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Abstract

An urn model is proposed as a useful computational device for obtaining re-
sults within the context of infinite-alleles genetic processes incorporating selec-
tive neutrality. The model is based on Kingman's coalescent, as developed by
Watterson and by Donnelly and Tavare', and mimics the procedure of tracing a
sample's ancestry backwards in time, noting the appearance of common ances-
tors or new mutants. The structure of the model is possessed by a time-inhomo-
geneous linear birth-and-death model with immigration, by Moran's model and
by a class of other models including the Wright-Fisher model in the limit of
large population size. Elementary combinatorial arguments connected with the
partial or complete emptying of the urn give rise to a number of results which
can be interpreted in terms of the allelic composition of genetic samples and
populations. The relationship to other urn models is discussed.

1. Introduction. Some years ago Kingman (1982 a,b,c) introduced the
fruitful concept of the coalescent in which a sample of genes is taken from a
population and its ancestry traced back in time, noting where there are common
ancestors, until one reaches a single common ancestor. This idea has been de-
veloped by others, in particular by Watterson (1984) and by Donnelly and
Tavare"(1986) who consider in detail the consequences of mutation. In tracing
the ancestry backwards we may come to a mutant which introduced a new allele
into the population and which was therefore the originating ancestor for a family
represented in the sample, all members of the family carrying the same allele.
We assume mutation is non-recurrent, that is each mutation produces a previ-

ously unknown allele and we assume that selection is absent. We further sup-
pose that the organism we are considering is a monoecious haploid reproducing
either asexually or by self-fertilization, so that each individual has just one par-
ent and, in the absence of mutation, the genetic composition of an individual is
identical to that of its parent.

In Section 2 we describe an urn model which mimics the coalescent and
which keeps track of the time-ordering of the various mutant and non-mutant
births, should this be of interest. The model gives a method of constructing the
jump chain of Donnelly and Tavare's coalescent with ages and is put forward as
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a way of visualizing the process and as a useful computational device for deriv-

ing results (particularly when the urn is only partly emptied) which can be inter-

preted in terms of a number of population models. This is illustrated in Section

4 where elementary combinatorial arguments provide a simple derivation of sev-

eral results most of which have appeared elsewhere in various contexts.

Donnelly and TavareΓshow that their model (and hence our urn model) de-

scribes Moran's model and a class of other models with non-overlapping gener-

ations including the Wright-Fisher model in the limit of large population size.

Tavare (1989) has shown that the coalescent with ages reproduces the results of

the (time-homogeneous) birth-death-immigration model conditioned on popula-

tion size. In this case the possibility of mutation within a family is excluded, but

the introduction of a new allele into the population is modelled by the immigra-

tion of an individual carrying this allele, who then becomes the originating an-

cestor of a family. We show in Section 3 that the structure of our urn model is

also possessed by a time-inhomogeneous birth-death-immigration model pro-

vided the birth-per-individual and immigration rates are proportional; we discuss

the validity of this assumption. For the Moran and birth-death-immigration

models, both the population as a whole and a sample chosen from it have the

structure of our urn model.

In Section 5 a brief discussion is given of other urn models in the literature

of population genetics. We place our model in the context of these others, and

point out its differences from them.

2. An Urn Model. The coalescent takes (without replacement) a sample

from a population and traces their ancestry back in time, noting where there are

common ancestors. We allow the possibility of mutation (or immigration, but

for convenience we shall use the word mutation to refer to either sort of event),

so in tracing ancestry backwards we may come to a mutant who was the origi-

nating ancestor for a family represented in the sample; we trace this branch of

the population back no further. That is, we are not concerned here with the prior

history of an individual who introduced a previously unknown allele into the

population.

We call the pattern obtained by tracing the sample back through the genera-

tions to the original ancestors) the sample-forest, as it will consist of a collec-

tion of trees each headed by a new mutant. We take no notice of a non-mutant

birth with the simultaneous death of the parent (such as is allowed in the Moran

model) since this leads neither to a node in the sample-forest, nor to the termina-

tion of a tree - in this case we simply identify parent and offspring; neither are
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we interested here in anything outside the sample-forest. In fact in tracing the

sample-forest backwards in time we take account of only two categories of

event:

(i) coalescence: two branches in the sample-forest meige at a birth (with no

mutation) either because two individuals belonging to the forest at a particular

time are a parent-offspring pair, or because, in a model where individuals do not

survive the birth of their offspring, two members of the sample-forest in one

generation have the same parent in the previous generation. In order to unify

our treatment we find it helpful in the latter case to pretend that one of the two

individuals in the later generation is a surviving parent and the other is its off-

spring. This is clearly a harmless fiction since parent and offspring are geneti-

cally identical.

(ii) mutation: one branch in the sample-forest ends with the birth of a mu-

tant.

In Figure 1 the thick lines show the sample-forest arising from the six indi-

viduals denoted by black squares. The sample-forest contains three coalescenc-

es and three mutations; it consists of three trees (families) containing one, two

and three members. The members of each family are genetically identical, but

the families are genetically distinct.

The probability of simultaneous events of type (i) or (ii) is taken to be zero

and all events are assumed to be independent. We shall often refer to "survi-

vors" at a particular time: by this we mean the branches of the sample-forest

which, in tracing backwards to the time in question, have not been removed by

coalescence or mutatioa Each event reduces by one the number of survivors, so

that, if the original sample was of size m, the forest ends after m events.

We now describe an urn model whose relevance to these ideas will be de-

tailed in the following section. Suppose an urn originally contains m balls of the

same size but each of a different colour (not black) representing a sample of size

m taken from a population. We remove the balls from the urn in m stages, which

we label successively as stage m, stage m-1,..., stage 1 (so that stage i com-

mences with i balls in the um). In stage m we remove one ball chosen at random

and designate it an "offspring" ball. We replace it with a black ball whose size is

such that the relative probabilities of picking the black ball or any particular co-

loured ball are in the ratio θ: 1. We now remove a second ball: if it is black, stage

m ends (the interpretation will be that the "offspring" was a mutant); if it is co-

loured, we designate it a "parent" ball, replace it in the urn, remove the black

ball, but recolour the "offspring" ball with the colour of its "parent" (this will be
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interpreted as a coalescence as described above). This completes stage m.

We continue in a similar fashion. In stage i, the urn contains i balls, and the

probability that any particular ball is chosen as "offspring", followed by the

black ball is

1 θ (2.1)
/ θ + ί - 1

On the other hand, the probability that any particular ball is chosen as "off-

spring" and any other particular ball as "parent" is

^ ^ (2.2)
* θ + * - 1

If any stage results in a coalescence we recolour with the "parent's" colour not

only the "offspring" at that stage but also all previously removed balls of the

same colour (which are "offspring" of "offspring" ...). For example, at stage m

we may remove the blue ball as offspring and the red ball as parent, so we re-

place the red ball but change the colour of the offspring ball from blue to red. At

a later stage we may remove the red ball as offspring and the green ball as par-

ent. We replace the green ball but change to green the colour of both balls that

are now red (that is not only green's "child" but also its "grandchild" originally

coloured blue). Thus at any stage we have painted with the same colour a parent

(in the urn) and all its progeny of succeeding generations (outside the um).

After stage 1 the um will be empty. Outside the urn will be m balls of / (say)

different colours if the black ball was chosen on / occasions. The balls carrying

the same colour represent a single family descended from an originating mutant

ancestor. That is, in genetic terms, the sample contains / distinct alleles.

3. Population Models. The urn model described in Section 2 will apply to

any population model whose transitions from one stage to the next are indepen-

dent with probabilities given by (2.1) and (2.2). Donnelly and Tavare"(1986), in

discussing their coalescent with ages, show that this is the case for Moran's

model if we put

θ = Λfκ/(l-κ), (3.1)

where M is the population size and u is the probability that any offspring is a

mutant. They show it is also the case for a class of models with non-overlapping

generations including the large population limit of the Wright-Fisher model for

which one lets M tend to infinity and u tend to zero with θ=2Mu finite and non-

zero. (Note that their expressions equivalent to (2.2) contain a factor 2 as, fol-
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lowing a birth, they do not distinguish between offspring and parent.) Tavare

(1989) has discussed the connection between the coalescent with ages and a

time-homogeneous birth-death-immigration model where each immigrant is the

source of a new allele in the population. However it is likely that fertility, mor-

tality and immigration will vary in time in response to (perhaps seasonal) varia-

tions in the environment. Let us therefore suppose that the birth-per-individual,

death-per-individual and immigration rates at time t are given respectively by

λ(t), μ(t) and v(t). The functions λ(t) and μ(t) are arbitrary functions of time,

but the same functions for different families; that is, the different alleles pos-

sessed by different families confer no advantage or disadvantage concerning

birth or death rates. In other words, our model incorporates selective neutrality.

For convenience, after a birth has occurred, we arbitrarily label one of the two

resulting identical individuals as "parent" and the other as "offspring". Denote

the population size at time t by M(t).

We take (without replacement) a sample of size m, and trace its ancestry

back in time, as described in Section 2, taking note of coalescences and muta-

tions (immigrations). Suppose stage i+1 has been completed, leaving i survi-

vors, and suppose that a birth or immigration in the population occurs at time τ,

decreasing the population size from M(τ) to M (τ) - 1 . The probabilities of this

event's being an immigration or a birth are, respectively,

v(τ)/[v(τ) + (Af(τ) - l ) λ ( τ ) ] , (Aί(τ) - l)λ(τ)/[v(τ) + (Λί(τ) - l)λ(τ)].

Since each of the M individuals in the population is equally likely to be the new

arrival, and each individual is equally likely to be the parent it follows that the

probability that any particular individual is a new immigrant is

(3.2)
M[v+(M-l)λ]

whereas the probability that any two particular individuals are respectively a

new-born individual and its parent is

(Λf-l)λ

M(M-l) [v+(M-l)λ] '
(3.3)

From (3.2) and (3.3) we see that the probability that the individuals involved in

the event are taken from the i current survivors is

Λί[v+(M-l)λ] '

Conditioning on the event whose probability is given in (3.4) we conclude from



AN URN MODEL AND GENETIC PROCESSES 179

(3.2) and (3.3) that, if stage i occurs at time τ, the probability that it involves the

immigration of any particular survivor is

7 v+(i

whereas the probability that it involves any particular survivor as offspring and

any other as its parent is

7 v + ( ί - i ) λ ( 3 6 )

If v(τ) = θλ(τ) for some constant θ, the probabilities in (3.5) and (3.6) be-

come independent of time and are given respectively by

l θ

i θ + ί - l

and

i θ+i-1

(3.7)

(3.8)

Fundamental to our argument above is the Maricovian nature of the process

(which also guarantees the independence of the different stages in the sample-

forest) and our assumption of selective neutrality, which ensures that all individ-

uals have the same fertility and mortality. This is our justification for supposing

that all possible parents of an individual are equally probable. Note that (3.7)

and (3.8) depend only on the ratio of the immigration and birth rates and are

quite independent of the death rate. Also our discussion does not require the es-

tablishment of an equilibrium. We see that (3.7) and (3.8) are identical to (2.1)

and (2.2), so the urn model of Section 2 can be applied to this time-dependent

birth-death-immigration model.

The requirement that v(t)=θλ(t) is not as artificial as it may seem.

Generally, a more favorable environment leading to a higher birth rate may well

attract a higher rate of immigration, or both rates may undergo the same periodic

variation. More quantitatively, we may suppose that the "immigrants" are in

fact mutant offspring. Denote by Λ(t) the birth rate (per head) of any offspring,

whether mutant or not. Suppose that any offspring, independent of any other,

has probability u(t) of being a (previously unknown) mutant. Then λ(t), the

birth rate of non-mutant offspring is given by
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and v(t), the rate of appearance in the population of "immigrants" (that is, mu-

tant offspring) is given by

Hence v(t)=θλ(t) provided the probability of mutation is related to the popula-

tion size by the same relation (3.1) as in Moran's model. This is the same sort of

relationship implicit in diffusion models. The validity of such assumptions has

been discussed by Karlin and McGregor (1964), Crow (1985) and Gillespie

(1989).

Originally we took a sample of size m, but there is no reason why m may not

be equal to the total population size M. This is also the case for Moran's model.

Thus, for these models, any results derived apply not only to a sample, but also

to the population as a whole.

4. Distributions of Genetic Properties. A number of authors have ob-

tained results concerning genetic distributions in the context of various models.

The purpose of this section is to show how the urn model provides via straight-

forward combinatorics a simple computational tool for deriving such results for

any genetic model compatible with (2.1) and (2.2). Most of the results we dis-

cuss have been obtained elsewhere by other methods, but Theorem 4.12 is be-

lieved to be new. We shall refer to equations and other results in Donnelly and

Tavare'(1986), Kelly (1977) and Watterson (1984) by the prefixes DT, K and W

respectively.

We take a sample of size m, without replacement, and trace its ancestry back

in time as previously discussed. (We again emphasize that in the birth-death-im-

migration and Moran models m may equal the total population size.) However

for most of our results we now terminate the procedure after stage k+1 (that is,

after m-k stages) at a time when there are k survivors each of whom heads a

genetically identical family consisting of a particular subset of the original sam-

ple. In Watterson's (1984) terminology these are "old" genes. Let λj f ^ ..., λ k

be the sizes of these families. By this stage a number, / (say), of mutants have

appeared each heading a genetically identical family of size μ^ μ2,..., μ/. These

are Watterson's "new" genes. Let z be the total number of old genes, so that

z = Σλ ί = m - Σ μ ί . (4.1)

THEOREM 4.1 (DT 2.8). We label in some way the genes in the original sam-

ple of size m. The probability that, after stage k+1, the old gene families consist

of specified genes and are of sizes λχf λ^,..., λ k and that there are / families of
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new genes (again consisting of specified individuals) of sizes μ^ \\%,..., μ/ in or-

der of increasing allele age (i.e. the mutant originator of the family of size μj is

younger than the mutant originator of the family of size μ2» and so on) is

{m-k)\ k\ θ' λ1!λ2!...λ jk!μ1!μ2!...μ/!

where θ has the value appropriate to the particular model under consideration, as

described in Section 3, and the rising factorial notation is defined by

(x)[n] = xθc+l) (x+2)...(*f n-1).

We give a proof of this result via the urn model. For stage i, commencing

with i balls in the urn, the probabilities that any particular ball is chosen as off-

spring followed by respectively the black ball or any particular parent ball are

given by (2.1) and (2.2). Following the original sample through stages m,

m-1 ,...,k+l corresponds to operating the urn model until k balls remain in the

um, and the appearance of / mutants corresponds to the black ball's having been

chosen on / occasions. Therefore, from (2.1) and (2.2), we see that the probabil-

ity of any particular sequence leading to this outcome is

i θ<

m(m-l)...(*+l) (θ + m-1) (θ + m-2)...

k\Qι

~ m\(Q + k) [m'k]'
(4.3)

In order to calculate the number of (equally probable) paths giving the result

specified in the statement of the theorem, we first calculate the number of orders

in which we can choose the offspring balls. We designate balls as "old" or

"new" according as the corresponding genes are "old" or "new". We choose one

ball from each of the old families (in λ\ h^ — λk ways). These will be the k balls

finally left in the um. We number the remaining balls 1,2,..., m-k as described

below and withdraw the offspring balls in this order. We first number the re-

maining old balls at random (in (m-k)!/(m-z)! ways). We next choose one ball

from each of the new families (in μ̂  μ2 ... μ/ ways). These will be the oldest

members of each new family. We now number the new balls with the remaining

m-z numbers starting with the oldest family (of size μj) and finishing with the

youngest family (of size μj). The allocation of numbers here is random except

that when we come to a fresh family we first give its oldest member the highest
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available number. This clearly guarantees the required age structure of the new

families, and can be done in (m - z)!/[(μi + ... + μ/J (μ!+...+ μ w j ... (μι +

μ2)Mi] ways.

Within any family the parent balls are successively chosen from a diminish-

ing pool of (λ-l),(λ-2),... (or (μ-1), (μ-2),...) potential parents, so the parent

balls can be chosen in (λ 1 -l) ! . . .(λ k -l) !(μ 1 -l) ! . . .(μ r l) ! ways. Putting all these

factors together, we find that the number of ways we can obtain the desired out-

come is

: # (4.4)

If we multiply (4.4) by the probability of any path (4.3) we obtain the result

(4.2).

THEOREM 4.2 (W 2.9). The situation is the same as in Theorem 4.1 except

that ages of the new families are now immaterial. The probability is now

μ 2 - l ) ! . . . ( μ / - l ) ! . (4.5)

The proof is the same as in Theorem 4.1 except for the numbering of the

balls. Once we have chosen the k (old) balls to be left in the urn, we simply

number at random all the remaining m-k (old and new) balls. This can be done

in ( m - k ) ! ways and the result follows immediately.

THEOREM 43 (W 3.3.1). As in Theorem 4.2, except that we do not specify

the particular genes belonging to any family. We simply require k old families

of sizes λi,..., λfc and / new families of sizes μ l s..., μ/. Denote by 0Cj (βj) the

number of old (new) families of size j . The probability of this configuration is

(m-k)\k\Qι i
3-ΐ Q-T- V4 G)

To prove this, we note that the number of ways m balls can be distributed

amongst families of the given sizes is

mlΛλi! ty . . . λ * ! μ i ! μ 2 ! . . . μ / ! ^ ! ^ ! . . . o^ ! βiJfe! . . .^!]. (4.7)

The λj! or μj! factors account for the fact that the ordering within a family is im-

material and the ocj! or βj! factors account for the fact that the ordering of fami-

lies of the same type containing the same number of members is immaterial. If
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we multiply (4.5) by (4.7) we obtain (4.6).

Similarly we can multiply (4.2) by m!/[λ1!λ2!...λk!μ1!μ2!...μ/!α1!α2!...(Xm!] to

obtain a corresponding result where the allocation of particular genes to families

is unspecified but the age ordering of the new families is retained.

THEOREM 4.4 (W 3.4.1). The probability that, after stage k+1 (when k old

families remain), there are <Xj old families of size j (j=l, 2,..., m) is given by

where z = Σjocj and k =

First, for a particular division into old and new balls, we obtain the probabil-

ity of a particular sequence of offspring balls and old parent balls, summed over

all possibilities for new parent balls. The probability of picking any particular

sequence of m-k offspring balls is [m(m- O. .ίk+l)]""1 = k!/m!. Suppose that

after i stages we have removed j balls destined to be new so that the urn contains

m-i balls of which m - z - j are destined to be new. After the next offspring ball

has been chosen, there will be m - i - 1 balls in the urn, to which is added the

black ball. A second ball is now withdrawn. If the offspring ball was destined

to be old, the probability of picking any particular parent ball destined to be old

is (θ + m - i - I ) " 1 . On the other hand, if the offspring ball was destined to be

new, the second ball picked from the urn may be the black ball or any of the

m - z - j - 1 remaining balls that are potentially new parents. The sum of the cor-

responding probabilities is (θ + m - z - j - i ) / ( θ + m - i - i ) . Bearing in mind

that there are a total of m - k stages of which m-z involve new balls, we see that

the probability of a particular sequence of old parent balls summed over all pos-

sibilities for new parents is

(θ + /n-z-l)(θ + /n-z-2)...θ (m-ιβi { Ό^m^z-ι , ^ ^

We must now calculate how many such sequences give rise to an outcome

conforming to the statement of the theorem. We can choose the old balls in ίm j

ways. These balls can be distributed in families of the required sizes, λ1? λ^,...,

λ k in z!/(λ1!λ2!...λk!αi!θ2!...ocm!) ways (compare (4.7)). The k balls which are

finally left in the urn, one from each old family, can be chosen in
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ways. As before, the offspring balls may be picked in (m-k)! different orders,

whereas the old parent balls may be chosen in (λj - l)!...(λk - 1)! different or-

ders. Assembling all the factors and simplifying gives (4.8).

THEOREM 4.5 (W 3.6.2, but note that Watterson's equation apparently con-

tains an error which we correct here.). The probability that after stage k+1

there are / new families of sizes μ l f..., μ/ such that βj of these families have j

members (j=l,2,...,m) is given by

ΓΓ-KT (4 1 0>

where / = Σβj and z is given by (4.1).

The argument parallels that of the previous theorem. First, for a particular

division into old and new balls, we find the probability of a particular sequence

of offspring balls and new parent balls, summed over all possibilities for old par-

ent balls. The probability of any particular offspring sequence is, as before, k!/

m!. Suppose now that after i stages we have removed j balls destined to be old,

leaving z-j. If the next offspring ball to be chosen is destined to be new, the sec-

ond ball chosen will be either black, with probability θ/(θ+m-i-l), or any par-

ticular parent ball destined to be new, with probability (θ+m-i-l)" 1 . If the

offspring ball was destined to be old, the parent ball may be any of the (z-j-1)

remaining balls destined to be old. Since the black ball will be chosen / times

and a total of z-k old parents will be chosen, the probability of a particular se-

quence of new parent balls summed over all possibilities for old parents is

(,-l)(.-2)...* θ' (z-1)! θ' ( 4 Λ l )

(θ + m-l) (θ + m-2).

We can choose the old balls in f j ways, and from these the k old balls fi-

nally remaining in the urn can be chosen in r ] ways. The m-z new balls can

be distributed in families of the required sizes in (m-z)!/(μ1!μ2!...μ/!

βl!β2!...βm!) ways. Finally, the offspring balls may be picked in (m-k)! differ-

ent orders and the new parent balls in (μi-l)!(μ2-l)! ».(μ/ -1)! different orders.

Putting these factors together and simplifying gives (4.10).
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THEOREM 4.6 (W 3.4.5) The probability that after stage k+1 there are a total

of z old genes (and hence m-z new genes) is given by an inverse hypeigeomet-

ric distribution:

Pr(zl*)= { z-1 )( θ + m - z - n , f θ + m-1 \ ( 4 n )

U-lΛ m-z ) \ m-k )

The proof combines arguments from Theorems 4.4 and 4.5. For a particular di-

vision into old and new balls, we find the probability of a particular sequence of

offspring balls, but now summed over all possibilities for parent balls. The

probability of any particular offspring sequence is k!/m!. The arguments leading

up to (4.9) and (4.11) show that the sum of all probabilities for the z - k old par-

ents and m-z new parents or black balls is

(θ + m-

Θ + m-z-
(z-l)!(m-z)! V m
(k-l)\(m-k)\

- z - 1 Λ

-z )

(θ + m - 1 Λ

I m-k )

As before we can choose the old balls in ίm ] ways, from these the k old balls

finally remaining in the urn can be chosen in Γ ] ways, and we can pick the off-

spring balls in (m - k)! different orders. These factors together give (4.12).

THEOREM 4 7 The probability that after stage k+1 there are z old genes and /

families of new genes is given by

where c(m - z, /) is a signless Stirling number of the first kind defined by

(x)[n] =

The argument is identical to that for the previous theorem except for the choice

of new parent balls. Now the black ball is chosen on / occasions and a non-black

ball on the remaining (m-z-/) occasions. Hence the factor

(θ+m - z -1 )(θ+m - z - 2)...θ in (4.13) must be replaced by
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θ'

where the sum is taken over all aj satisfying

m-z- lZaι>a2> ... >αm_J_,Sl

and is equal to c(m-z, t). This replacement transforms (4.12) into (4.14).

THEOREM 4.8 (W 3.4.6).

THEOREM 4.9 (W 3.5.1).

fc".*)-^ μ , μ , . . μ ι ; , ι P 2 l . . . β J <4 '«

As Watterson points out, this is Ewens' (1972) formula applied to the m-z new

genes.

THEOREM 4.10 (W 3.5.2).

Pr(Z I zjfc) = Qιc(m-z,Q/B[lfMl. (4.17)

These three theorems follow immediately from, respectively, Theorems 4.4,4.5

or 4.7 and Theorem 4.6.

Similarly, Theorems 4.3 and 4.6 show that Pr(α1,θ2,...,ocm,βi,β2,...,βm I z,k)

is given by the product of the right-hand sides of (4.15) and (4.16) and, using

(4.17) and (4.16), we can readily obtain an expression for Prφi,β2,...,βm' J>z,k).

In any of the foregoing theorems we may of course set k equal to zero to ob-

tain results corresponding to a complete tracing of the sample's ancestry through

m stages until no old families remain.

THEOREM 4.11 (DT, Remark, page 14; K, Result 7). We take (without re-

placement) a sample of size m. (As we have previously emphasized, in appro-

priate models m may equal the total population size.) Tracing the ancestry of the

sample through m stages we discover as usual a number of distinct families each

of which was founded some time in the past by the introduction of a previously

unknown allele. The probability that the oldest allele in the sample is represent-

ed by z members of the sample is
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This is found, after a little manipulation, from (4.12) with k set equal to one,

since, when only one old family remains, this family necessarily contains the

oldest allele in the sample.

THEOREM 4.12 The probability that the youngest allele in the sample is rep-

resented by y members of the sample is given by a truncated Yule distribution:

y=l,2, . . . ,m-i (4.18)

(θ + m - 1 \
I m - 1 J

-1

y = m. (4.19)

Suppose that after stage k+1 there is one new family and it has y members.

This could happen either because such a family originated at stage k+1 or be-

cause there was one new family with y members at the end of stage k+2, and the

parent ball at stage k+1 was non-black (with probability k/(θ+k)). Hence the

probability that the youngest family in the sample contains y members and was

introduced into the sample-forest at stage k+1 is

Pr(z=/n-;y, /=11 it) -Pr(z=m-?, /= 11 *+l)[*/(θ+*)].

Using (4.14) and the fact that c(y,l)=(y-l)! this can be written as

If y=m, then necessarily k=0 and (4.20) reduces to (4.19). If y<m then to obtain

the required probability we must sum (4.20) over the possible values of

k=l,2,...,m-y. The terms in the first square bracket in (4.20) are in the form of

an inverse hypeigeometric distribution in k- land therefore sum to one, leaving

the second square bracket which is equal to (4.18).

THEOREM 4.13 (DT Proposition 4.1; K, Result 10). Take a sample of size m

and trace its ancestry back through m stages, thereby partitioning the sample into

genetically distinct families. Suppose one such family contains j members.

Then the allele carried by this family is the oldest in the sample with probability

jΛn.

The urn model provides a trivial proof of this result. The oldest allele in the

sample will be that carried by the last ball to be removed from the urn. Each ball

has equal probability 1/m of being the last to be removed from the urn.

Therefore a family with j members contains the last ball to be removed with
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probability j/m.

5. Relationship to Other Urn Models. Ewens (1972) laid the foundation

for the use of urn models in population genetics in his treatment of the infinite-

alleles Wright-Fisher model at equilibrium. His intuitive argument showed that,

in drawing a sample one by one from the population, the probability that the ith

gene drawn is of a novel allelic type not seen on the first i - 1 draws is θ/

(θ+i -1), independent of the allelic composition of the first i - 1 genes.

The urn idea was made explicit by Hoppe (1984) and Watterson (1985).

The ingredient they added was the specification of the allelic type of the ith

gene if it is not novel: they realized that its type is simply uniformly chosen

from the genes (not alleles) already present in the sample. Specifically, the prob-

ability that the ith gene is of a particular allelic type already existing in the sam-

ple is μ/(θ+ i-1), where μ is the number of genes amongst the first i - lto be

drawn that are of that particular allelic type. Thus, in order to simulate a sample

of size m, Hoppe considers an urn originally containing a black ball of mass θ.

At each of m successive steps a ball is drawn from the urn (with probability pro-

portional to its mass). If the black ball is drawn, it is replaced together with a

ball (of unit mass) of a new colour, if a coloured (not black) ball is drawn, it is

replaced together with an identical ball. After m steps the allelic composition of

the sample is represented by the colour composition of the non-black balls in the

urn. Watterson's construction is equivalent.

This model was investigated in considerable detail by Donnelly (1986) and

Hoppe (1987). They showed that the urn model mimics the drawing of a sam-

ple, at some fixed time, from a Poisson-Dirichlet population, but they also estab-

lished a connection with the time development of the underlying stochastic

process: take a sample of size m and completely trace its coalescent backwards

in time through m stages until no old genes remain; Donnelly and Hoppe show

that Hoppe's urn model (for a sample of size m) is equivalent to the reversed

jump chain of the coalescent. The labelling of the colours of the first m balls in

his urn model according to the order of their appearance is probabilistically

equivalent to labelling the allelic types in the time-reversed coalescent according

to their appearance in genealogical time, i.e. according to their relative ages.

This correspondence allowed both Donnelly and Hoppe to rederive in a simple

fashion a number of known results.

By contrast, the urn model described in Section 2 directly mimics the coa-

lescent itself (rather than its time reversal). If necessary, it can also keep track of

the ages of alleles (as, for example, in Theorems 4.1,4.11,4.12 and 4.13). If the
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coalescent runs its full course, leaving no old genes, (that is, in our notation,

k=z=0) then it is often unimportant which way we consider time to run and

many results can be obtained equally well by Hoppe's model or by our model.

For example results 3, 9 and 11 of Section 5 of Hoppe (1987) are respectively

the same as our Theorem 4.13, Theorem 4.10 (with k=z=0, m=2, /=l) and Theo-

rem 4.10 (with k=z=0). However, the new feature of our model is that it pro-

vides a simple computational tool in those cases (such as those considered by

Watterson (1984) and Donnelly and Tavare (1986)) where, in tracing backwards

through time, the coalescent does not run its full course and so there are some

old genes remaining. This corresponds, in our model, to the urn being only part-

ly emptied.

In a more recent paper, Watterson (1989) considers the situation where θ var-

ies in time because of a varying population size or mutation rate (or both).

There is nothing intrinsic to the coalescent or to our urn model that requires θ to

be constant; we simply require all genes, at any given time, to be equally likely

to die, give birth or mutate. Therefore we can adapt our model to include the

case discussed by Watterson. Suppose θ is piecewise constant, taking values

81,62,63,... during successive time periods of duration tj^tβ,... proceeding from

the present into the past. Let l\, I2, /3»... be the (random) numbers of survivors -

in the terminology of Section 2 - at the times when the value of θ changes.

Watterson discusses the distribution and simulation of these numbers.

Conditional on the values of lχ, ̂  h,— we can reproduce Watterson's result

(2.2.11) by operating our urn model in the usual fashion, but changing the rela-

tive probability of picking the black ball from θ k to Q^+i after m - /k stages,

where m is the size of the sample. As usual, our model can be terminated before

the um is empty thereby producing results concerning the joint distribution of

old and new genes.

Watterson (1987) has discussed yet another urn model which he uses to sim-

ulate samples from a population with both neutral and deleterious allelic types.

The coalescent, and hence our urn model, are based in an essential fashion on

selective neutrality and hence cannot be used in this case.
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Figure 1

A diagram showing part of a population history. Time runs down the page. At a
birth, the parent is shown by a vertical line, the offspring by a slanting line.
Mutant births are denoted by black circles. A sample of six individuals is denot-
ed by black squares, and the sample-fores arising therefrom by thick lines.




