

one-to-one mapping between these possible values and those of {HA : i 6 Λ}.

This latter fact can be seen by noting that

Λ (4)

PROOF OF PROPOSITION 1. The fields HA defined by (3) are easily seen to

be pointwise increasing in Λ (i.e., Λ7 D Λ implies HA (ω) > HA(ω) for each i

and each ω in the probability space of X) and hence stochastically increasing.

The proof of Part (b) is somewhat complicated because the HA given by
(3) is not a monotonic function of XA. However, we define μA by μA = 1 if
HA = 0 (otherwise μA = 0) and note that μA is an increasing function of XA.

We also define the random set

LA = {j £ A : Hf > 0 and j is not a nearest-neighbor of some i

with JΓtA = 0};

L\ is strictly contained in Λ and L\ is a decreasing (set-valued) function of

μA. Given μA (or equivalently, given Z Λ ) , the random variables {XA : i 6 LA}
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are still i.i.d. symmetric while the -X '̂s for j a nearest-neighbor of XΛ a r e all
- 1 (and these j ' s have Hf = +1). It follows that

{Ht : ί € Z2} 3 {(1 - μf)(l + H^) : i € Z2}, (6)

where = denotes equidistribution. 1 - μΛ is an increasing function of -XA

and hence is associated [H]. By induction on the number of sites in Λ, we
may assume that conditional on 1 - μΛ, HLA is associated. Furthermore, by
Part (a), the conditional distribution of HLA is stochastically increasing as a
function of l - μ Λ (in the language of [J], HLA is a "monotone mixture" with 1-
μΛ); it follows [J] that the double family {(1-μf), Hj Λ} is associated. Formula
(6) then shows that HA is (equidistributed with) an increasing function of this
double family and hence associated.

Finally we prove Part (c) by using (3) and some percolation theory. Let
us denote by Γ(i) the set of all infinite nearest-neighbor (self-avoiding) paths
in Z2 starting at i. Then, using (3), HA converges (a.s.) as Λ —• Z2 to
the minimum over 7 G T(i) of the no. of sign changes of X along 7. This
will be infinite unless there is an infinite "cluster" of plus sites or of minus
sites somewhere in Z2. But the plus (respectively minus) sites correspond to
the occupied sites of a standard independent nearest-neighbor site percolation
model on Z2 with density \. Since the critical density for percolation (i.e.,
for having infinite clusters) strictly exceeds \ [T], it follows that there are
no infinite plus (respectively minus) clusters a.s. This completes the proof of
Proposition 1.

We conclude the paper with another open problem and an explanation
of why its resolution would also resolve the open problem presented earlier.

Open Problem A'. For Λ C Z2, define N& as the minimum, over nearest-
neighbor paths 7 from the origin to Λc, of the number of sign changes along 7
of X, an i.i.d. symmetric ±1 valued random field on Z 2. N\ -* 00 as Λ —• Z2

a.s. Does the distribution spread out as it diverges; i.e., is

lim [sup P(NA = n)] = 0 ? (7)
Λ-+Z2 n

We remark that N& differs from HQ by at most ±1 and hence (7) should
be regarded as a "slight" strengthening of (1). To show that (7) would imply
(2), we argue as follows. For a given Λ, and m = 0,1,2, , define the random
regions, Λm = {i € Λ : HA > m}. Define Dm{%) to be the Euclidean distance
from i to K°m and for given j and fc, define M to be the smallest m such
that both Dm(j) and Dm(k) are less than iί, where K is a function of ||j — k\\
which will be chosen below. Assume (without loss of generality) that DM(J) ^
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). Because of the exponential tail of the size distribution of the plus and

minus clusters of X, it follows (compare the arguments of [AN2, Sec. V]) that

for some b > 0 and C < oo,

P{DM<J)<Kl2)<Ce-hK. (8)

If DM(k) = 0, then \Hp -H£\> ϋfM, which by Proposition 1 and (8) can be

made arbitrarily large with probability arbitrarily close to 1 as (first A —» Z 2

and then) | | j — fc|| —• oo by choosing K —• oo. If D M ( & ) Φ 0, then

Define A = Λ M Π {i : \\i - j\\ < \\j - k\\/2} and A' similarly with j and k

interchanged so that A and A' are disjoint. Since DM(J) < K> it follows that

HAM is less than some multiple of K and then, again by an exponential cluster

size tail argument, that

P(H~fM φ Hf) < C'\\j - JfellV6'"''-*!!/* (10)

for some b1 > 0 and C < oo with a similar inequality valid when j and k

are interchanged along with A and A'. We choose K so that the RHS of (10)

goes to zero as | | j - A;|| —• oo, (e.g., K = \/lb " ^ID Then to show that

\HA - HA\ is large with probability close to 1 as \\j - k\\ -• oo, it suffices to

show that \H^ — HA \ is large with probability close to 1. We now condition on

A and A' and note that since they are disjoint, H^ and HA are (conditionally)

independent. Thus, by further conditioning on HA ,

h'+h

h' n=h'-h

< sup
h>,

< (2h + 3) sup P(NA~> = n).

h> n=h'-h-l

Since Λ - j —>• Z 2 with probability approaching 1 by (8), the last expression
in (11) tends to zero by (7).
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