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Abstract

In a general supercritical branching process the distribution is found of the

time back to the birth of the n:th father of a random individual. For single-type

processes a probability of mutation (at a site of a specified gene) is introduced.

With the infinite alleles interpretation that every mutation occurring is unique

the class of individuals with the same allele can be viewed as a generalized

"macroindividual". Thereby the question of when the first of a series of n muta-

tions occurred is reduced to finding the birth time of the n:th father in the process

ofmacroindividuals. This is done.

1. Introduction The three great problems of population dynamics are the

extinction, the growth, and the composition of populations. The first makes

sense already in the simplest of branching processes, the Galton-Watson model,

which was indeed born out of it. The second requires a physical time, not only

generation counting, and for the third problem one should have access also to

the birth order of siblings and times between their births, and preferably a possi-

bility to discern between individuals of different inherited types.

This leads to general, multi-type branching processes (Jagers and Nerman

1984 (the one-type case), Nerman 1984, Jagers 1989 (abstract type spaces)).

When an individual is born it inherits a type, s, from a type space, S with a σ-al-

gebra S. The type, which you may think of as a genotype, determines a proba-

bility kernel, P(s9), over a life space, (Ω A)> of all possible life careers. The life

space may be very rich in order to contain all relevant aspects of individual life,

and is best thought of as an abstract measurable space. What has to be defined

on it - otherwise there would be no population to talk of - is a reproduction pro-

cess for individuals. It will be denoted by ξ and viewed as a point process on

S x R+, the first coordinate of any point yielding the type of that child, the second

the father's age at the birth1. The processes is supposed finite on bounded sub-

sets of R+, so that the children can be numbered in birth order (arbitrarily for

twins). If θ£, Tfc are thus the type of the fcth child and father's age at his birth,

then
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ξ(AxB) = ^{k\ok^A,τkeB}Λ^AβeB,

B denoting the Borel algebra on R+. A biologically basic, though not mathemat-

ically fundamental, entity defined on the life space is the life span,

the extended non-negative half-line.

The individuals to lead these lives are denoted in the classical mam-Harris

fashion: the ancestor is 0, the first generation is {1,2,...} = Λf, the n:th is

JVVV0 = {0}, and the set of all possible individuals is written

/= u#n.

If individuals and sets of individuals are partially ordered by descent (JC

stems from y if y = 0 ory is the first part of x, A stems from B c/ if for all xe A

there is some y e B such that x stems from y), then the life kernel PCs,'), s e S de-

termines a Markov field over sets of individuals (Jagers 1989) and the flow of

time via the following dynamics:

• The ancestor 0 is bom at time 0 and of an arbitrary type σ0 = *€ S.

• He gets ξo(S x R+) children, viz. 1,2... ξo(5 x R+), at times
τi'τ2—τξ (SXR ) ^ ^ e y a r e °f t yP e s σi>σ2—σξ (SXR )• These a r e measur-

able functions of the ancestor's life, chosen from the life space Ω according to

• The individual x = (X1,X2,...JCΛ)(= x ^ . JCn for short), * ,€# , is the

xn:ίh child of χxx2...xΛ_v He is of type σ^ and is born at time τx which is the

sum of 0's age τχ at begetting x\ , the latter's age at giving birth to his Jt2:th

child etc.. The interpretation of τχ = <*> is, of course, that x is never born.

The probability measure thus arising on the population space

(S x Ω*JS xA1) will be denoted by P s for σ0 = s e s with expectation operator E5.

If the the starting type was chosen according to some distribution, say π, over S.

We write P π and Έ^.

A couple of rather technical assumptions ( cf. Jagers 1989) are needed. They

can be summarized by saying that the process should be

• Malthusian, i.e. there is a Malthusian growth parameter α,
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• supercritical, i.e. 0 < α < «>,

• irreducible, i.e. individuals of almost all (with respect to a stable type

distribution π, see beneath) types can have descendants of almost all types,

• strongly α-recurrent, meaning that the mean age at childbearing in the

population is (positive and) finite, and

• spread-out in the sense that the reproduction kernel

μ(s,AxB) =E 5[ξ(Λx£)] = jξ(AxB) (ω)P(s,dω)
Ω

is so with respect to the product of the stable type and Lebesgue measures.

The strict definition of the stable type measure π is that it is the maximal mea-

sure satisfying

je^'μfaAxdt) = π (A) ,μ (π, A x B) = jμ(s,AxB)π(ds),
o s

It is assumed normed to a probability measure.

Now assume that there is given a so called random characteristic i.e. a

weight, that for each individual might be influenced by his type, age, life and

progeny, but not of his ancestors' lives. (Jagers 1975 gives many examples, one

will follow here.) Make the dependence upon age explicit, writing the charac-

teristic χ(a), a for age. At time t sample an individual at random from among all

those born (the total population) or from among all those alive at that time (or

possibly from some other subset of the total population). Call that individual

Joe and check his χ-value. The population development given, its expectation

will be the average χ-value in the population now at time t. Then, let t -> «>. Will

this conditional expected χ-value stabilize? Under certain technical conditions

(including the famous xlogx) the answer is "yes". The limit, which we shall call

simply Joe's expected χ-value in the stable case, is given by the following theo-

rem, stated quite loosely here. (For a precise formulation and proof cf. Jagers

1989.) In it, and beneath, AGE is an exponentially distributed random variable

with parameter α independent of everything else, the index π indicates that the

expectation is taken with respect to a branching process whose ancestor had a

type, random according to the stable type distribution, χ and λ refer to this an-

cestor, and the hat to Laplace transform, χ (α) = αj~e~atχ (t) dt.
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Theorem 1. In a stable population Joe's expected χ-value is Eπ [χ (α) ] if he was

sampled from the total population, Eπ [χ (α) | AGE > λ] if sampled from among

those alive.

Famous special cases of this theorem are the stable age distribution of demogra-

phy (the characteristic being the indicator of age intervals) and the mitotic index

of cell kinetics (where the characteristic is the indicator of the cell cycle time in

mitosis). The theorem is itself a special case of a description of the stable popu-

lation generally, i.e. also for characteristics influenced by Joe's progenitors,

cousins etc. , cf. Jagers and Nerman 1984 for the one-type case and Nerman

1984 for the general theory. Since Nerman's paper is not so easily available we

shall, however use the theorem in the next section. For the one-type case cf ,

however, Nerman and Jagers 1984. But certainly the general stable population

provides the proper context for the problem to be treated.

2. When Was Joe's n:th Father Born? What is, thus, the probability that

Joe's n:th father, i.e. Joe's father's father's ... father (n times) was born no more

than u time units ago? To make use of the theorem we must find a characteristic

that counts an individual if his n:th father satisfies this. Since it may not be in-

fluenced by ancestors of the individual it measures, we have to refer it to the n:th

father himself, giving him the weight k if he has n:th generation descendants

within time u:

{
neN*

(In this first step we do not bother whether the n:th generation descendant is

alive or not.) Clearly

For functions of a non-negative real variable let * denote convolution, and for

functions on S x R+ let it stand for transition on S and convolution on R+. Thus,

μ 2 (AxB)-μ *μ(AxB)= j μ(r,AxB-t)μ(s,drxdt)

SxR +

Also write

μα (s, dr x dt) = έf^μ (s, dr x dt).

Since by induction
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X Pκ(\<u) =μ* Λ (π,Sx[(U]) ,
xeN"

it follows that

Eπ[χu(α)] = ^ ( ^ ί - £ - α u ) μ * f t ( π , 5 x Λ ) = Ea * μ* n (π.Sx [*,«]),

£ α denoting the exponential distribution with parameter α.

The case of proper interest, Joe alive, is somewhat more difficult in this set-

ting. (It is easy if you have the general stable population theory.) We cannot ap-

ply the conditional version of the theorem, since the characteristic has been

carried back to referring to Joe's n:\h father, rendering him the Joe of the theo-

rem. Instead we have to consider a characteristic

the index x indicating that not only the birth-time refers to the individual x but

also the life-span. Calculating as above leads to an expression involving, be-

sides the reproduction function, also the life span distribution, L of an individual

whose type is determined according to the stable type distribution, π,

This is, however, not the correct expression: we have to norm by the probability

of being alive,

Then it follows that the probability of Joe's n:th father being born no more than

time u ago has the form

Lα being the stable age distribution

If life length is infinite, this reduces to the exponential distribution, of course.
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We specialize now to the one-type case where there is a proper reference for

the stable population derivation of this result, Nerman and Jagers 1984. Then

μ (π, S x [0, u]) is merely the reproduction function μ(u) and μα (π, S x [0, u]) a

probability measure μ α on R+, the stable distribution of age at childbearing. Its

expectation

β =

is the mean age at childbearing. Its variance will be denoted by v2.

The central limit theorem thus yields that the time back to Joe's n:ύι father's

birth is, approximately,

X being exponential ( α ) if Joe was sampled from the total population and fol-

lowing the stable age distribution, if he was chosen from those alive, and inde-

pendent of the standard normal variable N(0,l) in both cases. If there is further

information about Joe this will reflect itself only on X. E.g. if Joe is known to be

65, the time back will be

Example. In the last mentioned case we find out when Joe's greatgreat-

greatgreatgreatgreatgreatgreatgrandfather was born. Assume that β = 30 and v =

7. An approximately 95% prediction (or, rather, postdiction) interval is then

1989-65-300±2X7XΛ/Π)«1624±46 = [1578,1670].

3. The Time Scale of Evolution. Through the advent of molecular biology

it has become possible to study the process of evolution at the level of nucleic

and amino acid sequences. There is a host of literature, cf. Kimura 1979, Wilson

et al. 1987, or in a branching process context Taib 1987. Much of the statistical-

ly oriented woik, cf. Barry and Hartigan 1987, is concerned with the reconstruc-

tion of the evolutionary tree. We wish to contribute to the understanding of the

time scale in given trees.

Thus consider some gene or protein, like the often studied α- or β-globins,

and assume that there is, at each birth a probability/? of mutation. In accordance

with the infinite alleles interpretation each mutation is supposed to be unique.

The underlying population is viewed as a supercritical, one-type branching pro-

cess with the reproduction function μ, as in the preceding section. The expected

number of first mutant progeny of an individual, i.e. of mutant individuals stem-
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ming from the individual and being the first mutants in their line of descent, is

then

n = l

within time t. Following Taib 1987, we clump an individual and all his non-mu-

tant progeny into a macroindividual, born at the birth of the first individual of

that allelic type, dead at the death of the last non-mutant descendant.

This creates a new branching process of macroindividuals, having the repro-

duction function M. The question how long a time ago the first in a sequel of n

mutations occurred in the original population reduces to the question about Joe's

n:th father in the population of macroindividuals, cf. also the more general anal-

ysis in Taib 1987, Chapter 7. To apply the answer of the latter to the former

question it remains only to determine the Malthusian rate and the expectation

and variance of the new process. But this is easy:

= P Σ f " 1 <*<«)>" = P Σ <
n = l n = l

so that the Malthusian rate actually remains the same. But the other terms

change drastically.

Ma(dt) = e^NKdt) = p Σ ? Λ ~ V "WO
n = l

yields

oo oo

Jo *A#α(Λ) = p Σ ^ " ' J o Vα* *(<") = P
n = l

The classical variance decomposition applied to the sum of a geometrical num-

ber of independent random variables gives the variance

Mutation probabilities are very small, so presumably this can be well approxi-

mated by just β2/p2, leading to the approximate time back to the first of n muta-

tions as

Here Y, having the stable age distribution of the macroprocess, is the only prob-
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lematic part. With a probability r, the probability of non-extinction of the origi-

nal process, it is exponential (a), and with probability 1 - r it has the stable age

distribution of a process whose life length has the distribution of the conditional

time to extinction of the original process, given that it dies out. Presumably it

can be disregarded in a situation with little p and large n. We thus arrive at the

final approximation

In molecular genetics what is known is however not n but the number d of

differences between two existing species. If the same mutation rate is assumed

for both species, as is usually done, n in the above formula should be replaced by

a random variable that is binomial with parameters d, 1/2. This and a central

limit theorem for sums of a random number of random variables leads to our fi-

nal formula:

The time back to separation between two species exhibiting at a certain ami-

no acid chain d differences is, approximately,

Example. On a gene 80 differences have been found between two species.

The time to their divergence has been estimated to 40 million years from other,

e.g. fossile, evidence. If the generation time in the species considered is 10

years, equating dβ/2p_with 40 million yields p = 10"5. If this were known to be

the true probability of mutation a 95% "postdiction" interval for the time to di-

vergence would be 4 x io7 ± 1.3 x io7.

Alternatively one could aigue that fossiles only yield lower bounds for the

time to appearance of a species. Then we would conclude that

40x10//? +Λ/40xHW(0,l)/p>4xl07,

and hence that

p<1.36xlθ~5

with 99% confidence.

4. Concluding Remarks. This note sketches a branching process way of

arguing about genetical evolution. It is very tentative. Serious application of

this type of arguments would need more refined modelling. In particular the the-

ory should incorporate multi-type individuals, so that mutation may possibly

change the reproduction pattern. We hope to proceed to such work.
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