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Summary

In a finite conflict a given payoff matrix A may possess ESS 's with supports

T l f T2,..., T k. Such a set of supports is called a pattern and is attainable since

there exists a payoff matrix A with ESS 's with those supports. This paper pre-

sents a summary of previous work aimed at specifying the set of attainable pat-

terns, the most recent results for conflicts with 5 pure strategies and defines the

notion of a genealogy of patterns. This genealogy, in which a subpattern is re-

garded as an 'offspring' is displayed for n = 4 and n = 5 where the genealogy has

been produced so as to minimize the number of line-intersections using simulat-

ed annealing.

Introduction. A finite conflict is defined by a pair {U, A} where U = {1,2,

3 ...n} is the strategy space i. e. there are n pure strategies labeled 1 through nf

and A is an n x n matrix whose elements a^ are the payoffs; aij is the payoff to an

individual who plays strategy i and whose opponent plays strategy j . We consid-

er, as in classical game theory (Von Neumann and Moigenstern,1953), the mixed

extension so that the strategies are p = (p l f p 2 ... p j where peΔ,Δ =

[p\p £ 0, Σpi = l } . The payoff for strategy p against q has the expected value

p τ Aq and this is also the payoff of strategy p in a population which is playing q

on average.

An ESS, evolutionarily stable strategy, is a p such that for every q * p

(l)E(p,p)>E(q,p)and

(2) if equality in (1) then E(p, q) > E(q, q).

For the generic case of a finite conflict, a strategy p is an ESS iff (if and only if)

E ( Ϊ , p) = E(p, p) all i e R (p), where R(p) = {i: px > 0} the support of p, E(j, p) <

E(p, p), all j * R (p), and if B = (ay), U j e R (p) then z*Bz is negative definite

where z such that Σ zx = 0, Haigh(1975).

If P is the power set of U and T = {Tv T2...τk} c P then T is said to be a pat-

tern, and in the context of conflict theory T is said to be an attainable pattern if

there exists an A (a real n x n matrix) such that there are precisely k ESS's for A
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and the supports are T{, i = 1,2...£ Vickers and Cannings(1988a). A pattern V =

{Vh V2... V/} is said to be a subpattern of T = {Th T2... TjJ if k > I and for some

permutation of {1,2,... /} , {i^, i2 ... ij} Vj = Tim j =1, . . . /. In this case we write

V c T. A fundamental conjecture of Vickers and Cannings(1988a) is that if T is
attainable and VcT then V is attainable(for n > 2 ) . In a series of papers Can-
nings and Vickers(1988, 1989), Vickers and Cannings (1988a, 1988b) the au-
thors have begun an attempt to specify the details of the set of attainable
patterns. Results have been essentially of two types; exclusion results which
specify certain features which an attainable pattern may not possess, and exist-
ence results which demonstrate how the payoff matrix can be constructed to
achieve specific classes of patterns. These two constitute the main building
blocks of the theory. However the theory is far from complete; there are many
patterns which are neither excluded nor demonstrated by these results. This
mortar has to be filled in by ad hoc methods and there are still many gaps in the
edifice. After briefly reviewing the results previously published, and adding
some new ones, we shall consider the problem of representing the whole geneal-
ogy of attainable patterns for n = 4,5. For given n the genealogy of attainable
patterns is the digraph G = {V, E} where the vertex-set V consists of all attain-
able patterns(if there is uncertainty then all patterns which have not been shown
unattainable are included) and the edge-set E = { ( U , W ) : U e V , W e V , U c W j .
Essentially we regard W as a 'parent' of U and U as an 'offspring' of W. In
contrast to genealogies of biological organisms, at least those known to man, an
individual here may have many parents. G is of course just a digraph but since
(V, descendant of) is a poset it seems natural to refer to it as a genealogy and ex-
ploit the 'generations' which, see below, exist.

2. Exclusion Results. (1) Bishop and Cannings(1976) proved that if p is an

ESS with support R(p) and q has R(q)cS(p) , where S(p) = {i:

i € U, E (ί, p) = E (p, p) } then q is not an ESS. In the generic case R(p) = S(p)

so we have that if p and q are ESS's then neither R(p)cR (q) nor R(q)cR (p).

Therefore an attainable pattern is an antichain (see Anderson(1988)).

The four following results are given in Vickers and Cannings(1988a). Here

Q c U and (l, 2) u Q is written as (1,2, Q) etc.

(2)If Q c uχi,2,3), 7\ = (1,2,Q), T2 = (1,3,0), T3 = (2,3,Q), then no pattern

[Th Γ2, T3) is attainable.
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Special cases of interest

(a) Q =0 so for any triplet (/, j,k) c u the pairs (ij), (i,k) and (j,k) cannot all

occur as supports for ESS's.

φ) Q = IΛ( 1,2,3) then clearly there can be at most two supports with n - 1 ele-

ments.

(3) If Qcuχi,2,3.../), Tι = f/,Q), / = 1,.../ and TM = (l,2,3.../)then no pattern

T = (TvTr..TltTι+ι) is attainable.

(4) If Q c U\(1,2,3...O, Tι = (i9 /, Q), i = 1,.../ -1 and Tx = (1,2,3.../ - 1, Q) then

no pattern T = (Tvτ2...τ$ is attainable.

(5) If Q c U\(l,2,3), Tx = (1.Q), T2 = (2,3,Q), T3 = (1,2) and T4 = (1,3) then no

pattern T = (TltT2,T3,T4) is attainable. This last result is given in Cannings and

Vickere(1989).

3. Maximal Patterns for n=2, 3, 4. An attainable pattern is said to be

maximal if it is not a proper subpattern of any attainable pattern. Thus if the

conjecture above holds we need only specify the maximal patterns. The applica-

tion of the results (1) to (5) above leave 2,4 and 9 possibilities respectively for

n=2,3, and 4. These have all been shown to be attainable and the patterns are as

follows:

n = 2 {(1,2)}, {(1),(

Λ = 3 {(1,2,3)},{(1,

n = 4 {(1,2,3,4)},{(1,2,3),(1,2,4)},{(1,2,3),(2,4),(3,4)}

We shall term an attainable pattern T = (Tvτ2,τr..τk) degenerate if for any

v c U, . u Ti is disjoint from . ^ τ/# Thus the maximal nondegenerate pat-

terns are

Λ = 2 {(1,2)}

n = 4 {(1,2,3,4)},{(1,2,3),(1,2,4)},{(1,2,3),(2,4),(3,4)}
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Any degenerate pattern is clearly attainable if the patterns in V and not -V are at-

tainable, and not otherwise.

4. Existence Results Suppose that C is the class of matrices such that for

A e C we have a^ = ajit au = 0, ai} = +i or - 1. Then Cannings and Vick-

ers(1988) prove that the supports of the ESS's of any Ae C are precisely the

cliques (maximal complete subgraphs) of the graph G = (U,E) where (ij) e E

iff ay = + L This class generates all the above examples with the exception of

{(1,2,3),(2,4),(3,4)}. In addition we can easily see that any pattern with |ΓJ = 2

all i is attainable by a matrix of C with G having an edge matching each Γt iff

that G is triangle-free. Since (2) of the exclusion results asserts that there can be

no triplets with all three pairs we see that that is the only restriction in this set of

patterns. We note in passing that the extensive literature on graph theory can be

exploited in various ways to yield information on patterns; for example random

graphs can represent possible evolutions of conflicts, Cannings and Vick-

ers(1988).

5. New Results. We present here some new results with respect to ESS pat-

terns for the case n=5. These add to the previously most complete set of infor-

mation which was given in Cannings and Vickers(1989).

5.1 410A Lemma 1. lfbf+ad<dfoτde + bc<beoΐfc + ae<acora + c<Oθΐ

0

c

e

a

0

b

d

0

has no internal ESS .

Proof. The conditions are a subset of those of Theorem 3 of Vickers and Can-

nings(1988).

Lemma 2. The above matrix is equivalent to a symmetric matrix iff

Lemma 3. If a,b,c,d,efarε all positive, then the above matrix cannot have 2

ESS's.
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Proof. The only possibility to be excluded is that it has two ESS's of size 2, with

support {1,2} and {2,3} say. However if strategy 1 cannot invade the ESS with

support {2,3} then/> a and this implies that strategy 3 can invade the ESS with

support {1,2}.

Lemma 4. If a and c have opposite sign and if d and/have opposite sign, then

the above matrix does not have an internal ESS if it is equivalent to a symmetric

matrix.

Proof. We aigue by contradiction. With the assumptions regarding the signs of

α,c,rf/the matrix has one of the following sign arrangements:

0 +

- 0 +

- 0

0 +

- 0

+ 0

0 -

+ 0 -

+ 0

0 -

+ 0 +

- 0

The last of these can be eliminated because it has a pure strategy 2 as an

ESS and hence no internal ESS. The signs of b and e can now be inferred for

the remaining three cases by applying

(a) no pure ESS is allowed so each column must contain at least one +,

(b) α + rf + e = 6 + c +/(from Lemma 2) The three possibilities are

0 + + 0 + + 0 - +

0 +

- 0

- 0 -

+ + 0

+ 0 -

+ + 0

For the first of these we have that de + bc> be and hence d > b thus a + d +

e = b + c +/gives 0 < α + e < c + / < 0. The third matrix is dealt with in a sim-

ilar fashion. For the second we see that de + bc> be implies an immediate con-

tradiction.

Theorem. The pattern 410A (see Vickers and Cannings, 1988 for the key) is not

attainable by any symmetric matrix.

Proof. Suppose the contrary. Then the matrix

0

Ί
δ

α
0
c
e

β
a
0

f
X

b
d
0

ω

θ
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can have ESS's with supports {1,2}, {1,3}, {2,3,4}, {3,5}, {4,5}. By the first

lemma, a and c are not both negative and by the third they are not both positive.

Hence a and c have opposite signs and likewise so do d and/. Lemma 4 thus

implies the given contradiction.

The pattern 410A can be obtained e.g. by the following matrix

0

3.1

4

α

α

3.1

0

-1

2

α

10

2

0

-1

3.1

α
-1

2

0

10

α
oc

3.1

4

0

provided that α is sufficiently large and negative when the ESS's are specified

by the columns of

1/2

1/2

0

0

0

5/7
0

2/7

0

0

0

1/3

1/3

1/3

0

0
0

1/2

0

1/2

0
0

0

2/7

5/7

This example and the theorem correct an error in Vickers and Canning-

s(1988a). In that paper the matrix which was given as corresponding to the pat-

tern 410A has in fact the pattern 410C . The theorem demonstrates that

symmetric matrices (which are relevant to the single-locus multi-allelic prob-

lem) will not show the full range of patterns available to general matrices.

52 H I The pattern 111 can be produced by the symmetric matrix

20

28

18

18

20.5

28

-44

50

50

-180

18

50

0

16

50

18

50

16

0

50

20.5

-180

50

50

8

and the ESS's are specified by the columns of
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1/4

1/4

1/4

1/4

0

0

0

1/4

1/4

1/2

25/26

0

0

0

1/26

S3 021A The pattern 021A is produced by the symmetric matrix

-146.82 77.27 66.54 60.78 -61.70

77.27 -9.92 -5.56 -3.44 3.29

66.54 -5.56 -3.34 -0.25 2.41

60.78 -3.44 -0.25 0.32 1.46

-61.70 3.29 2.41 1.46 0.49

and the ESS's are specified by the columns of

0.272654

0.594505

0.093022

0.039819

0.0

0.0

0.117229

0.085717

0.0

0.797055

0.0

0.0

0.1763

0.156412

0.667287

6 Genealogy for n=4. For n=4 we saw above that there were only five
maximal non-degenerate attainable patterns. However there are eleven non-de-
generate patterns and these are shown in Figure 1 in their genealogy. This gene-
alogy has been drawn in generations , each generation corresponding to the
number of elements in the pattern. The form shown also has the desirable prop-
erty, from the point of view of drawing, that none of the edges cross. Note that
the founders are the maximal patterns and that non-founders have one, two or
three parents.

7 Genealogy for n=5. For n=5 the application of all our methods plus
some special cases leaves us with potentially 61 patterns of which 55 are known
to be attainable, there being 20 maximal ones of which 16 are known attainable.
There are 6 generations and the geneaology is shown in Figure 2. Simulated
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annealing (see next section) allowed the production of a genealogy which had

165 intersections of the edges. In an attempt to produce a representation which

is easier to read the genealogy was split into two pieces, the top four generations

and the bottom three, so that the same individuals appear at the bottom of the

first and the top of the second segments. This resulted in some reduction of the

total number of intersections there being 102 and 35 intersections in the two seg-

ments. The reduction is less than might have been anticipated the top segment

being fairly similar to the top of the whole genealogy and so is not shown here.

8 Simulated Annealing. Simulated annealing is a probabalistic optimisa-

tion technique (e.g. Lundy,1985). Thomas(1989) has applied it to the produc-

tion of diagrams of genealogies. His technique involves imposing a requirement

that nodes be seperated by some minimal distance and then minimising the sum

of squared distances between all pairs of nodes. The criterion adopted here is

rather different. Each node is assigned to its generation and within a generation

nodes are numbered (i. e. assigned an ordering), the objective ftmction is taken

as the number of intersections between edges. Thus two edges (i, j) and (k, 1),

where i is a parent of j and k a parent of 1, intersect only if i and k are in the same

generation (j and 1 are then necessarily in the same generation), and either m(i) <

m(k) and m(j) > m(t), or m(i) > m(k) and m(j) < m(l), where m(ί) is the position

of i in its generation list.
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Figure 1

I
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Figure 2, Part 1
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Figure 2, Part 2

@ ^ K W>^ ^ f , © , - V fS>̂ AV 7 ^ M ^

iW \'\\ιXi \ \ \M/i\/ \l\\s \: \/Λ?

\4~^j i ^ l = - _ ^ v/ • v : l^^.^v




