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The problem of integration of surveys is known to be of considerable
practical as well as theoretical interest in the design of multi-purpose and
continuing surveys. The object of this paper is to present a brief review of
current developments in this area and to furnish a unified framework within
which integration of surveys can be studied from various angles.

Introduction

The problem of integration of surveys, i.e., the problem of designing a
sampling program for two or more surveys which maximizes the overlap between
observed samples is known to be of considerable practical as well as theoretical
interest in the design of multi-purpose and continuing surveys (Keyfitz, 1951).
Development of cost-efficient sampling programs of this kind is a problem which
agencies such as the National Sample Survey of India, Statistics Canada, the U.S.
Bureau of the Census, the U.S.D.A., and others worldwide, have been continuing
to tackle on an ad hoc basis. And although the literature on it is now over 40
years old, basic research in it has reached a modest level of maturity only recent
(cf. Arthanari and Dodge, 1981; Causey et al. 1985; Krishnamoorthy and Mitra,
1987; Maczynski and Pathak, 1980; and others). Nevertheless despite these
recent gains, there remains a pressing need for a unified framework within which
integration of surveys and other similar problems of this nature, such as
controlled selection and controlled rounding (Goodman and Kish, 1950, and
Causey et al., 1985), can be studied with all their ramifications. In due course,
such an approach is bound to provide a powerful guide to the cost-efficient design
of survey programs commonly encountered in practice. The primary object of
this paper is to briefly review the contemporary work in this area from the
theoretical as well as computational viewpoints.

In broad terms, integration of surveys can be referred to as the sampling
program for two or more surveys. It has its origin in multipurpose surveys and
sampling over successive occasions. In multipurpose surveys, the population
characteristics under study are often subdivided into two or more groups of
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positively correlated characteristics and different sampling schemes are employed
for data collection for the different groups of characteristics. For example in
multipurpose surveys, traditionally population size is made the basis for socio-
economic surveys and geographical area for agricultural surveys. This gives rise
to the multivariate problem of designing an overall sampling program which
imbeds the different sampling schemes into a single multi-variate sampling
scheme in a cost-effective manner. A problem of similar kind arises in sampling
over successive occasions (Keyfitz, 1951) in which a given population is sampled
by probabilities proportional to size over two or more successive time periods.
Over time, sizes of population units change and this necessitates sampling the
given population according to a new set of probabilities at each new time period
in a cost-effective manner. In this case, it makes sense to design an overall joint
sampling program which in some sense maximizes the overlap between samples
over different occasions, or equivalently minimizes the number of distinct
population units sampled over different occasions. In applications of this nature,
population units to be sampled are typically primary sampling units (psu's) and
their selection represents a considerable financial investment. A new independent
selection amounts to selecting an almost new set of psu's each time and is not
cost-effective. On the other hand, the use of the same psu's on succeeding
occasions, much like in the paired ί-test, leads to significant reductions in errors
of comparisons between periodic surveys (Kish and Scott, 1971). Thus in appli-
cations of this nature, an integrated joint sampling program which minimizes the
number of distinct psu's selected over successive time periods is cost-effective and
highly desirable.

The problem of integration of surveys for surveys involving two with
replacement sampling schemes was originally formulated and solved by Keyfitz
(1951). Lahiri (1954) proposed a serpentine arrangement of geographically
contiguous psu's for optimal integration of two surveys. Raj (1957) studied the
problem of integration of two surveys as a transportation problem and
established the optimality of Lahiri's algorithm under a one-dimensional metric.
Felligi (1966) studied the problem of integration of two without replacement
sampling schemes and noted that even the simplest case of the sample size n = 2
causes added complications. In the context of k ( > 2) with replacement
sampling schemes, Maczynski and Pathak (1980) presented a general solution in
a closed form under certain assumptions. More recently Krishnamoorthy and
Mitra (1986), and Mitra and Pathak (1984) have presented sequential algorithms
for 'optimal' integration of two or three surveys in the context of with
replacement sampling (cf. Arthanari and Dodge, 1981; Keyfitz, 1951; Lahiri,
1954; Raj, 1957; Kish and Scott, 1971; and others). The recent upsurge of
research in this area is both practically useful and theoretically interesting.

Although the connection between integration of surveys and the
transportation problem is well-known (Aragon and Pathak, 1990; Arthanari and
Dodge, 1981; Causey et al., 1985; Maczynski and Pathak, 1980, p. 137; and Raj,
1957), it is only in recent years that serious attempts have been made to solve
the problem of optimal integration of surveys as a transportation problem. In
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general, integration of surveys is a transportation problem with an exponentially
large number of variables, e.g. a simple problem of integration of two samples of
size n = 5 each from a population of size N = 50 is equivalent to a transportation
problem with approximately 4.5 x 1012 variables. At the present time solvers of
the transportation problems of this size are unavailable in the public domain. An
despite the unique sparse structure of the underlying tableaus of integration of
surveys, there are very few results in the literature on size reduction techniques as
an alternative to solving these very large transportation problems. Much remains
to be done in the area of size reduction techniques for integration of surveys.

Formulation of the Problem

For clarity in the exposition, we adopt the following terminology:

Z : the set of the first N natural numbers. We use the artifice
of identifying the population under study by Z.

k : number of surveys to be carried out, k > 2.

5 : collection of all possible samples from which a sample is
to be drawn for each of the k surveys; S being a subset of
the power set of Z.

nt : sample size for the ith survey, 1 < i < k.

£,- : the outcome of the i survey.

X : the joint outcome of k surveys, i.e., X = (xv.. .,2^).

P- : the probability of selecting the j t h sample s on the ith

survey, i.e., P{ = P(x = s; ), x G X, sj G 5, 1 < i < k.

d : a cost function defined on S , i.e., it is non-negative and
sub-additive on S .

A survey or a sampling scheme on Z is a given, but otherwise quite
arbitrary, collection S of samples from Z endowed with a given probability
distribution P. Thus a survey is expressed by the pair (5, P) = {(s, P(s)): s G S}
in which P(s) denotes the probability of selection of the sample s.

The problem of optimal integration of k surveys can now be stated as
follows:

Given k individual surveys, (5, Pj), 1 < Jί < λ, and a cost function d on
5*, find a joint probability distribution P for X on 5*, which for each xi realizes
the preassigned marginal probabilities Pi determined by the ith survey, i.e.,
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P(arί = s) = P, , and at the same time minimizes the expectation of the cost func-
tion over the class of all surveys of this kind.

Raj (1957) was perhaps the first to paraphrase the problem of integration
of surveys as a transportation problem. In terms of our terminology, it is as
follows:

Problem 1

Given k surveys {(S, P, ): 1 < % < k} and a cost function d on S ,

minimize φ{X) = Σχp(x)

subject to ΣXΛ*) = Py* Xij = i x € Sk: *,. = Sj},

P(X) > 0, V X € Sk.

Example 1

Consider a population of four psu's and suppose that on two occasions a
sample of size two (wor) is to be drawn from the population according to the
sampling schemes given in Table 1.

Table 1: Sampling Schemes for Example 1

Sample

(1.2)
(1,3)
(1.4)
(2,3)
(2,4)
(3,4)

1st Survey

pu
0.04
0.16
0.21
0.13
0.32
0.14

2nd Survey

P2>

0.22
0.15
0.29
0.07
0.10
0.17

To maximize the expectation of the overlap between the two samples selected on
the two occasions, the cost function d is taken to be the number of distinct psu's
in the two samples, i.e., d(sm U sn) = #{sm U sn). The transportation problem
representation of this problem is as follows:

minimize

subject to

6 6
Σ Σ P(*i = *

m = l n = l

6

Σ
n = l

m , = sn)d(sm> sn)
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i
m-1

= sn) = P2n,

P(xl =

To solve this problem, one can use a standard linear programming package, e.g.,
the use of the SPLO-program (1981) yields the results summarized in Table 2.

Table 2: A Solution to Example 1
P(*l = 5m' X2 = Sn)i m> n = h- fi

Survey II/I

1,2

1,3

1,4

2 ,3

2,4

3,4

1,2

0.04

0.01

0.06

0.11

0.22

1,3

0.15

0.15

1,4

0.21

0.08

0.29

2 ,3

0.07

0.07

2,4

0.10

0.10

3,4

0.03

0.14

0.17

0.04

0.16

0.21

0.13

0.32

0.14

1.00

Based on this solution, we find that the minimum value of the objective function
as defined in Problem 1 is 2.29. It is worth noting that this represents the
maximum expected overlap between the two sampling schemes.

Integration of Surveys with Replacement Sampling Schemes

Unfortunately, most realistic problems of integration of surveys are not
as tractable as the example in the preceding section seems to indicate. For
example, it is easily seen that a straight forward 3-dimensional integration of
surveys problem for a population of 20 psu's for without replacement samples of
size n = 3 amounts to a transportation problem with over a billion variables. At
the present time, hardware or software which can handle a problem of this
magnitude is unavailable in the public domain. So it is not surprising at all that
earlier attempts at solutions of these problems were largely directed towards
finding closed form solutions under special circumstances. The first general result
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of this nature was obtained by Maczynski and Pathak (1980). Based on the
following lemma, they provided closed form solutions for the special case of the
sample size ni = 1 and k surveys, k > 2.

Lemma 1

Consider the general problem of integration of k surveys with ni = 1 and
suppose that there exists a joint probability distribution P on S such that for
each Λ, 1 < h < *, and 1 < iχ < ... < ih < k,

Then

Moreover such a P minimizes the expected number of distinct psu's selected in all
the k samples.

The case jfc = 2. An immediate corollary of Lemma 1 is that for k = 2 surveys
with ni = 1, the following closed-form solution is optimal:

P(x x = A, x2 = j) = J{h), A = j

P(Xl = h,x2 = j) = f12(h, j), h <> j

where
= min(Pιh, P2h),

UK )) = (Plh -

Algorithmic representations of the above solution have been provided by
Keyfitz (1951) and Mitra and Pathak (1984).

The case k = 3. The problem of optimal integration of three surveys with ni = 1
is essentially solved now. In this case Lemma 1 forms the basis of all closed-form
solutions which minimize the expected number of distinct sample units over the
three occasions. In a series of fundamental papers Krishnamoorthy and Mitra
(1986, 1987) have established the optimality of the Mitra-Pathak type
algorithmic approach (1984) for the integration of three with replacement
sampling schemes. For further details in this connection we refer the reader to
the elegant work of Krishnamoorthy and Mitra (1987). For completeness, it
would be worthwhile indeed to investigate extensions of these results to the
general case of k surveys with k > 3.
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Size Reduction Techniques

In this section we present a brief review of a technique which has the
potential of significantly reducing the size of the induced transportation problem
in the context of integration of two surveys. To illustrate this technique, consider
the induced transportation problem of Example 1 and observe that the cost
function d of this example is in fact a metric. This simple observation allows one
to establish the following interesting result (Aragon and Pathak, 1990):

Theorem 1

Consider the problem of integration of two surveys of equal size in which
the cost function d is induced by a metric. Then there is an optimal feasible
solution P such that for each sample sm

P ( * l = 5m> X2 = sm) = min(Plmi P2m)'

The theorem implies that by setting these diagonal probabilities equal to
their largest admissible values, namely the minimum of the corresponding row
and column marginal probabilities, at least half of the restrictions of the problem
are satisfied. What is left then is the optimal determination of the remaining
unknown nondiagonal probabilities, i.e. P(a;1 = sm, x2 = sn), for only some of
m < > n. This reduced problem is at most one-fourth the size of the original
problem. For example, application of this technique to Example 1 reduces the
original problem with 36 variables to a smaller problem with only 9 variables.
The reduced problem is stated below and an optimal solution summarized in
Table 3.

minimize

subject to

3 3

Σ Σ/fc = ,
m = l 7i=l3

Σ P(xl = « m

 X2
7 1 = 1

3

1 m> 2

n> * 2 =

= O =

= J =

= ^ lmi

= ί >

2 n .

P(xl = sm> X2 = sn) > °>

¥171,71= 1,. ..,3.
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Table 3: A Solution to the Reduced Version of Example 1

Survey I

n =

Survey II

1,

2,

2,

3

3

4

1,2

0.01

0.06

0.11

0.18

1

0

0

, 4

.08

.08

3,

0.

0.

4

03

03

0.01

0.06

0.22

0.29

Note that the marginal probabilities Plm and P2n are given by the marginal
entries in Table 3. And that Table 3 was obtained from Table 1 after the
assignment of the main diagonal probabilities P(s, 5). Thus at the first stage of
this size reduction technique, we set P(sv s^ = .04, P(sv s2) = ... = P(sv s6) =
0, P(s2, sχ) = 0, P(s2, $2) = 15,...,P(s6, s6) = .14. Then at the second stage, the
reduced problem is solved by using a standard transportation problem solver.
The two solutions when combined together furnish a complete solution to the
original problem of Example 1.

In order to present this size reduction technique in greater generality and
scope, a slight digression from the main theme of the paper is necessary. We
turn now to the following so-called Hitchock transportation problem (Chvatal,
1983, p. 345):

Problem 2

minimize

subject to

Σ Σ cijχij

Σ *<,•= ̂  0"=

*a > 0, V t, j .

Moreover, suppose that in the preceding transportation problem, there are cells in
the cost matrix C = {c-} with the following property of negative variation:

Definition 1

A cell (i, j) of the cost matrix C = {cφ is said to have negative variation
if for all k < > i and / < > , the following inequality holds:
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(cij+cik)-(cii+cki) < °

Similarly, the cell (t, j) is said to have positive variation if the above difference is
always non-negative.

If the cost matrix of a given transportation problem has cells with
negative variation, then the given problem can be reduced to a new problem of a
smaller size. Specifically, if the original problem is of size mxn and has c cells
with negative variation, then the reduced problem is of size (m-a) x (n-b) with
a + b > c. This size reduction is a consequence of the following theorem:

Theorem 2

Suppose that a given cell, say (1, 1), of the cost matrix of Problem 2 has
negative variation. Then there exists an optimal feasible solution X = {x^} with
xu = min(pv qj.

In a different guise, this theorem can be found hidden in the seminal
work of the noted French mathematician Monsieur Monge (1781). In a totally
different context in operations research, it has been used by A.J. Hoffman (1963).
We independently discovered it in the context of integration of surveys and
controlled selection. We take the liberty of referring to this theorem as the
Monge-Hoffman size reduction theorem.

Corollary 1

If the objective of Problem 2 is maximization instead of minimization,
then the above theorem goes through provided the cell (1, 1) has positive
variation.

Now consider the Transportation Problem 2 and assume that the cell
(1,1) of its cost matrix has negative variation. Also, without loss of generality
assume that p1 < qv Then the preceding theorem implies that the original
problem can be replaced by the following smaller problem:

minimize Σ ]Γ) cijxii > 2 < i < m, 1 < j < n
* i

subject to £ χ{i = pt , (i = 2,.. .,m),
j

i

*a > o, v i, j.

Clearly any optimal solution of this problem, along with xlχ = pv x12 =
... = xln = 0, will provide an optimal solution to the original problem. This
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effectively reduces the number of variables from rax n to (ra-1) x n. If instead
of p1 < qv we have qχ < pv a similar consideration will show that an optimal
solution now is given by z n = qlv x21 = ... = arml = 0 and the values of the
remaining variables are obtained by solving an analogous reduced problem
involving ra x (n-1) variables. Finally if pχ = qv then an optimal solution is
given by xχi = pχ = qv x12 = ... = xln = x21 = ... = xml = 0, and the values of
the remaining variables are obtained by solving another analogous reduced
problem of (ra-1) x (n-1) variables.

Note that if the cost matrix in the transportation problem has multiple
cells with negative variation then the preceding size reduction algorithm can be
carried out sequentially until all the cells with negative variation have been
removed. In the special case of c = \j - t|, this size reduction procedure can be
carried out to the very end and an optimal solution can be obtained without ever
having to invoke any solvers of the transportation problem. This last result is a
consequence of the following theorem.

Theorem 3

Consider the rax n matrix D = {d-} in which rf = \j - t|, and suppose
that the first r rows and the first c columns of D have been removed. Let s =
max(r, c) and i = ram(ra, n). Then the following holds:

a) All the cells on the shortest path joining the cells (1, 1), (s-r-f 1,
5-c-fl), (£-r, i-c) and (ra-r, n-c) have negative variation.

b) All the cells (i, j) with t > t - r, j < s - c + 1, and all cells (jfc, I)
with k < 5 - r + 1, / > i-c have positive variation.

Corollary 1

The above theorem also holds if some of the very last rows and columns
of the matrix are removed as well. (This should be self-evident since the removal
of rows and columns from the end leaves original structure of the matrix D
intact.)

Corollary 2

Suppose that d(x, y) has the following property of a distribution function
in two dimensions:

d(x+h, y+k) - d(x, y+k) - d(x+h, y) + d(x, y) > 0.

for all Λ, k =ϊ 0. Then the northeast and the southwest cells of the matrix D
have positive variation, while the northwest and the southeast cells have negative
variation.
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An immediate consequence of the above corollary is that for distance
functions such as d(x, y) = xy, the conventional northwest (greedy) algorithm
provides an optimum solution for the Hitchock Transportation Problem 2.

Example 2

The purpose of this example is to graphically illustrate the statement of
Theorem 3. Consider a 9 x 7 matrix D for Theorem 3. Tables 4 through 6
summarize the variations of D when certain initial rows and columns are
removed from it.

Table 4: Variations of the Matrix D
(0 rows and 0 columns are removed)

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7

— +
—

—
—

—
—

+ —
+ —
+ —

Table 5: Variations of the Matrix D
(3 rows and 2 columns are removed)

4
5
6
7
8
9

3 4 5 6 7

— — 4-
—

—
+ 4- —
4 - 4 - —
+ 4- —
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Table 6: Variations of the Matrix D
(2 rows and 3 columns are removed)

3
4
5
6
7
8
9

4 5 6 7

— +
— +

—
—

+ —
4- —

+ —

When the underlying cost coefficients c 's of Problem 2 are given by the
matrix D, the northeast algorithm (Algorithm I) provides a complete solution to
the Problem 2. To determine the variations of the cells of an arbitrary matrix,
the algorithms similar to the positive variation algorithm (Algorithm II) can be
used. Both of these algorithms are given at the end of this paper.

Example 3

This example is taken from the paper by Causey, Cox, and Ernst (1985)
on the problem of maximizing the overlap between two surveys. The sampling
scheme is summarized in Table 7. The cost matrix C = {c; }, where cΓ = # ( s ;

Π Sj), along with its variations are summarized in Table 8. The object is to:

maximize

subject to

< < 12, 1 < j < 5

ΣjPij = P> 1 < < 12,

ΣiPij= ϊj, 1 < J < 5,

Pij > 0, V i, j .

It follows from Corollary 1 of Theorem 2 that there exists an optimal
solution for this problem such that for 1 < i, j < 5, P(s^ Sj) = mtn(p ., p •) for
i = and zero otherwise. This partial solution reduces the size of the original
problem from 12 x 5 = 60 to 7 x 5 = 35 variables as summarized in Table 9.
The reduced problem can now be solved using any standard solver of
transportation problems.
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Table 7: Sampling Scheme for Example 3

Survey I Survey II

(1)

(2)

(3)

(4)

(5)

(1,4)

(1,5)

(2,4)

(2,5)

(3,4)

(3,5)

(0)

Pχm

.15

.018

.012

.24

.04

.30

.05

.036

.006

.024

.004

.12

sn

(1)

(2)

(3)

(4)

(5)

Pin

.40

.15

.05

.30

.10

Table 8: The Cost Matrix and Its Variation

1
2
3
4
5
6
7
8
9
10
11
12

1

1+
0
0
0
0
1
1
0
0
0
0
0

2

0
1+
0
0
0
0
0
1
1
0
0
0

3

0
0

1+
0
0
0
0
0
0
1
1
0

4

0
0
0
1+
0
0
1
0
0
1
0
0

5

0
0
0
0
1+
1
0
1
1
0
1
0
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Table 9: Sampling Scheme for the Reduced Problem

sm

(1,4)

(1,5)

(2,4)

(2,5)

(3,4)

(3,5)

(0)

Survey I

.30

.05

.036

.006

.024

.004

.12

sn

(1)

(2)

(3)

(4)

(5)

Survey II

.25

.132

.038

.06

.06

Example 3

This example establishes the optimality of Lahiri's selection scheme
(1954). This scheme requires a serpentine ordering of the psu's as illustrated in
Figure 1 below so that geographically contiguous units occur next to each other
in the sampling frame.

Fig. 1. Lahiri's Serpentine Ordering of PSU's
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Algorithm

begin

end.

Algorithm

begin

I (Northeast)

Pij := 0; 1 < i <
i := 1; j := n;
while ( > 0) or (ι

if p[ι] < q\j\

begin

Pij •=

% :=• i

end
else if p[t\ >
begin

Pij •=

end
else
begin

i := i

end

m, I < j < n;

< m ) do
then

+ 1

q\j\ then

- 1

+ i;

Π (Positive Variation)

for t := 1 to m do;
for j := 1 to
begin

n do;

positive := true;
k:= 1

repeat
!

._

repeat
if variation(2,j,£,/) < 0

then positive :=
false
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until (not positive) or
(/ > n);

k := k + 1
until (not positive) or (k > m)

end.
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